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1 Introduction
Hypergraph partitioning is an important problem and has extensive applications in many areas, including VLSI design
[2], efficient storage of large databases on disks [13], transportation management, and data-mining [5]. The problem
is to partition the vertices of a hypergraph in k roughly equal parts, such that the number of hyperedges connecting
vertices in different parts is minimized. A hypergraph is a generalization of a graph, where the set of edges is replaced
by a set of hyperedges. A hyperedge extends the notion of an edge by allowing more than two vertices to be connected
by a hyperedge.

2 What is hMETIS
hMETIS is a software package for partitioning large hypergraphs, especially those arising in circuit design. The algo-
rithms in hMETIS are based on multilevel hypergraph partitioning described in [10, 11, 7], and they are an extension of
the widely used METIS graph partitioning package described in [9, 8]. Traditional graph partitioning algorithms com-
pute a partition of a graph by operating directly on the original graph as illustrated in Figure 1(a). These algorithms
are often too slow and/or produce poor quality partitions. Multilevel partitioning algorithms, on the other hand, take a
completely different approach[6, 9, 8, 10]. These algorithms, as illustrated in Figure 1(b), reduce the size of the graph
(or hypergraph) by collapsing vertices and edges (during the coarsening phase), partition the smaller graph (initial
partitioning phase), and then uncoarsen it to construct a partition for the original graph (uncoarsening and refinement
phase). hMETIS uses novel approaches to successively reduce the size of the hypergraph as well as to further refine the
partition during the uncoarsening phase. During coarsening, hMETIS employs algorithms that make it easier to find a
high-quality partition at the coarsest graph. During refinement, hMETIS focuses primarily on the portion of the graph
that is close to the partition boundary. These highly tuned algorithms allow hMETIS to quickly produce high-quality
partitions for a large variety of hypergraphs.

Traditional partitioning algorithms compute
a partition directly on the original graph!

Coarsening Phase

Initial Partitioning Phase
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Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

(b)

(a)

Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.

The advantages of hMETIS compared to other similar algorithms are the following:

� Provides high quality partitions!
Experiments on a large number of hypergraphs arising in various domains including VLSI, databases, and data
mining show that hMETIS produces partitions that are consistently better than those produced by other widely
used algorithms, such as KL, FM, LA, PROP, CLIP, etc..

� It is extremely fast!
Experiments on a wide range of hypergraphs has shown that hMETIS is one to two orders of magnitude faster than
other widely used partitioning algorithms. hMETIS can produce extremely high quality bisections of hypergraphs
with 100,000 vertices in well under 3 minutes on an R10000-based SGI workstation and a Pentium Pro-based
personal computer.
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2.1 Overview of the Algorithms used in hMETIS
In the rest of this section, we briefly describe the various phases of the multilevel algorithm. The reader should refer
to [10] for further details.

Coarsening Phase During the hypergraph coarsening phase, a sequence of successively smaller hypergraphs
is constructed. The purpose of coarsening is to create a small hypergraph, such that a good bisection of the small
hypergraph is not significantly worse than the bisection directly obtained for the original hypergraph. In addition
to that, hypergraph coarsening also helps in successively reducing the size of the hyperedges. That is, after several
levels of coarsening, large hyperedges are contracted to hyperedges connecting just a few vertices. This is particularly
helpful, since refinement heuristics based on the Kernighan-Lin algorithm [12, 4] are very effective in refining small
hyperedges but are quite ineffective in refining hyperedges with a large number of vertices belonging to different
partitions. The group of vertices that are contracted together to form single vertices in the next level coarse hypergraph
can be selected in different ways. hMETIS implements various such grouping schemes (also called matching schemes)
some of which are described in [10].

Initial Partitioning phase During the initial partitioning phase, a bisection of the coarsened hypergraph is com-
puted. Since this hypergraph has a very small number of vertices (usually less than 100 vertices) many different
algorithms can be used without significantly affecting the overall runtime and quality of the algorithm. hMETIS uses
multiple random bisections followed by the Fiduccia-Mattheyses(FM) refinement algorithm.

Uncoarsening and refinement phase During the uncoarsening phase, the partitioning of the coarsest hyper-
graph is used to obtain a partitioning for the finer hypergraph. This is done by successively projecting the partitioning
to the next level finer hypergraph and using a partitioning refinement algorithm to reduce the cut and thus improve
the quality of the partitioning. Since the next level finer hypergraph has more degrees of freedom, such refinement
algorithms tend to improve the quality. hMETIS implements a variety of algorithms that are based on the FM algorithm
[4]. The details of some of these schemes can be found in [10].

V -Cycle Refinement The idea behind this refinement algorithm is to use the power of the multilevel paradigm
to further improve the quality of a bisection. The V -cycle refinement algorithm consists of two phases, namely a
coarsening and an uncoarsening phase. The coarsening phase preserves the initial partitioning that is input to the
algorithm. We will refer to this as restricted coarsening scheme. In this restricted coarsening scheme, the groups of
vertices that are combined to form the vertices of the coarse graphs correspond to vertices that belong only to one of
the two partitions. As a result, the original bisection is preserved through out the coarsening process, and becomes the
initial partition from which we start performing refinement during the uncoarsening phase. The uncoarsening phase
of the V -cycle refinement algorithm is identical to the uncoarsening phase of the multilevel hypergraph partitioning
algorithm described earlier. It moves vertices between partitions as long as such moves improve the quality of the
bisection. Note that the various coarse representations of the original hypergraph, allow refinement to further improve
the quality as it helps it climb out of local minima.

