
ECE1387 – Exercise 3: Using the LegUp High-level
Synthesis Framework

1 Introduction and Motivation

This lab will give you an overview of how to use the LegUp high-level synthesis framework. In LegUp, you
can compile the entireC program to hardware, or you can also select one or more functions in the program
to be compiled to hardware accelerators, with the remainingprogram segments running in software on
the MIPSsoft processor. Compiling the entire program to hardware can give you the most benefits in
terms of performance and energy efficiency. However, there may be parts of the program which are not
suited for hardware, such as linked list traversal, recursion, or dynamic memory operations. In this case,
computationally intensive functions can be accelerated byhardware, with the remainder of the program
running in software. This allows supporting a wider range ofapplications and enables a broad exploration
of the hardware/software co-design space. With the MIPS soft processor, you can also execute the entire
program in software.

In this lab, you are given an exampleC program,matrix multiply, and you will use the different flows in
LegUp and compare their results in terms of execution time and circuit area. You will also see how you
can improve the circuit throughput withloop pipelining. LegUp can currently target 2 Altera FPGAs: the
Cyclone II (EP2C35F672C6) FPGA on the DE-2 board, and the Stratix IV (EP4SGX530KH40C2) FPGA
on the DE-4 board. In this lab, all of the circuits are targeted for the Cyclone II FPGA.

The first part of this exercise is a tutorial on how to use LegUpto synthesize a matrix multiply
program to hardware. The actual exercise is in Section 6. This exercise is due on January 2, 2014, at
noon, by email to Jason.

2 Processor/Accelerator Hybrid Flow

First let’s go into the benchmark directory:

cd legup-3.0/examples/matrixmultiply

Openmatrixmultiply.c with a text editor (gedit, gvim, emacs). You will see two input arrays,A1
andB1, each of which is 20 by 20 elements in size. The output array,resultAB1, is also declared with
the same size. In themain function, you will see a double nested loop, which calls the multiply function to
calculate each element of the output matrix. Thecount variable keeps a running sum of each element of
the output matrix, which is checked at the end of the program to verify that the program has produced the
correct result. Lets first compile the benchmark withgcc to verify the output. Run the following:

gcc matrixmultiply.c
./a.out

1

You will see the following output:

Result: 962122000
RESULT: PASS

The sum of all the elements in the output array is 962,122,000and since this matches the expected output,
RESULT: PASS is printed out.

In this section, you will learn how to execute thematrix multiplybenchmark using our processor/accelerator
hybrid system. The hybrid flow allows the user to select one ormoreC functions, which are compiled into
hardware accelerators, with the remainder of the program running on the Tiger MIPS processor (an FPGA
soft processor). To do this, the user first designates the function to be accelerated. Then, the function calls
to the designated functions are replaced with calls to wrapper functions. These wrapper functions are gen-
erated by LegUp and allow the software process to communicate with the hardware process. The wrapper
functions perform memory-mapped reads/writes to transferfunction arguments, start the accelerators, and
retrieve any return values. The communication fabric between the processor and accelerators, called the
Avalon Interface, is generated by Altera’s SOPC (System-On-a-Programmable-Chip) Builder. The Avalon
Interface provides the hardware interconnection network,which allows the processor to communicate with
the hardware accelerators, and also allows both the processor and accelerators to access the shared memory
space. This entire hybrid flow is automated so that the user simply has to specify the name of the function
to be accelerated.

Now, let’s try the hybrid flow on thematrix multiplybenchmark. Openmatrixmultiply.c again.
You can see that themultiply function is a good candidate for hardware acceleration. Themain function
cannot be accelerated since that would compile the entire program to hardware, in which case the pure
hardware flow should be used instead (described in the next section). To mark themultiply function for
acceleration, open theconfig.tclfile. Here you will see two lines as shown below.

#set_accelerator_function "multiply"
#loop_pipeline "loop"

Uncomment the first line withset acceleratorfunctionand save the file. This parameter marks the func-
tion for hardware acceleration. To accelerate multiple functions, you need to use this parameter for each
new function. We will discuss the second parameter,loop pipeline, in Section 4. After the function has
been designated for acceleration, run the following make target:

make hybrid

This make target runs a sequence of LLVM compiler passes in LegUp. The compiler passes first separate
the program into two parts, the hardware part and the software part. The hardware part contains the pro-
gram segments for the designated function and all of its descendant functions. This hardware part is taken
through LegUp’s high-level synthesis algorithms to be compiled to Verilog. The software part contains the
remaining program segments without the designated function (and all of its descendants). This software
part, after some transformations, is compiled to execute onthe MIPS processor.

