ECE1387 — Exercise 3: Using the LegUp High-level
Synthesis Framework

1 Introduction and Motivation

This lab will give you an overview of how to use the LegUp higliel synthesis framework. In LegUp, you
can compile the entir€ program to hardware, or you can also select one or more fimgcin the program

to be compiled to hardware accelerators, with the remaipiogram segments running in software on
the MIPSsoft processor. Compiling the entire program to hardware caa gou the most benefits in
terms of performance and energy efficiency. However, theag be parts of the program which are not
suited for hardware, such as linked list traversal, reom;sor dynamic memory operations. In this case,
computationally intensive functions can be acceleratethdrglware, with the remainder of the program
running in software. This allows supporting a wider rangegblications and enables a broad exploration
of the hardware/software co-design space. With the MIPSm@otessor, you can also execute the entire
program in software.

In this lab, you are given an examplgprogram,matrix multiply, and you will use the different flows in
LegUp and compare their results in terms of execution tinte@rcuit area. You will also see how you
can improve the circuit throughput witbop pipelining LegUp can currently target 2 Altera FPGAs: the
Cyclone Il (EP2C35F672C6) FPGA on the DE-2 board, and thati8tV (EP4SGX530KH40C2) FPGA
on the DE-4 board. In this lab, all of the circuits are tarddte the Cyclone 1l FPGA.

The first part of this exercise is a tutorial on how to use LegUpto synthesize a matrix multiply
program to hardware. The actual exercise is in Section 6. Tlsiexercise is due on January 2, 2014, at
noon, by email to Jason.

2 Processor/Accelerator Hybrid Flow

First let’s go into the benchmark directory:
cd | egup-3. 0/ exanpl es/ matrixnul tiply

Openmatri xrul ti pl y. ¢ with a text editor (gedit, gvim, emacs). You will see two inpurays,Al
andB1, each of which is 20 by 20 elements in size. The output arragul t ABL, is also declared with
the same size. In theai n function, you will see a double nested loop, which calls thatiply function to
calculate each element of the output matrix. Tleint variable keeps a running sum of each element of
the output matrix, which is checked at the end of the prograretify that the program has produced the
correct result. Lets first compile the benchmark vgtit to verify the output. Run the following:

gcc matrixmultiply.c
./ a. out

You will see the following output:

Result: 962122000
RESULT: PASS

The sum of all the elements in the output array is 962,122a0@0since this matches the expected output,
RESULT: PASSis printed out.

In this section, you will learn how to execute timatrix multiplybenchmark using our processor/accelerator
hybrid system. The hybrid flow allows the user to select on@are C functions, which are compiled into
hardware accelerators, with the remainder of the programing on the Tiger MIPS processor (an FPGA
soft processor). To do this, the user first designates thetitmto be accelerated. Then, the function calls
to the designated functions are replaced with calls to weafyctions. These wrapper functions are gen-
erated by LegUp and allow the software process to communigilh the hardware process. The wrapper
functions perform memory-mapped reads/writes to trarfsfection arguments, start the accelerators, and
retrieve any return values. The communication fabric betwie processor and accelerators, called the
Avalon Interface, is generated by Altera’s SOPC (SystemacHrogrammable-Chip) Builder. The Avalon
Interface provides the hardware interconnection netwwhkch allows the processor to communicate with
the hardware accelerators, and also allows both the praicasd accelerators to access the shared memory
space. This entire hybrid flow is automated so that the usgplgihas to specify the name of the function
to be accelerated.

Now, let’s try the hybrid flow on thenatrix multiplybenchmark. Opemat ri xnul ti pl y. c again.

You can see that theultiply function is a good candidate for hardware acceleration. i@ function
cannot be accelerated since that would compile the entogram to hardware, in which case the pure
hardware flow should be used instead (described in the neibse To mark themultiply function for
acceleration, open theonfig.tclfile. Here you will see two lines as shown below.