3 hMETIS’s Stand-Alone Programs
hMETIS provides the shmetis, hmetis, and khmetis programs that can be used to partition a hypergraph into k parts.
The first two programs (shmetis and hmetis) compute a k-way partitioning using multilevel recursive bisection [10].
The shmetis program is suited for those users whowant to use hMETIS without getting into the details of the underlying
algorithms, while hmetis is suited for those users that want to experiment with the various algorithms used by hMETIS.
Both shmetis and hmetis can also compute a k-way partitioning when certain vertices of the hypergraph have pre-
assigned partitions (i.e., there are at most k sets of vertices each fixed to a particular partition).
The third program (khmetis) computes a k-way partitioning using multilevel k-way partitioning [8]. This is a new

feature of hMETIS 1.5, and the underlying algorithms are still under development.
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3.1 shmetis
The shmetis program is invoked by providing three or four arguments at the command line as follows:

shmetis HGraphFile Nparts UBfactor
or

shmetis HGraphFile FixFile Nparts UBfactor

The meaning of the various parameters is as follows:

HGraphFile
This is the name of the file that stores the hypergraph (the format is described in Section 3.4).

FixFile This is the name of the file that stores information about the pre-assignment of vertices to partitions (the
format is described in Section 3.5).

Nparts This is the number of desired partitions. shmetis can partition a hypergraph into an arbitrary number
of partitions, using recursive bisection. That is, for a 4-way partition, shmetis first computes a 2-way
partition of the original hypergraph, then constructs two smaller hypergraphs, each corresponding to one of
the two partitions, and then computes 2-way partitions of these smaller hypergraphs to obtain the desired
4-way partition1. Note that shmetis, while constructing the smaller hypergraphs, completely removes the
hyperedges that were cut during the bisection2.

UBfactor This parameter is used to specify the allowed imbalance between the partitions during recursive bisection.
This is an integer number between 1 and 49, and specifies the allowed load imbalance in the following
way. Consider a hypergraph with n vertices, each having a unit weight, and let b be the UBfactor. Then, if
the number of desired partitions is two (i.e., we perform a bisection), then the number of vertices assigned
to each one of the two partitions will be between (50 − b)n/100 and (50 + b)n/100. For example, for
b = 5, then we will be allowing a 45-55 bisection, that is, the number of vertices in each partition will be
between 0.45n and 0.55n. Note that this allowed imbalance is applied at each bisection step, so if instead
of a 2-way partition we are interested in a 4-way partition, then a UBfactor of 5 will result in partitions that
can contain between 0.452n = 0.20n and 0.552n = 0.30n vertices. Also note that shmetis does not allow
you to produce perfectly balanced partitions. This is a limitation that will be lifted in future releases.

Upon successful execution, shmetis displays statistics regarding the quality of the computed partitioning and the
amount of time taken to perform the partitioning (the times are shown in seconds). The actual partitioning is stored in
a file named HGraphFile.part.Nparts, whose format is described in Section 3.6.
Figure 2 shows the output of shmetis for partitioning a hypergraph into four parts. From this figure we see that

shmetis initially prints information about the hypergraph, such as its name, the number of vertices (#Vtxs), the num-
ber of hyperedges (#Hedges), and also the number of desired partitions (#Parts) and allowed imbalance (UBfactor).
Next, prints information about the different bisections that were computed. In this example, since we asked for four
partitions, the algorithm computes a total of three bisections, and for each one prints information regarding the size
of the hypergraph that is bisected and the quality of the computed bisections. In particular, with respect to quality, it
prints the minimum and average number of cuts, and also the balance corresponding to the minimum cut.
The overall quality of the obtained partitioning is summarized by computing the following quality measures (in the

case of hypergraphs with weighted hyperedges, these definitions are extended in a straight-forward manner):

1. Hyperedge Cut This is the number of the hyperedges that span multiple partitions. The partitioning routines
in hMETIS try to directly minimize this quantity.

1shmetis can handle non-power of 2 partitions, by performing unbalanced bisections. That is, for a 3-way partition it computes a 2-way partition
such that the first part has 2/3 of the total number of vertices, and the other part has 1/3. It then it bisects the first part into two equal-size parts,
each containing 1/3 of the original number of vertices.

2The hmetis program allows you to change this behavior.
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2. Sum of External Degrees The external degree |E(Pi )| of a partition Pi , is defined as the number of hyper-
edges, that are incident but not fully inside this partition. The sum of the external degrees of a k-way partitioning,
is then

∑k
i=1 |E(Pi )|.

3. Scaled Cost This is defined as
1

n(k − 1)

k∑

i=1

|E(Pi )|
w(Pi )

,

where w(Pi ) is the sum of the vertex weights of partition Pi (note that if the vertices do not have weights, then
w(Pi ) = |Pi |).

4. Absorption This is defined as
k∑

i=1

∑

e∈E|e∩Pi %=∅

|e ∩ Pi | − 1
|e| − 1

where E is the set of hyperedges, |e ∩ Pi | is the number of vertices of hyperedge e that are also in partition Pi ,
and |e| is the number of vertices in the hyperedge e.