In the software part, calls to the hardware designated function, multiply, are replaced with calls to the
wrapper function,legupseqmultiply. This indicates that themultiply function will be executed in hardware
instead of in software. LegUp generates a wrapper function for each of the hardware accelerated function.
Let’s look at the wrapper function insidelegupwrappers.c.

Copyright c© 2013 Canis, Choi, Brown, Anderson 2

#define multiply_DATA (volatile int *) 0xf0000000
#define multiply_STATUS (volatile int *) 0xf0000008
#define multiply_ARG1 (volatile int *) 0xf000000c
#define multiply_ARG2 (volatile int *) 0xf0000010

int legup_seq_multiply(int i, int j)
{

*multiply_ARG1 = (volatile int) i;

*multiply_ARG2 = (volatile int) j;

*multiply_STATUS = 1;
return *multiply_DATA;

}

The wrapper function has the same function prototype as the original function, except that the function
name has been prepended withlegupseq . Its function body is removed and replaced with memory-mapped
operations. This causes the processor to communicate with the hardware accelerator over the Avalon In-
terconnect. The#definestatements at the top of the file define the memory-mapped addresses assigned to
the accelerator. Hence, performing a write to the memory-mapped address will send data to the accelerator,
and performing a read will retrieve data from the accelerator. Themultiply DATApointer is used to retrieve
the return data from the accelerator, themultiply STATUSpointer is used to give the start signal to the ac-
celerator, and themultiply ARG1and themultiply ARG2pointers are used to send the function arguments
to the accelerator. The wrapper function first sends all of the arguments to the accelerator. These arguments
are stored in registers in the hardware accelerator. Then the wrapper function asserts the start signal by
writing a1 to the accelerator via themultiply STATUS address. When the start signal is received, the
accelerator responds by asserting a stall signal back to theprocessor. This stalls the processor until the
accelerator has finished execution. When the accelerator isdone, adonesignal is asserted, which allows
the processor to resume its execution by reading from themultiply DATApointer, which retrieves the return
value from the accelerator. This data is then returned to thecaller function.

LegUp also generates the script to control the SOPC Builder.The script contains the tcl commands to
add the accelerator to the processor system, make the necessary connections between the processor and
the accelerator, and generate the complete system. The script can be found inlegupsopc.tcl. This script
is read in by the SOPC builder to generate the system, which allows the entire flow to work without user
intervention.

Once the system has been successfully generated, let’s simulate the system. This can be done by running
the following make target.

make sim_proc

Note that both the generation as well as the simulation of thesystem can be done with a single command,
make hybridsim. Now let’s look at the simulation outputs. A number of outputs, as shown below, are
printed out first.

At t= 105408000 clk=1 finish=1 return_val= 125400
At t= 106563000 clk=1 finish=1 return_val= 125590
At t= 109398000 clk=1 finish=1 return_val= 125780
At t= 110193000 clk=1 finish=1 return_val= 125970
At t= 110988000 clk=1 finish=1 return_val= 126160
At t= 111783000 clk=1 finish=1 return_val= 126350
At t= 114618000 clk=1 finish=1 return_val= 126540

Copyright c© 2013 Canis, Choi, Brown, Anderson 3

Each line is printed out whenever the accelerator finishes and returns to the processor. Hence if there are
multiple calls to the accelerator, as in this example, multiple lines of outputs are displayed. Each output
shows the time at which it returned to the processor as well asthe return value. The first time the accelerator
was called, it returned a value of 125,400, and the second time, it returned 125,590. Since the accelerator
was called 400 times in this program (iterating over a 20x20 matrix), the accelerator displayed 400 lines of
return values. At the end, the processor prints out the final result.

Result: 962122000
#
RESULT: PASS
#
counter = 73320

You can see that the program produced the correct result and the benchmark passed. For the proces-
sor/accelerator hybrid system, it took 73,320 cycles to complete its execution. Let’s synthesize the system
to get itsFMaxand area results. Once again, run the following target to synthesize the tiger directory.

make hybridquartus

Now look in thetiger top.sta.rpt inside the tiger directory for theSlow Model Fmax Summary
section. You should see anFMax of 65.02MHz. So the circuit took a total of 1,127.65µs (73, 320 ∗

(1/65.02MHz)) to run. To see area results, look in thetiger top.fit.summary file inside the tiger
directory. You should see the following.