#set _accel erator _function "nmultiply"
#|l oop_pi peline "Il oop"

Uncomment the first line witeetacceleratorfunctionand save the file. This parameter marks the func-
tion for hardware acceleration. To accelerate multiplefioms, you need to use this parameter for each
new function. We will discuss the second paramdtesp_pipeling in Section 4. After the function has
been designated for acceleration, run the following maigeta

make hybrid

This make target runs a sequence of LLVM compiler passesgtupe The compiler passes first separate
the program into two parts, the hardware part and the sodtywart. The hardware part contains the pro-
gram segments for the designated function and all of itsetetant functions. This hardware part is taken
through LegUp’s high-level synthesis algorithms to be ciegxo Verilog. The software part contains the
remaining program segments without the designated fum¢tiad all of its descendants). This software
part, after some transformations, is compiled to executineMIPS processor.

In the software part, calls to the hardware designated immcmultiply, are replaced with calls to the
wrapper functionlegup.segmultiply. This indicates that theaultiply function will be executed in hardware
instead of in software. LegUp generates a wrapper funcboedch of the hardware accelerated function.
Let’s look at the wrapper function insidegupwrappers.c

Copyright(© 2013 Canis, Choi, Brown, Anderson 2

#define nultiply DATA (volatile int =) 0Oxf0000000
#define multiply_ STATUS (vol atile int =) Oxf0000008
#define nmultiply ARGL (volatile int =) Oxf000000c
#define multiply AR& (volatile int =) Oxf0000010

int legup_seq nmultiply(int i, int j)
{
*mul tiply ARGL = (volatile int) i;
*mul tiply AR& = (volatile int) j;
*mul ti ply STATUS = 1;
return =mul tiply_ DATA,

The wrapper function has the same function prototype astilgenal function, except that the function
name has been prepended wébupseq. Its function body is removed and replaced with memory-neapp
operations. This causes the processor to communicate lwdthardware accelerator over the Avalon In-
terconnect. Theétdefinestatements at the top of the file define the memory-mappecsskel assigned to
the accelerator. Hence, performing a write to the memorppad address will send data to the accelerator,
and performing a read will retrieve data from the acceleratbe multiply DATApointer is used to retrieve
the return data from the accelerator, thaltiply. STATUSpointer is used to give the start signal to the ac-
celerator, and thenultiply ARG1and themultiply ARG2pointers are used to send the function arguments
to the accelerator. The wrapper function first sends all®ftlyuments to the accelerator. These arguments
are stored in registers in the hardware accelerator. Thervthpper function asserts the start signal by
writing a 1 to the accelerator via theul t i pl y_STATUS address. When the start signal is received, the
accelerator responds by asserting a stall signal back tpribmessor. This stalls the processor until the
accelerator has finished execution. When the accelerattomis, adonesignal is asserted, which allows
the processor to resume its execution by reading fronmihiéiply_ DATA pointer, which retrieves the return
value from the accelerator. This data is then returned tcaher function.

LegUp also generates the script to control the SOPC Buil@lbe script contains the tcl commands to
add the accelerator to the processor system, make the agcessmnections between the processor and
the accelerator, and generate the complete system. Tip¢ san be found inegupsopc.tcl This script
is read in by the SOPC builder to generate the system, whictvathe entire flow to work without user
intervention.

Once the system has been successfully generated, let'tasentioe system. This can be done by running
the following make target.

make sim proc

Note that both the generation as well as the simulation o$yiseem can be done with a single command,
make hybri dsi m Now let’s look at the simulation outputs. A number of ouus shown below, are
printed out first.

At t= 105408000 cl k=1 finish=1 return_val = 125400
At t= 106563000 cl k=1 finish=1 return_val = 125590
At t= 109398000 cl k=1 finish=1 return_val = 125780
At t= 110193000 cl k=1 finish=1 return_val = 125970
At t= 110988000 cl k=1 finish=1 return_val = 126160
At t= 111783000 cl k=1 finish=1 return_val = 126350
At t= 114618000 cl k=1 finish=1 return_val = 126540

Copyright(© 2013 Canis, Choi, Brown, Anderson 3

Each line is printed out whenever the accelerator finishdgeaturns to the processor. Hence if there are
multiple calls to the accelerator, as in this example, rpldtlines of outputs are displayed. Each output
shows the time at which it returned to the processor as wétleaeturn value. The first time the accelerator
was called, it returned a value of 125,400, and the secorel fimeturned 125,590. Since the accelerator
was called 400 times in this program (iterating over a 20x2fxix), the accelerator displayed 400 lines of
return values. At the end, the processor prints out the fesallt.