Following these quality measures, shmetis prints the size of the various partitions as well as the external degrees of
each partition. Finally, it shows the time taken by the various phases of the algorithm. All times are in seconds.

prompt% shmetis ibm02.hgr 4 5

*******************************************************************************
HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information -----------------------------------------------------
Name: ibm02.hgr, #Vtxs: 19601, #Hedges: 19584, #Parts: 4, UBfactor: 0.05
Options: HFC, FM, Reconst-False, V-cycles @ End, No Fixed Vertices

Recursive Partitioning... --------------------------------------------------

Bisecting a hgraph of size [vertices=19601, hedges=19584, balance=0.50]
The mincut for this bisection = 262, (average = 277.8) (balance = 0.46)

Bisecting a hgraph of size [vertices=9028, hedges=8501, balance=0.50]
The mincut for this bisection = 186, (average = 241.4) (balance = 0.49)

Bisecting a hgraph of size [vertices=10573, hedges=10821, balance=0.50]
The mincut for this bisection = 192, (average = 193.5) (balance = 0.47)

--------------------------------------------------------------------------
Summary for the 4-way partition:

Hyperedge Cut: 619 (minimize)
Sum of External Degrees: 1305 (minimize)

Scaled Cost: 4.56e-06 (minimize)
Absorption: 19336.20 (maximize)

Partition Sizes & External Degrees:
4669[ 382] 4303[ 276] 5048[ 338] 5581[ 309]

Timing Information ---------------------------------------------------------
Partitioning Time: 73.340sec

I/O Time: 0.230sec
*******************************************************************************

Figure 2: Output of shmetis for ibm02.hgr and a 4-way partition
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3.2 hmetis
The program hmetis is invoked by providing 9 or 10 command line arguments as follows:

hmetis HGraphFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl
or

hmetis HGraphFile FixFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl

The meaning of the various parameters is as follows:

HGraphFile, FixFile, Nparts, UBfactor
The meaning of these parameters is identical to those of shmetis.

Nruns This is the number of the different bisections that are performed by hmetis. It is a number greater or equal
to one, and instructs hmetis to compute Nruns different bisections, and select the best as the final solution.
A default value of 10 is used by shmetis.
Section 5.2.1 provides an experimental evaluation of the effect of Nruns in the quality of k-way partition-
ings.

CType This is the type of vertex grouping scheme (i.e., matching scheme) to use during the coarsening phase. It
is an integer parameter and the possible values are:

1 Selects the hybrid first-choice scheme (HFC). This scheme is a combination of the first-choice and
greedy first-choice scheme described later. This is the scheme used by shmetis.

2 Selects the first-choice scheme (FC). In this scheme vertices are grouped together if they are present in
multiple hyperedges. Groups of vertices of arbitrary size are allowed to be collapsed together.

3 Selects the greedy first-choice scheme (GFC). In this scheme vertices are grouped based on the first-
choice scheme, but the grouping is biased in favor of faster reduction in the number of the hyperedges
that remain in the coarse hypergraphs.

4 Selects the hyperedge scheme. In this scheme vertices are grouped together that correspond to entire
hyperedges. Preference is given to hyperedges that have large weight.

5 Selects the edge scheme. In this scheme pairs of vertices are grouped together if they are connected by
multiple hyperedges.

You may have to experiment with this parameter to see which scheme works better for the classes of
hypergraphs that you are using. Section 5.1.1 provides an experimental evaluation of the various values of
CType for a range of hypergraphs.

RType This is the type of refinement policy to use during the uncoarsening phase. It is an integer parameter and
the possible values are:

1 Selects the Fiduccia-Mattheyses (FM) refinement scheme. This is the scheme used by shmetis.
2 Selects the one-way Fiduccia-Mattheyses refinement scheme. In this scheme, during each iteration of

the FM algorithm, vertices are allowed to move only in a single direction.
3 Selects the early-exit FM refinement scheme. In this scheme, the FM iteration is aborted if the quality

of the solution does not improve after a relatively small number of vertex moves.

Experiments have shown that FM and one-way FM produce better results than early-exit FM. However,
early-exit FM is considerably faster, and the overall quality is not significantly worse. Section 5.1.2 pro-
vides an experimental evaluation of the various values of RType for a range of hypergraphs.

Vcycle This parameter selects the type of V -cycle refinement to be used by the algorithm. It is an integer parameter
and the possible values are:
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0 Does not perform any form of V -cycle refinement.
1 Performs V -cycle refinement on the final solution of each bisection step. That is, only the best of the

Nruns bisections are refined using V -cycles. This is the options used by shmetis.
2 Performs V -cycle refinement on each intermediate solution whose quality is equally good or better than

the best found so far. That is, as hmetis computes Nruns bisections, for each bisection that matches or
improves the best one, it is also further refined using V -cycles.

3 Performs V -cycle refinement on each intermediate solution. That is, each one of the Nruns bisections
is also refined using V -cycles.

Experiments have shown that the second and third choices offer the best time/quality tradeoffs. If time is
not an issue, the fourth choice (i.e., Vcycle = 3) should be used.

Reconst This parameter is used to select the scheme to be used in dealing with hyperedges that are being cut during
the recursive bisection. It is an integer parameter and the possible values are:

0 This scheme removes any hyperedges that were cut while constructing the two smaller hypergraphs in
the recursive bisection step. In other words, once a hyperedge is being cut, it is removed from further
consideration. Essentially this scheme focuses on minimizing the number of hyperedges that are being
cut. This is the scheme that is used by shmetis.

1 This scheme reconstructs the hyperedges that are being cut, so that each of the two partitions retain the
portion of the hyperedge that corresponds to its set of vertices.