Total logic elements : 13,674 / 33,216 (41 %)
Total combinational functions : 11,970 / 33,216 (36 %)
Dedicated logic registers : 6,657 / 33,216 (20 %)

Total registers : 6725
Total pins : 65 / 475 (14 %)
Total virtual pins : 0
Total memory bits : 158,889 / 483,840 (33 %)
Embedded Multiplier 9-bit elements : 22 / 70 (31 %)

In this section, you have learned how to use the hybrid flow in LegUp to accelerate aC function by
hardware. In the next section, you will learn how to use LegUpto compile the entire program to hardware.

3 Hardware Flow

LegUp can compile the entire program to hardware, which can give the most benefits in performance and
energy efficiency. LegUp supports a large subset of ANSIC, such as arrays, structs, pointer arithmetic and
floating point operations, but it does not support recursionand dynamic memory. Thus, if the program does
not contain any of the unsupported operations, the entire program can be compiled to hardware.

Now, let’s try to compile thematrix multiplybenchmark to hardware. Since the entire program will be
compiled to hardware, first openconfig.tcland comment out the first line withset accelerator function
"multiply". Then run the following:

make

Copyright c© 2013 Canis, Choi, Brown, Anderson 4

Figure 1: LegUp ScheduleViewer displaying the instructions and the schedule for a basic block.

This compiles theC program to Verilog. Before simulating the program to check its results, let’s first
look at itsschedule. The schedule shows when each operation is executed in a program. In other words, it
shows the FSM state assignment for each operation in the program. We have a prototype GUI, called the
ScheduleViewer, which graphically displays the schedule by parsing a text file, scheduling.legup.rpt, which
contains the scheduling data. Let’s use the GUI to see the schedule.

scheduleviewer scheduling.legup.rpt

Figure 1 shows a screenshot of the ScheduleViewer. On the left Explorer panel, you can see all of the
functions in the program as well as their associated basic blocks. In this case, themultiplyfunction is a small
function which only has one call site in themainfunction. Hence themultiply function has beeninlined into
themain function. In the GUI, click onBB 1, which is the basic block containing the instructions for the
loop body of the multiply function. On the rightSchedule Chart, it shows all of the instructions in the basic
block, as well as their assigned states. If you move your mouse over to one of the highlighted boxes, it also
shows the data dependencies. A red rectangle represents where an input to the current instruction is coming
from; an orange rectangle represents where the output of thecurrent instruction is being used. You can
see that this basic block is divided into three states: 4, 5, and 6. A complete discussion of all instructions
in this basic block are outside the scope of this lab (see the Appendix of this lab for more information),
however, it’s worth drawing attention to a few aspects. First, notice that there are two load instructions
scheduled in state 4. LegUp uses dual-ported on-chip memories, thus there can be up to 2 memory accesses
in a clock cycle. Each memory access has a latency of 2 cycles (both inputs and outputs are registered
in on-chip RAM) and the memory accesses are pipelined so thata new memory access can start a cycle
after the current memory access. However, in this example, there are no other memory accesses, and the
remaining instructions need the data from memory (%2, %3) as their inputs. Therefore, the consumer of
the load instructions, the multiply (mul) instruction, needs to wait until the data is returned from memory,
which leaves state 5 empty. In state 6,%2 and%3 are multiplied together, added to the running sum of
%sum.02.i, and assigned to%5. Hold your mouse over the blue bar corresponding to themul instruction
to see its input and output dependencies.

Now that you have learned how to view the schedule produced byLegUp, let’s simulate the program
using:

Copyright c© 2013 Canis, Choi, Brown, Anderson 5

make v

This simulates the Verilog code with ModelSim. You will see an output as below.

Result: 962122000
RESULT: PASS
At t= 496930000 clk=1 finish=1 return_val= 962122000
Cycles: 24844

The circuit produced the correct result. It took 24,844 cycles to complete its execution. Let’s synthesize
this circuit with Quartus II to obtain theFMax and area results. First you need to make a Quartus project
with the generated Verilog file,matrixmultiply.v. To do this, run the following:

make p

This makes the Quartus project for the target FPGA, the Cyclone II. To synthesize, run the following:

make f

Now look in thetop.sta.rpt file in the current directory for theSlow Model Fmax Summarysection.
You should see anFMaxof 101.04MHz. So the circuit took a total of 245.88µs (24, 844 ∗ (1/101.04MHz)
to run. To see the area results, look in thetop.fit.summary file in the current directory. You should
see the following.