Result: 962122000

#

RESULT: PASS

#

counter = 73320

You can see that the program produced the correct resultrentdnchmark passed. For the proces-
sor/accelerator hybrid system, it took 73,320 cycles toetn its execution. Let’s synthesize the system
to get itsFMax and area results. Once again, run the following target tthggize the tiger directory.

make hybridquartus

Now look in thet i ger _t op. st a. r pt inside the tiger directory for th8low Model Fmax Summary
section. You should see diMax of 65.02MHz. So the circuit took a total of 1,127,85(73, 320 x
(1/65.02M H z)) to run. To see area results, look in thieger _t op. fi t. summar y file inside the tiger
directory. You should see the following.

Total logic elenments : 13,674 / 33,216 (41 %)
Total conbinational functions : 11,970 / 33,216 (36 %)
Dedicated logic registers : 6,657 / 33,216 (20 %)

Total registers : 6725

Total pins : 65/ 475 (14 %)

Total virtual pins : O

Total menory bits : 158,889 / 483,840 (33 %)

Enbedded Multiplier 9-bit elenents : 22/ 70 (31 %)

In this section, you have learned how to use the hybrid flow égllp to accelerate @ function by
hardware. In the next section, you will learn how to use Legdpompile the entire program to hardware.

3 Hardware Flow

LegUp can compile the entire program to hardware, which ¢a@the most benefits in performance and
energy efficiency. LegUp supports a large subset of ABSIuch as arrays, structs, pointer arithmetic and
floating point operations, but it does not support recursiothdynamic memory. Thus, if the program does
not contain any of the unsupported operations, the entogram can be compiled to hardware.

Now, let’s try to compile thematrix multiplybenchmark to hardware. Since the entire program will be
compiled to hardware, first opeonfig.tcland comment out the first line wiet _accel er at or functi on
“mul tiply". Then run the following:

make

Copyright(© 2013 Canis, Choi, Brown, Anderson 4

2 Schedule Viewer - scheduling.legup.rpt

Explorer Schedule Chart
¥ main
BB_0O Instruction

BB_ preheader 2 [%6, %1], [0, %.preheader]

BB_1 %scevgep.i = getelementptr [20 x [20% i32]]* @A1,i32 0, 132 %i.04, i32 %k.01.i
BB_multiply_exit sscevgep3.i = getelementptr [20 x [20 x i32]]* @B1,i32 0,32 %k.01.i, i32 %j.02
BB_10 %2 = volatile load i32* %scevgep.i, align 4, Itbaa !0

BB_12 %3 = volatile load i32* %scevgep3.i, align 4, !tbaa 10

BB_15 %6 = add nsw i32 %k.01.i, 1

BB_17 %%exitcond = icmp eq i32 %6, 20

BB_19 %4 = mul nsw i32 %3, %2

%5 = add nsw i32 %4, %sum.02.i
bri1 %exitcond, label %multiply.exit, label %1

LeqUp Schedule Viewer

Figure 1: LegUp ScheduleViewer displaying the instructiand the schedule for a basic block.

This compiles theC program to Verilog. Before simulating the program to cheskresults, let’s first
look at itsschedule The schedule shows when each operation is executed in eapmo¢n other words, it
shows the FSM state assignment for each operation in thegmogWe have a prototype GUI, called the
ScheduleViewewnhich graphically displays the schedule by parsing a téxtdcheduling.legup.rptvhich
contains the scheduling data. Let’s use the GUI to see thedsd