Section 5.2.2 provides an experimental evaluation of the effect of Reconst in the quality of k-way partition-
ings.

dbglvl This is used to request hMETIS to print debugging information. The value of dbglvl is computed as the sum
of codes associated with each option of hmetis. The various options and their values are as follows:

0 Show no additional information.
1 Show information about the coarsening phase.
2 Show information about the initial partitioning phase.
4 Show information about the refinement phase.
8 Show information about the multiple runs.
16 Show additional information about the multiple runs.

For example, if we want to see all information about the multiple runs the value of dbglvl should be
8+ 16 = 24. Note that some of the options may generate a lot of output. Use them with caution.

Upon successful execution, hmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actual partitioning is stored in a file named HGraph-
File.part.Nparts, whose format is described in Section 3.6. Figure 3 shows the output of hmetis for a 2-way partition.

3.3 khmetis
The khmetis program is invoked by providing 7 command line arguments as follows:

khmetis HGraphFile Nparts UBfactor Nruns CType OType Vcycle dbglvl

The meaning of the various parameters is as follows:

HGraphFile, Nparts, Nruns, CType, Vcycle, dbglvl
The meaning of these parameters is identical to those of hmetis.
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prompt% hmetis ibm03.hgr 2 5 10 1 1 3 0 24

*******************************************************************************
HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information -----------------------------------------------------
Name: ibm03.hgr, #Vtxs: 23136, #Hedges: 27401, #Parts: 2, UBfactor: 0.05
Options: HFC, FM, Reconst-False, Always V-cycle, No Fixed Vertices

Recursive Partitioning... --------------------------------------------------

Bisecting a hgraph of size [vertices=23136, hedges=27401, balance=0.50]
Cut of trial 0: 979 [0.50]
Cut of trial 1: 957 [0.46]
Cut of trial 2: 979 [0.50]
Cut of trial 3: 982 [0.48]
Cut of trial 4: 1010 [0.47]
Cut of trial 5: 956 [0.46]
Cut of trial 6: 990 [0.50]
Cut of trial 7: 957 [0.46]
Cut of trial 8: 1142 [0.48]
Cut of trial 9: 956 [0.46]
The mincut for this bisection = 956, (average = 990.8) (balance = 0.46)

--------------------------------------------------------------------------
Summary for the 2-way partition:

Hyperedge Cut: 956 (minimize)
Sum of External Degrees: 1912 (minimize)

Scaled Cost: 7.18e-06 (minimize)
Absorption: 27029.76 (maximize)

Partition Sizes & External Degrees:
12419[ 956] 10717[ 956]

Timing Information ---------------------------------------------------------
Partitioning Time: 85.190sec

I/O Time: 0.280sec
*******************************************************************************

Figure 3: Output of hmetis for ibm03.hgr and a 2-way partition

UBfactor This parameter is used to specify the allowed imbalance between the k partitions. This is an integer greater
than 5 and specifies the allowed load imbalance as follows. A value of b for UBfactor indicates that the
weight of the heaviest partition should not be more than b% greater than the average weight. For example,
for b = 8, k = 5, and a hypergraph with n vertices (each having unit vertex weight), the weight of the
heaviest partition will be bounded from above by 1.08 ∗ n/5. Note that this specification of the allowed
imbalance between the k partitions is different from the specification used by either shmetis or hmetis.

OType This determines which objective function the refinement algorithm tries to minimize. It is an integer pa-
rameter and the possible values are:

1 Minimizes the hyperedge cut.
2 Minimizes the sum of external degrees (SOED).

This feature was introduced with version 1.5.3.

Upon successful execution, khmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actual partitioning is stored in a file named HGraph-
File.part.Nparts, whose format is described in Section 3.6. Figure 4 shows the output of khmetis for a 10-way
partitioning.
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prompt% khmetis ibm04.hgr 10 10 10 1 1 2 24

*******************************************************************************
HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information -----------------------------------------------------
Name: ibm04.hgr, #Vtxs: 27507, #Hedges: 31970, #Parts: 10, UBfactor: 1.10
Options: HFC, Cut-minimization, V-cycle for Min

K-way Partitioning... ------------------------------------------------------

Partitioning a hgraph of size [vertices=27507, hedges=31970, balance=1.10]
Cut/SOED of trial 0: 3259 7333 [1.10]
Cut/SOED of trial 1: 3498 7946 [1.09]
Cut/SOED of trial 2: 3397 7728 [1.10]
Cut/SOED of trial 3: 3192 7242 [1.10]
Cut/SOED of trial 4: 3277 7283 [1.10]
Cut/SOED of trial 5: 3314 7555 [1.07]
Cut/SOED of trial 6: 3390 7554 [1.10]
Cut/SOED of trial 7: 3414 7723 [1.06]
Cut/SOED of trial 8: 3307 7357 [1.10]
Cut/SOED of trial 9: 3322 7433 [1.10]
The mincut for this partitioning = 3192, (average = 3337.0) (balance = 1.10)

--------------------------------------------------------------------------
Summary for the 10-way partition:

Hyperedge Cut: 3192 (minimize)
Sum of External Degrees: 7242 (minimize)

Scaled Cost: 1.06e-05 (minimize)
Absorption: 30250.46 (maximize)

Partition Sizes & External Degrees:
2504[ 701] 2796[ 515] 2728[ 634] 2836[1092] 3020[1007]
2686[ 794] 2662[ 549] 2706[ 740] 2906[ 508] 2663[ 702]

Timing Information ---------------------------------------------------------
Partitioning Time: 136.720sec

I/O Time: 0.310sec
*******************************************************************************

Figure 4: Output of khmetis for ibm04.hgr and a 10-way partition

Note that khmetis should never be used to compute a bisection (i.e., 2-way partitioning) as it produces worse results
than hmetis. Furthermore, the quality of the partitionings produced by khmetis for small values of k will be worse,
in general, than the corresponding partitionings computed by hmetis. However, khmetis is particularly useful for
computing k-way partitionings for relatively large values of k, as it often produces better partitionings and it can also
enforce tighter balancing constraints.