Total logic elements : 1,240 / 4,608 (27 %)
Total combinational functions : 1,131 / 4,608 (25 %)
Dedicated logic registers : 679 / 4,608 (15 %)

Total registers : 679
Total pins : 36 / 89 (40 %)
Total virtual pins : 0
Total memory bits : 38,400 / 119,808 (32 %)
Embedded Multiplier 9-bit elements : 6 / 26 (23 %)

The area has decreased significantly from the previous two flows, as the system no longer contains the
MIPS processor.

In this section, you have learned how to use the pure hardwareflow in LegUp to compile an entire
C program to hardware. You have also learned how to view the schedule produced by LegUp. In the
next section, you will learn how you can improve the performance of the hardware circuit by usingloop
pipelining.

4 Hardware Flow with Loop Pipelining

In this section, you will useloop pipeliningto improve the throughput of the hardware generated by LegUp.
Loop pipelining allows a new iteration of the loop to be started before the current iteration has finished [1].
By allowing the execution of the loop iterations to be overlapped, higher throughput can be achieved. The
amount of overlap is controlled by theinitiation interval. The initiation interval (II) indicates how many
cycles are taken before starting the next loop iteration [1]. Thus an II of1 means a new loop iteration can
be started every clock cycle, which is the best case. The II needs to be larger than1 in other cases, such

Copyright c© 2013 Canis, Choi, Brown, Anderson 6

Figure 2: Loop Pipelining Example [4].

as when there is a resource contention (multiple loop iterations need the same resource in the same clock
cycle) or when there are loop carried dependencies (the output of a previous iteration is needed as an input
to the subsequent iteration).

Figure 2 shows an example of loop pipelining [4]. Figure 2(A)shows the sequential loop, where the
II=3, and it takes 8 clock cycles for the 3 loop iterations before the final write is performed. Figure 2(B)
shows the pipelined loop. In this case, there are no resourcecontentions or data dependencies. Hence the
II=1, and it takes 4 clock cycles before the final write is performed. You can see that loop pipelining can
significantly improve the performance of your circuit, especially when there are no data dependencies or
resource contentions.

Now let’s try loop pipelining with LegUp. First you need to choose the loop to pipeline.
Openmatrixmultiply.cwith a text editor. Let’s pipeline the for loop inside themultiply function. To
do this, you need to add a label to the loop. Add a label calledloop before the for loop as shown below.

loop: for(k = 0; k < SIZE; k++)

Once the loop has been labeled, openconfig.tcl. Uncomment the line:

loop_pipeline "loop"

This tells LegUp to pipeline the loop labeled asloop. Compile the program by running,

Copyright c© 2013 Canis, Choi, Brown, Anderson 7

Figure 3: Schedule for Pipelined Loop.

make

Let’s look at the schedule for the pipelined loop. Our ScheduleViewer GUI does not yet support viewing
the schedule for pipelined loops. Instead, you can look atpipelining.legup.rpt. At the bottom of the file, it
shows the schedule for the loop.

Figure 3 shows the schedule for three iterations of the loop.Currently, with loop pipelining, there can
only be one memory access per clock cycle. This makes the II=2to make sure that the loads from the
current iteration do not overlap with the loads from other iterations. You can see in the figure that there
is only one load per time step for all loop iterations. We are currently working on supporting dual-ported
memories with loop pipelining.

Now let’s simulate the circuit. Run the following:

make v

It will produce the following result.

Result: 962122000
RESULT: PASS
At t= 368930000 clk=1 finish=1 return_val= 962122000
Cycles: 18444

The circuit produced the correct result and has completed its execution in 18,444 clock cycles. Let’s
synthesize the circuit with Quartus II to obtain theFMaxand area results. Run the following make targets.

make p; make f

Now look in thetop.sta.rpt file in the current directory for theSlow Model Fmax Summarysection.
You should see anFMaxof 105.69MHz. So the circuit took a total of 174.51µs (18, 444 ∗ (1/105.69MHz)
to run. To see the area results, look in thetop.fit.summary file in the current directory. You will see
the following:

Total logic elements : 1,015 / 4,608 (22 %)
Total combinational functions : 941 / 4,608 (20 %)
Dedicated logic registers : 640 / 4,608 (14 %)

Total registers : 640

Copyright c© 2013 Canis, Choi, Brown, Anderson 8

Table 1: Summary of Results for different LegUp Flows.

Category Hybrid Pure HW Pure HW with Pipelining

Clock Cycles 73320 24844 18444

FMax 65.02 101.04 105.69

Execution Time (µs) 1,127.65 245.88 174.51

Table 2: Area-delay products for different LegUp Flows.