schedul evi ewer schedul i ng. | egup. r pt

Figure 1 shows a screenshot of the ScheduleViewer. On th&xelorer panel, you can see all of the
functions in the program as well as their associated basakbl In this case, thaultiplyfunction is a small
function which only has one call site in theainfunction. Hence thenultiply function has beemlinedinto
the mainfunction. In the GUI, click orBB_1, which is the basic block containing the instructions fa th
loop body of the multiply function. On the rigiichedule Chayit shows all of the instructions in the basic
block, as well as their assigned states. If you move your eousr to one of the highlighted boxes, it also
shows the data dependencies. A red rectangle represents arhmput to the current instruction is coming
from; an orange rectangle represents where the output afufrent instruction is being used. You can
see that this basic block is divided into three states: 4n8,6a A complete discussion of all instructions
in this basic block are outside the scope of this lab (see fhy@eAdix of this lab for more information),
however, it's worth drawing attention to a few aspects. tFmstice that there are two load instructions
scheduled in state 4. LegUp uses dual-ported on-chip mesydhus there can be up to 2 memory accesses
in a clock cycle. Each memory access has a latency of 2 cyotah {(nputs and outputs are registered
in on-chip RAM) and the memory accesses are pipelined soatim@v memory access can start a cycle
after the current memory access. However, in this examipéeetare no other memory accesses, and the
remaining instructions need the data from memé#,(%3) as their inputs. Therefore, the consumer of
the load instructions, the multiplyrl) instruction, needs to wait until the data is returned froenmory,
which leaves state 5 empty. In state%® and %3 are multiplied together, added to the running sum of
%sum 02. i, and assigned t&5. Hold your mouse over the blue bar corresponding tarhie instruction
to see its input and output dependencies.

Now that you have learned how to view the schedule producedelyp, let's simulate the program
using:

Copyright(© 2013 Canis, Choi, Brown, Anderson 5

make v

This simulates the Verilog code with ModelSim. You will seeautput as below.

Result: 962122000

RESULT:. PASS

At t= 496930000 cl k=1 finish=1 return_val = 962122000
Cycl es: 24844

The circuit produced the correct result. It took 24,844 egdb complete its execution. Let’s synthesize
this circuit with Quartus Il to obtain thEMax and area results. First you need to make a Quartus project
with the generated Verilog filenatrixmultiply.v To do this, run the following:

make p
This makes the Quartus project for the target FPGA, the @yclb To synthesize, run the following:
make f

Now look in thet op. st a. r pt file in the current directory for th8low Model Fmax Summasgction.
You should see aRMaxof 101.04MHz. So the circuit took a total of 245,88(24, 844 * (1/101.04M H z)
to run. To see the area results, look in th@p. fi t. sunmary file in the current directory. You should
see the following.

Total logic elements : 1,240 / 4,608 (27 %)
Total conbinational functions : 1,131 / 4,608 (25 %)
Dedicated logic registers : 679 / 4,608 (15 %)

Total registers : 679

Total pins : 36 / 89 (40 %)

Total virtual pins : O

Total nmenory bits : 38,400 / 119,808 (32 %)

Enbedded Multiplier 9-bit elenents : 6 / 26 (23 %)

The area has decreased significantly from the previous twsflas the system no longer contains the
MIPS processor.

In this section, you have learned how to use the pure hardfiasein LegUp to compile an entire
C program to hardware. You have also learned how to view theddb produced by LegUp. In the
next section, you will learn how you can improve the perfang®of the hardware circuit by usingop

pipelining

4 Hardware Flow with Loop Pipelining

In this section, you will uséop pipeliningto improve the throughput of the hardware generated by LegUp
Loop pipelining allows a new iteration of the loop to be stdrbefore the current iteration has finished [1].
By allowing the execution of the loop iterations to be ovpped, higher throughput can be achieved. The
amount of overlap is controlled by theitiation interval. The initiation interval (ll) indicates how many
cycles are taken before starting the next loop iteration Thjus an Il ofl means a new loop iteration can
be started every clock cycle, which is the best case. Thedilsi¢o be larger thah in other cases, such

Copyright(© 2013 Canis, Choi, Brown, Anderson 6

void func(m,n,o0) {

for (i=2;i»=0;i--) {
op_Read;
op_Compute;

op_Write; E

}
}
Ny nuUururuge
> <>
3 cycles 1cycle

el Gl
- =)

€ >

8 Cycles l RD cmp | W
4 cycles
(A) Without Loop Pipelining (B) With Loop Pipelining

Figure 2: Loop Pipelining Example [4].

as when there is a resource contention (multiple loop itaratneed the same resource in the same clock
cycle) or when there are loop carried dependencies (theibat@ previous iteration is needed as an input
to the subsequent iteration).