3.4 Format of Hypergraph Input File
The primary input of hMETIS is the hypergraph to be partitioned. This hypergraph is stored in a file and is supplied to
hMETIS as one of the command line parameters. A hypergraph H = (V, Eh) with V vertices and Eh hyperedges is
stored in a plain text file that contains |Eh | + 1 lines, if there are no weights on the vertices and |Eh| + |V | + 1 lines
if there are weights on the vertices. Any line that starts with ‘%’ is a comment line and is skipped.
The first line contains either two or three integers. The first integer is the number of hyperedges (|E h |), the second

is the number of vertices (|V |), and the third integer (fmt) contains information about the type of the hypergraph. In
particular, depending on the value of fmt, the hypergraph H can have weights on either the hyperedges, the vertices,
or both. In the case that H is unweighted (i.e., all the hyperedges and vertices have the same weight), fmt is omitted.
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After this first line, the remaining |Eh | lines store the vertices contained in each hyperedge–one line per hyperedge. In
particular, the i th line (excluding comment lines) contains the vertices that are included in the (i−1)th hyperedge. This
format is illustrated in Figure 5(a). Weighted hyperedges are specified as shown in Figure 5(b). The first integer in each
line contains the weight of the respective hyperedge. Note, hyperedge weights are integer quantities. Furthermore,
note that the fmt parameter is equal to 1, indicating the fact that H has weights on the hyperedges. Finally, weights
on the vertices are also allowed, as illustrated in Figure 5(c). In this case, |V | lines are appended to the input file
containing the weight of the |V | vertices. Note that the value of fmt is equal to 10. As was the case with hyperedge
weights, vertex weights are integer quantities. Figure 5(d) shows the case when both the hyperedges and the vertices
are weighted. fmt in this case is equal to 11.
Figure 5 shows the HGraphFile expected by hMETIS for the example hypergraphs shown in the figure. It shows

the four cases in which the hypergraph is unweighted, has weighted hyperedges, has weighted vertices and has both
hyperedges and vertices weighted. The hypergraph shown in Figure 5(a) has four unweighted hyperedges a, b, c,
and d. Number of vertices in the hypergraph is 7. When the hypergraph is unweighted, first line of the HGraphFile
contains two integers denoting the number of hyperedges and the number of the vertices in the hypergraph. After
that, each line corresponds to a hyperedge containing an entry for each vertex in the hyperedge. Hypergraph shown in
Figure 5(b) has hyperedge weights equal to 2, 3, 7, and 8 on each of the hyperedge a, b, c, and d respectively. For this
weighted hyperedges first line of the HGraphFile consists of three integers. Third integer specify that the hyperedges
are weighted and is equal to 1. Each line corresponding to each hyperedge, has first entry equal to its weight. The
following entries corresponds to the vertices in the respective hyperedge. The case when both the vertices are weighted
fmt is equal to 10, and 7 lines corresponding to the 7 vertices are appended to the input file each containing weight
of the respective vertex. This is shown in Figure 5(c). Figure 5(d) shows the case when both the hyperedges and the
vertices are weighted.

3.5 Format of the Fix File
The FixFile is used to specify the vertices that are pre-assigned to certain partitions. In general, when computing a
k-way partitioning, up to k sets of vertices can be specified, such that each set is pre-assigned to one of the k partitions.
For a hypergraph with |V | vertices, the FixFile consists of |V | lines with a single number per line. The i th line of the
file contains either the partition number to which the i th vertex is pre-assigned to, or -1 if that vertex can be assigned
to any partition (i.e., free to move). Note that the partition numbers start from 0.

3.6 Format of Output File
The output of hMETIS is a partition file. The partition file of a hypergraph with |V | vertices, consists of |V | lines with
a single number per line. The i th line of the file contains the partition number that the i th vertex belongs to. Partition
numbers start from 0. If foo.graph is the name of the file storing the hypergraph, the partition for a 2-way partition
is stored in a file named foo.graph.part.2.

4 hMETIS’s Library Interface
The hypergraph partitioning algorithms in hMETIS can also be accessed directly using the stand-alone library
libhmetis.a. This library provides the HMETIS PartRecursive() and HMETIS PartKway() routines. The first
routine corresponds to the hmetis whereas the second routine corresponds to the khmetis program. The calling
sequences and the description of the various parameters of these routines are as follows:

4.1 HMETIS_PartRecursive
HMETIS PartRecursive (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts,

int ubfactor, int *options, int *part, int *edgecut)
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nvtxs, nhedges
The number of vertices and the number of hyperedges in the hypergraph, respectively.

vwgts An array of size nvtxs that stores the weight of the vertices. Specifically, the weight of vertex i is stored at
vwgts[i]. If the vertices in the hypergraph are unweighted, then vwgts can be NULL.

eptr, eind
Two arrays that are used to describe the hyperedges in the graph. The first array, eptr, is of size nhedges+1,
and it is used to index the second array eind that stores the actual hyperedges. Each hyperedge is stored as
a sequence of the vertices that it spans, in consecutive locations in eind. Specifically, the i th hyperedge is
stored starting at location eind[eptr[i]] up to (but not including) eind[eptr[i + 1]]. Figure 6 illustrates this
format for a simple hypergraph. The size of the array eind depends on the number and type of hyperedges.
Also note that the numbering of vertices starts from 0.