Category Hybrid Pure HW Pure HW with Pipelining

Area (LEs) 13674 1240 1015

Execution Time (µs) 1,127.65 245.88 174.51

Area-delay Product 15,419,527.53 304,894.70 177,128.02

Total pins : 36 / 89 (40 %)
Total virtual pins : 0
Total memory bits : 38,440 / 119,808 (32 %)
Embedded Multiplier 9-bit elements : 6 / 26 (23 %)

You may notice that the area has decreased slightly from the non-pipelined version. This is due to using
single-ported memories in loop pipelining, which removes the multiplexing logic at the second memory
port, as well as differences in scheduling.

In this section, you have learned how to use loop pipelining in LegUp to improve the performance of your
circuit.

5 Evaluating the Results

Let’s compare the results you have obtained from the previous experiments. Table 1 summarizes the results
in terms of execution cycles,FMax, and total execution time (wall-clock time). Observe that wall-clock
time is improved considerably as computations are moved from software to hardware.

Area-delay product is another important metric used for measuring the efficiency of hardware perfor-
mance. Table 2 summarizes the results from the previous experiments. We have used the number of logic
elements as the metric for area and the total execution time as the metric for delay.

6 The Exercise

Download the archivedivide.tar.gz from the course webpage. Create a new subdirectory of the
examples directory calleddivide and un-tar the contents into your new subdirectory. Take a look at the
file divide.c. The program performs an element-by-element vector division of two 20-element vectors.
This is done 5 times, with slightly different values each time. The quotients are summed and compared with
the correct value of 7243.

Copyright c© 2013 Canis, Choi, Brown, Anderson 9

1. Repeat the steps of the tutorial above to produce tables analogous to Table 1 and Table 2 (above) for
thedivide benchmark. Hand in these tables in your report.

2. By default, LegUp generates hardware that allows a new division operation to begineverycycle. In
this step, you will modify the LegUp so that division operations must commence at least 10 cycles
apart from one another. Go to the directory containing the LegUp code:

cd /home/legup/legup-3.0/llvm/lib/Target/Verilog

Edit the file calledScheduler.cpp. In that file, you will find the methodgetInitiationInterval.
Change the method’s return value to 10. (Aside: In the same directory, you may wish to scan the file
SDCScheduler.cpp which contains the linear programming-based SDC schedulerdiscussed in
class.) Having modified the initiation interval, change to the following directory:

cd /home/legup/legup-3.0/llvm

Typemake to recompile LLVM with your changes. Repeat the lab steps above to generate another
Table 1 and Table 2. Include these tables in your report. Discuss how the divider’s initiation interval
affects overall circuit performance.

7 Appendix: More on the LLVM Intermediate Representation

Returning to the schedule viewer GUI example, the first two instructions in the basic block arephi in-
structions. These instructions take a list of pairs as arguments, with one pair for each candidate predecessor
basic block of the current block [2]. One of the pairs is chosen depending on which predecessor basic block
was executed before the current basic block. Hence, in this example,%sum.02.i, which is created from
thesum variable inC, is assigned to0, if the program entered the loop body for the first time (coming from
the%.preheader basic block), or else is assigned to%5 (looping back from the current basic block).
%5 is assigned in state 6 which keeps a running sum of the multiplied matrix elements. The secondphi
instruction assigns a value to%k.01.1. %k.01.1 is the loop induction variablek, which is assigned0 if
entering the loop for the first time (coming from%.preheader basic block) or is assigned%6 if coming
from the same basic block.%6 is assigned to%k.01.i + 1 in the same state (5 lines below).

The third and fourth instructions usegetelementPtr. This LLVM instruction returns a pointer to a
location in an array, based on the array’s base address and anoffset. A load is performed from each one
of the calculated addresses, which are assigned to%2 and%3. On the next two lines, the add instruction
increments%6, which is the induction variable, and theicmp instruction checks whether the exit condition
for the loop has been met. This completes state 4. The branch (br) instruction at the end of the basic block
checks whether the previously evaluated%exitcond is true, in which case it exits the loop by branching
to the%matrix.exit basic block, or else it loops back to the start of the current basic block.

References

[1] Michael Fingeroff.High-Level Synthesis Blue Book. Xlibris Corporation, 2010.

[2] LLVM. LLVM Language Reference Manual.

Copyright c© 2013 Canis, Choi, Brown, Anderson 10

[3] University of Cambridge. The Tiger MIPS processor (http://www.cl.cam.ac.uk/teaching/
0910/ECAD+Arch/mips.html)., 2010.

[4] Xilinx, Inc. Vivado Design Suite User Guide.

Copyright c© 2013 Canis, Choi, Brown, Anderson 11