Figure 2 shows an example of loop pipelining [4]. Figure 2&hpws the sequential loop, where the
[1=3, and it takes 8 clock cycles for the 3 loop iterationsdrefthe final write is performed. Figure 2(B)
shows the pipelined loop. In this case, there are no res@amtntions or data dependencies. Hence the
[I=1, and it takes 4 clock cycles before the final write is peried. You can see that loop pipelining can
significantly improve the performance of your circuit, espdly when there are no data dependencies or
resource contentions.

Now let’s try loop pipelining with LegUp. First you need toatse the loop to pipeline.

Openmat ri xmul ti pl y. c with a text editor. Let’s pipeline the for loop inside thmultiply function. To
do this, you need to add a label to the loop. Add a label calt®op before the for loop as shown below.

| oop: for(k = 0; k < SIZE;, k++)
Once the loop has been labeled, openfig.tcl Uncomment the line:
| oop_pi peline "l oop"

This tells LegUp to pipeline the loop labeledlasp. Compile the program by running,

Copyright(© 2013 Canis, Choi, Brown, Anderson 7

Time Step
t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

Phi
GetElementPtr
GetElementPtr

Add

lcmp
Phi *

GetElementPtr
GetElementPtr
Add
lemp

Phi
GetElementPtr
GetElementPtr

Add
lcmp

Loop Iteration

Figure 3: Schedule for Pipelined Loop.

make

Let's look at the schedule for the pipelined loop. Our Schediewer GUI does not yet support viewing
the schedule for pipelined loops. Instead, you can logk@lining.legup.rpt At the bottom of the file, it
shows the schedule for the loop.

Figure 3 shows the schedule for three iterations of the I&yrently, with loop pipelining, there can
only be one memory access per clock cycle. This makes thettdsfake sure that the loads from the
current iteration do not overlap with the loads from otherations. You can see in the figure that there
is only one load per time step for all loop iterations. We argently working on supporting dual-ported
memories with loop pipelining.

Now let’s simulate the circuit. Run the following:

make v

It will produce the following result.

Result: 962122000

RESULT: PASS

At t= 368930000 cl k=1 finish=1 return_val = 962122000
Cycles: 18444

The circuit produced the correct result and has completedxécution in 18,444 clock cycles. Let’s
synthesize the circuit with Quartus Il to obtain tRklax and area results. Run the following make targets.

make p; nake f

Now look in thet op. st a. r pt file in the current directory for th8low Model Fmax Summasgction.
You should see aRMaxof 105.69MHz. So the circuit took a total of 174/&1(18, 444 * (1/105.69M H =)
to run. To see the area results, look in thap. f i t . sunmar y file in the current directory. You will see
the following:

Total logic elenments : 1,015/ 4,608 (22 %)
Total conbinational functions : 941 / 4,608 (20 %)
Dedicated logic registers : 640 / 4,608 (14 %)
Total registers : 640

Copyright(© 2013 Canis, Choi, Brown, Anderson 8

Table 1: Summary of Results for different LegUp Flows.

Category	Hybrid	Pure HW	Pure HW with Pipelining
Clock Cycles	73320	24844	18444
FMax	65.02	101.04	105.69
Execution Time (s)	1,127.65	245.88	174.51

Table 2: Area-delay products for different LegUp Flows.

Category	Hybrid	Pure HW	Pure HW with Pipelining
Area (LEs)	13674	1240	1015
Execution Timegs)	1,127.65	245.88	174.51
Area-delay Product	15,419,527.53 304,894.70 177,128.02		

Total pins : 36 / 89 (40 %)

Total virtual pins : O

Total nmenory bits : 38,440 / 119,808 (32 %)
Enbedded Multiplier 9-bit elenents : 6 / 26 (23 %)

You may notice that the area has decreased slightly fromdhepipelined version. This is due to using
single-ported memories in loop pipelining, which removes multiplexing logic at the second memory
port, as well as differences in scheduling.