hewgts An array of size nhedges that stores the weight of the hyperedges. The weight of the i hyperedge is stored
at location hewgts[i]. If the hyperedges in the hypergraph are unweighted, then hewgts can be NULL.

nparts The number of desired partitions.

ubfactor This is the relative imbalance factor to be used at each bisection step. Its meaning is identical to the
UBfactor parameter of shmetis, and hmetis described in Section 3.

options This is an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. If options[0]=1, then the remaining elements of options are
interpreted as follows:

options[1] Determines the number of different bisections that is computed at each bisection step of the
algorithm. Its meaning is identical to the Nruns parameter of hmetis (described in Sec-
tion 3.2).

options[2] Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning is identical to the CType parameter of hmetis (described in Section 3.2).

options[3] Determines the scheme to be used for refinement during the uncoarsening phase. Its meaning
is identical to the RType parameter of hmetis (described in Section 3.2).

options[4] Determines the scheme to be used for V -cycle refinement. Its meaning is identical to the
Vcycle parameter of hmetis (described in Section 3.2).

options[5] Determines the scheme to be used for reconstructing hyperedges during recursive bisections.
Its meaning is identical to the Reconst parameter of hmetis (described in Section 3.2).

options[6] Determines whether or not there are sets of vertices that need to be pre-assigned to certain
partitions. A value of 0 indicates that no pre-assignment is desired, whereas a value of 1
indicates that there are sets of vertices that need to be pre-assigned. In this later case, the pa-
rameter part is used to specify the partitions to which vertices are pre-assigned. In particular,
part[i] will store the partition number that vertex i is pre-assigned to , and −1 if it is free to
move.

options[7] Determines the random seed to be used to initialize the random number generator of hMETIS.
A negative value indicates that a randomly generated seed should be used (default behavior).

options[8] Determines the level of debugging information to be printed by hMETIS. Its meaning is iden-
tical to the dbglvl parameter of hmetis (described in Section 3.2). The default value is 0.

part This is an array of size nvtxs that returns the computed partition. Specifically, part[i ] contains the partition
number in which vertex i belongs to. Note that partition numbers start from 0.
Note that if options[6] = 1, then the initial values of part are used to specify the vertex pre-assignment
requirements.
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Figure 6: The eptr and eind arrays that are used to describe the hyperedges of the hypergraph.

edgecut This is an integer that returns the number of hyperedges that are being cut by the partitioning algorithm.

4.2 HMETIS_PartKway
HMETIS PartKway (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts,

int ubfactor, int *options, int *part, int *edgecut)

nvtxs, nhedges, vwgt, eptr, eind, hewgts, nparts
The meaning of these parameters is identical to meaning of the corresponding parameters of
HMETIS PartRecursive.

ubfactor This is the maximum load imbalance allowed in the k-way partitioning. Its meaning is identical to the
UBfactor parameter of khmetis, Section 3.3.

options This is an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. If options[0]=1, then the remaining elements of options are
interpreted as follows:

options[1] Determines the number of different k-way partitionings that is computed. Its meaning is
identical to the Nruns parameter of khmetis (described in Section 3.3).

options[2] Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning is identical to the CType parameter of khmetis (described in Section 3.3).

options[3] Determines which objective function the partitioning algorithm tries to minimize. Its meaning
is identical to the OType parameter of khmetis (described in Section 3.3). The default value
is 1 (i.e., minimize the hyperedge cut).

options[4] Determines the scheme to be used for V -cycle refinement. Its meaning is identical to the
Vcycle parameter of khmetis (described in Section 3.3).

options[5] Not used.
options[6] Not used.
options[7] Determines the random seed to be used to initialize the random number generator of hMETIS.

A negative value indicates that a randomly generated seed should be used (default behavior).
options[8] Determines the level of debugging information to be printed by hMETIS. Its meaning is iden-

tical to the dbglvl parameter of khmetis (described in Section 3.3). The default value is 0.

part This is an array of size nvtxs that returns the computed partition. Specifically, part[i ] contains the partition
number in which vertex i belongs to. Note that partition numbers start from 0.
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edgecut This is an integer that depending on the value of options[3] returns either the number of hyperedges that
are being cut by the partitioning algorithm or the sum of the external degrees of the partitioning.

5 General Guidelines on How to Use hMETIS
5.1 Selecting the Proper Parameters
The hmetis program allows you to control the multilevel hypergraph bisection paradigm by providing a variety of
algorithms for performing the various phases. In particular, it allows you to control:

1. How the vertices are grouped together during the coarsening phase. This is done by using the CType parameter.

2. How the quality of the bisection is refinement during the uncoarsening phase. This is done by using the RType
parameter.

In designing the shmetis program, we had to make some choices for the above parameters. However, depending on
the classes of the hypergraphs that are partitioned, these default settings may not necessarily be optimal. You should
experiment with these parameters to see which schemes work better for your classes of problems.
In this section, we present an experimental evaluation of the various choices for CType and RType for various

hypergraphs taken from the circuits of the ACM/SIGDA [3] and ISPD98 [1] benchmarks. The characteristics of these
circuits are shown in Table 1. We hope that these experiments will help in illustrating the various quality and/or
runtime trade-offs that are present in the various choices.

Circuit No. of Vertices No. of Hyperedges
(i.e., cells + pins) (i.e., nets)

avqsmall 21918 22124
avqlarge 25178 25384
industry2 12637 13419
industry3 15406 21923
s35932 18148 17828
s38417 23949 23843
s38584 20995 20717
golem3 103048 144949
ibm01 12752 14111
ibm03 23136 27401
ibm05 29347 28446
ibm07 45926 48117
ibm09 53395 60902
ibm11 70558 81454
ibm13 84199 99666
ibm15 161570 186608
ibm17 185495 189581

Table 1: The characteristics of the various circuits used in the study of the various parameters of hMETIS.

5.1.1 Effect of the CType Parameter
Table 2 shows the quality of the bisections produced by hmetis for different vertex grouping schemes. The experiments
in this table were performed by setting the remaining parameters of hmetis as follows: Nruns = 20, UBfactor = 5,
RType = 1, Vcycle = 1, and Reconst = 0. For each different vertex grouping scheme, the column labeled “Min” shows
the minimum cut out of the 20 trials, the column labeled “Avg” shows the average cut over all 20 trials, and the column
labeled “Time” shows the overall amount of time required by hmetis (i.e., the time to perform the 20 trials and the
final V -cycle refinement).
As we can see from this table, different vertex grouping schemes perform better for different circuits. In general,

theHFC scheme (that is used by default in shmetis) performs reasonably well for all the circuits (i.e., it is within a few
percentage points of the best scheme), but it is not necessarily the best. As this table suggests, one should experiment
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with the different vertex grouping schemes, to determine which one is suited for the classes of problems that she/he
may have.

5.1.2 Effect of the RType Parameter
Table 3 shows the quality of the bisections produced by hmetis for different refinement schemes. The experiments
in this table were performed by setting the remaining parameters of hmetis as follows: Nruns = 20, UBfactor = 5,
CType = 1, Vcycle = 1, and Reconst = 0. For each different refinement scheme, the column labeled “Min” shows the
minimum cut out of the 20 trials, the column labeled “Avg” shows the average cut over all 20 trials, and the column
labeled “Time” shows the overall amount of time required by hmetis (i.e., the time to perform the 20 trials and the
final V -cycle refinement).
As we can see from this table, the three refinement schemes offer different quality/time trade-offs. In general, the

EEFM scheme requires half the time required by either the FM or the 1WayFM schemes. Moreover, the quality of
the bisections produced by EEFM, are in general only slightly worse (if any) than those produced by FM or 1WayFM.
For example, in the 17 circuits of Table 3, EEFM performed significantly worse than the other two schemes only for
ibm15. From the remaining two refinement schemes, the results of Table 3 suggest that they perform similarly with
1wayFM producing slightly better results and requiring somewhat less time.

5.2 Computing a k-way Partitioning
hMETIS can compute a k-way partitioning (for k > 2) using either the multilevel recursive bisection paradigm (im-
plemented by hmetis) or the multilevel k-way partitioning paradigm (implemented by khmetis). In our discussion
of khmetis (Section 3.3), we already provided some general guidelines as to when someone should use hmetis or
khmetis. In general, when k is large (e.g., k > 16) khmetis should be preferred over hmetis, as it is faster and en-
forces load imbalance constraints that are more natural than the bisection imbalance constraints enforced by hmetis.
In this section we focus our discussion on using hmetis to compute a k-way partitioning. In particular, besides the

CType and RType parameters discussed in Section 5.1, the quality of the resulting k-way partitioning also depends on
the choice of the Nruns and Reconst parameters.

5.2.1 Effect of the Nruns Parameter
Recall from Section 3.2, that Nruns is the number of different bisections that are computed by hmetis during each
recursive bisection level. Out of these Nruns bisections, the one with the smallest cut is selected and used to bisect
the hypergraph. For example, if Nruns = 20, then in the case of a 4-way partitioning, hmetis will first compute 20
bisections of the original hypergraph, and split it into two sub-hypergraphs based on the best bisection. Then, it will
compute 20 bisections of each one of the two sub-hypergraphs, and again select the best solution for each one of the
two sub-hypergraphs. However, an alternate approach of computing the 4-way partitioning (using the same overall
number of different bisections), is to set Nruns = 5, run hmetis four times, and select the best 4-way partition out of
these four solutions. That is, instead of running

hmetis xxx.hgr 4 5 20 1 1 1 0 0

we can run

hmetis xxx.hgr 4 5 5 1 1 1 0 0
hmetis xxx.hgr 4 5 5 1 1 1 0 0
hmetis xxx.hgr 4 5 5 1 1 1 0 0
hmetis xxx.hgr 4 5 5 1 1 1 0 0

and select the best solution. The overall amount of time for both approaches should be comparable (even though the
second approach will be somewhat slower as the amount of time it spends in V -cycle refinement is four times higher).
However, the quality of the solution obtained from the second approach may be better.
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FM, RType=1 1wayFM, RType=2 EEFM, RType=3
Circuit Min Avg Time Min Avg Time Min Avg Time
avqsmall 127 154.2 69.97 127 148.1 71.55 127 143.8 55.51
avqlarge 127 149.5 88.99 127 150.1 82.69 127 147.9 61.67
industry2 163 212.3 62.04 165 219.4 64.13 162 214.8 50.41
industry3 258 274.6 97.14 257 277.2 94.30 241 271.2 76.88
s35932 43 43.4 47.53 43 43.5 51.00 43 43.5 38.19
s38417 49 51.4 62.14 49 51.1 64.50 49 52.2 44.54
s38584 48 49.2 65.39 48 48.6 70.95 47 48.1 51.84
golem3 1334 1352.1 704.96 1333 1350.0 683.02 1336 1359.8 519.59
ibm01 181 215.8 70.91 180 226.9 64.84 181 220.4 48.48
ibm03 955 1015.5 206.15 956 1010.8 173.65 956 1034.8 143.51
ibm05 1723 1804.2 337.72 1699 1765.8 276.10 1710 1791.9 195.41
ibm07 840 935.9 547.09 842 933.9 506.66 855 966.9 299.25
ibm09 637 729.6 488.04 629 699.8 477.79 629 691.7 289.51
ibm11 960 1122.9 778.80 960 1096.7 690.31 962 1103.0 435.30
ibm13 859 944.3 1080.43 851 963.4 755.76 832 1029.8 633.73
ibm15 2625 2975.0 2737.74 2625 3044.8 2258.74 2856 3082.4 1593.12
ibm17 2218 2406.9 3585.65 2239 2380.7 3239.31 2218 2383.4 2181.86