In this section, you have learned how to use loop pipeliningagUp to improve the performance of your
circuit.

5 Evaluating the Results

Let's compare the results you have obtained from the preveaperiments. Table 1 summarizes the results
in terms of execution cycle§;Max, and total execution time (wall-clock time). Observe thailvelock
time is improved considerably as computations are moved goftware to hardware.

Area-delay product is another important metric used forsugag the efficiency of hardware perfor-
mance. Table 2 summarizes the results from the previousiexpats. We have used the number of logic
elements as the metric for area and the total execution tanieeametric for delay.

6 The Exercise

Download the archiveli vi de. t ar. gz from the course webpage. Create a new subdirectory of the
exanpl es directory calleddi vi de and un-tar the contents into your new subdirectory. Takelk &b the

file di vi de. c. The program performs an element-by-element vector dnisf two 20-element vectors.
This is done 5 times, with slightly different values eachdirihe quotients are summed and compared with
the correct value of 7243.

Copyright(© 2013 Canis, Choi, Brown, Anderson 9

1. Repeat the steps of the tutorial above to produce tablegous to Table 1 and Table 2 (above) for
thedi vi de benchmark. Hand in these tables in your report.

2. By default, LegUp generates hardware that allows a neigidivoperation to begieverycycle. In
this step, you will modify the LegUp so that division opeoais must commence at least 10 cycles
apart from one another. Go to the directory containing theggpecode:

cd /home/ | equp/ | egup-3.0/11vmlib/ Target/ Veril og

Editthe file calledsSchedul er . cpp. In thatfile, you will find the methodet | ni ti ati onl nt erval .
Change the method’s return value to 10. (Aside: In the saneetdiry, you may wish to scan the file
SDCSchedul er. cpp which contains the linear programming-based SDC schediigeussed in
class.) Having modified the initiation interval, changette tollowing directory:

cd /home/ | egup/ | egup-3.0/11vm

Type make to recompile LLVM with your changes. Repeat the lab stepvalto generate another
Table 1 and Table 2. Include these tables in your report.uU3sbow the divider’s initiation interval
affects overall circuit performance.

7 Appendix: More on the LLVM Intermediate Representation

Returning to the schedule viewer GUI example, the first twaiructions in the basic block aphi in-
structions. These instructions take a list of pairs as asgus) with one pair for each candidate predecessor
basic block of the current block [2]. One of the pairs is clmodepending on which predecessor basic block
was executed before the current basic block. Hence, in Xaisiple,%sum 02. i , which is created from
thesumvariable inC, is assigned t0, if the program entered the loop body for the first time (cagrfiom
the % pr eheader basic block), or else is assigned¥% (looping back from the current basic block).
% is assigned in state 6 which keeps a running sum of the melfiphatrix elements. The secopdii
instruction assigns a value . 01. 1. %. 01. 1 is the loop induction variablle, which is assigneq if
entering the loop for the first time (coming fro¥h pr eheader basic block) or is assignéds if coming
from the same basic block® is assigned t&%&. 01. i + 1 inthe same state (5 lines below).

The third and fourth instructions ugget el enent Pt r. This LLVM instruction returns a pointer to a
location in an array, based on the array’s base address aoffiseh A load is performed from each one
of the calculated addresses, which are assigné@tand%3. On the next two lines, the add instruction
increment®®, which is the induction variable, and the np instruction checks whether the exit condition
for the loop has been met. This completes state 4. The bréamghr(struction at the end of the basic block
checks whether the previously evaluatéki t cond is true, in which case it exits the loop by branching
to the%mat r i x. exi t basic block, or else it loops back to the start of the currastdblock.

References

[1] Michael Fingeroff.High-Level Synthesis Blue BaoKlibris Corporation, 2010.
[2] LLVM. LLVM Language Reference Manual

Copyright(© 2013 Canis, Choi, Brown, Anderson 10

[3] University of Cambridge. The Tiger MIPS processor (http://www.cl.cam.ac.uk/t@agh
0910/ECAD+Arch/mips.html)2010.

[4] Xilinx, Inc. Vivado Design Suite User Guide

Copyright(© 2013 Canis, Choi, Brown, Anderson 11