Table 3: The performance achieved by different refinement schemes (i.e., different values of RType). All the results correspond to
bisections computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, Vcycle = 1, and Reconst = 0. All times are in seconds
on a Pentium Pro @ 200 Mhz

Table 4 shows the quality of the 4- and 8-way partitionings produced by the above two approaches. As we can see
from this table, the second approach performs better in 16 cases, worse in 10 cases, and similarly for the remaining 8
cases.

4-way 8-way
Circuit Nruns=20 4×Nruns=5 Nruns=20 4×Nruns=5
avqsmall 228 228 370 370
avqlarge 228 228 372 372
industry2 372 355 636 644
industry3 775 744 1546 1502
s35932 111 111 163 163
s38417 99 95 162 151
s38584 131 129 203 205
golem3 2217 2224 2872 2856
ibm01 496 501 758 742
ibm03 1686 1687 2392 2410
ibm05 3081 3062 4468 4449
ibm07 2234 2183 3280 3255
ibm09 1709 1708 2606 2638
ibm11 2331 2368 3503 3445
ibm13 1663 1740 2858 2727
ibm15 5167 5190 6833 6324
ibm17 5442 5385 8723 8870

Table 4: The performance achieved for a k-way partitionings using a single k-way partitioning with Nruns = 20, and four k-way
partitionings with Nruns = 5.

5.2.2 Effect of the Reconst Parameter
Recall from Section 3.2, that the Reconst parameter controls how a hyperedge that is part of the cut is reconstructed
in the sub-hypergraphs during recursive bisection. In particular, if Reconst = 0, then a hyperedge that is part of the
cut is removed entirely from the sub-hypergraphs, and if Reconst = 1, then the hyperedge is reconstructed in each
sub-hypergraph. This is done by creating two hyperedges (one for each partition), that span the vertices of the original
hyperedge that are assigned to each partition.
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The choice for the Reconst parameter can affect the quality and runtime of the k-way partitioning. In particular, if
Reconst = 0, then the partitioning algorithm will run faster (as successive hypergraphs will have fewer hyperedges),
and if Reconst = 1, then the partitioning algorithm can potentially do a better job in reducing the sum of external
degrees (SOED) of the k-way partitioning.
This is illustrated in Table 5 that shows the effect of the Reconst parameter on the cut, SOED, and runtime, for a

4-way partitioning. From this table we can see that Reconst = 0, indeed results in a somewhat faster code, and that
Reconst = 1, results in partitionings whose SOED is, in general, smaller. However, what is interesting with the results
of Table 5, is that Reconst = 0 results in partitionings that have smaller cut, compared to those obtained by setting
Reconst = 1. So, if the objective is to obtain a k-way partitioning that has the smaller cut, one should use Reconst = 0.
However, if minimizing the SOED is the primary focus, one may want to use Reconst = 1.

No Reconstruction With Reconstruction
Reconst = 0 Reconst = 1

Circuit Cut SOED Time Cut SOED Time
avqsmall 228 568 111.92 246 567 118.28
avqlarge 253 605 126.82 257 569 137.67
industry2 381 841 107.47 429 884 110.56
industry3 791 1704 173.45 821 1647 179.89
s35932 111 232 72.05 111 226 72.07
s38417 100 224 96.78 109 228 99.70
s38584 130 294 106.35 138 291 111.90
golem3 2222 4613 1162.19 2239 4519 1226.58
ibm01 496 1003 124.53 498 998 128.04
ibm03 1691 3685 285.15 1717 3573 301.55
ibm05 3023 6701 459.12 3119 6611 532.71
ibm07 2212 4670 786.26 2253 4579 850.59
ibm09 1691 3485 790.61 1768 3579 774.53
ibm11 2339 4778 1155.37 2412 4862 1198.74
ibm13 1738 3770 1365.23 1755 3604 1398.37
ibm15 5103 10815 3339.88 5299 10844 3069.92
ibm17 5398 11041 4420.78 5421 10984 4854.22

Table 5: The performance achieved for a 4-way partitionings using different settings for the Reconst parameter. All the results
correspond to 4-way partitioning computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, RType = 1, and Vcycle = 1. All
times are in seconds on a Pentium Pro @ 200 Mhz

6 System Requirements and Contact Information
hMETIS has been written in C and it has been extensively tested on Sun, SGI, Linux, and IBM. Even though, hMETIS
contains no known bugs, it does not mean that it is bug free. If you find any problems, please send email to
metis@cs.umn.edu with a brief description of the problem. Also, any future updates to hMETIS will be made available
on WWW at http://www.cs.umn.edu/˜metis.
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