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Kraftwerk2—A Fast Force-Directed Quadratic
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Abstract—The force-directed quadratic placer “Kraftwerk2,”
as described in this paper, is based on two main concepts. First,
the force that is necessary to distribute the modules on the chip
is separated into the following two components: a hold force and
a move force. Both components are implemented in a systematic
manner. Consequently, Kraftwerk2 converges such that the mod-
ule overlap is reduced in each placement iteration. The second con-
cept of Kraftwerk2 is to use the “Bound2Bound” net model, which
accurately represents the half-perimeter wirelength (HPWL) in
the quadratic cost function. Aside from these features, this paper
presents additional details about Kraftwerk2. An approach to
remove halos (free space) around large modules is described, and
a method to control the module density is presented. In order
to choose the important tradeoff between runtime and quality, a
systematic quality control is shown. Furthermore, plots demon-
strating the convergence of Kraftwerk2 are presented. Results
using various benchmark suites demonstrate that Kraftwerk2
offers both high quality and excellent computational efficiency.

Index Terms—Bound2Bound, force-directed, half-perimeter
wirelength (HPWL), Kraftwerk2, quadratic placement.

I. INTRODUCTION

THE QUALITY of an integrated circuit design is signif-
icantly determined by its physical implementation and,

in particular, by the quality of the placement. Consequently,
research activities on placement have proceeded continuously
over the past several decades, and significant progress has
been achieved. However, with the continuous growth in the
complexity of integrated circuits, there is still an urgent need
for fast placers offering high quality.

Fig. 1 categorizes various placers according to which of
the three main placement techniques they use. Most placers
are iterative and solve the placement problem in a series of
placement iterations.

Stochastic placers often utilize simulated annealing, e.g.,
Timberwolf [1], and they are theoretically able to find the
global optimum. However, the high CPU times may limit their
applicability.

Min-cut placers recursively divide the netlist and the chip
area. The netlist is cut based on minimizing a cost function, e.g.,
the number of nets connecting adjacent partitions. Examples of
min-cut placers are Capo [2], Dragon [3], and FengShui [4].
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Fig. 1. Three main placement techniques and various placers.

Analytical placers define a suitable analytical cost function
for the placement problem and minimize the cost function
through numerical optimization methods. Depending on the
cost function, analytical placers can be subdivided into the
following two categories: nonlinear and quadratic.

Nonlinear placers are based on a nonlinear cost function,
e.g., by expressing the netlength in a log-sum-exp function
[5]. Because nonlinear optimization needs high CPU times,
placers based on this optimization technique usually reduce
the complexity by a multilevel approach. Here, the netlist is
clustered over a few levels during the coarsening phase. In the
refinement phase, the coarsest netlist is placed, unclustered,
and then the next finer netlist is placed. This is done until the
original flat netlist is reached. Examples of nonlinear placers
are APlace [6], mPL [7], NTUPlace [8], and Vaastu [9].

Quadratic placers formulate the netlength in a quadratic cost
function, which can be minimized quite efficiently by solv-
ing systems of linear equations. Because minimizing just the
netlength may result in considerable module overlap, quadratic
placers need a method to reduce the overlap. Depending on
this method, quadratic placers can be subdivided into the
following three categories: partitioning based, force directed,
and warping based. Partitioning-based quadratic placers like
PROUD [10], Gordian [11], BonnPlace [12], and hATP [13]
recursively partition the circuit and the chip area and minimize
the quadratic cost function in each level of partitioning in
order to place the modules. Force-directed quadratic placers
like FAR [14], FastPlace [15], mFAR [16], FDP [17], RQL
[18], and Eisenmann’s Kraftwerk [19] utilize a force to spread
the modules over the chip. Warping-based quadratic placers, as
presented in [20], [21], and [22], deform the chip area and move
the modules indirectly.
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Fig. 2. Different placement types supported by Kraftwerk2. Final placements with no module overlap are displayed. (a) Standard cell placement: Millions of
small movable and big modules are fixed. (b) Mixed-size placement: Small and big modules are movable. (c) Floorplacing: Some modules of various dimensions.

This paper focuses on the force-directed quadratic placement
technique, as it offers both low CPU time and high placement
quality. Several approaches have appeared in recent years to de-
termine and model the force that is necessary for this placement
technique. Eisenmann’s Kraftwerk [19] represents the module
density in a Poisson potential. At the start of each placement
iteration, the gradient of the potential is determined at the
position of each module. The scaled gradients are accumulated
over the placement iterations and give a constant additional
force. The force is constant as it does not depend on the module
positions computed during each placement iteration. FDP [17]
utilizes a similar approach to Eisenmann’s Kraftwerk. Further-
more, FDP uses two more forces to stabilize the algorithm
and to improve the netlength. Using a constant force is one
way to model a force. The authors of FAR [14] showed that
another way to model a force is to assign a fixed point to each
module and then connect the module to its fixed point by an
elastic spring. This spring then creates the force. FAR [14] and
mFAR [16] utilize two forces. The controlling force in both
placers is given by achieving force equilibrium and is modeled
by controlling fixed points. The perturbing force of FAR is
constant, and it is determined by a potential that is similar
to Eisenmann’s Kraftwerk. The perturbing force of mFAR is
given by a local bin utilization and is modeled by perturbing
fixed points. FastPlace [15] and RQL [18] utilize one force, the
spreading force, which is given by a local bin utilization and
is modeled by spreading fixed points. In addition, RQL uses a
force vector modulation technique and removes the spreading
force of single modules if the force is too high. Like nonlinear
placers, most force-directed quadratic placers use a multilevel
approach to cope with the complexity of modern circuits.

This paper presents Kraftwerk2, which is based on [23]
and [24]. Similar to other approaches, Kraftwerk2 utilizes a
Poisson potential and separates the force into the following two
components: a hold force and a move force. The enhancements
of Kraftwerk2 over other force-directed quadratic placement
approaches are as follows.

1) The move force is modeled by target points, and the
locations of the target points are directly given by the
gradient of a Poisson potential. The Poisson potential is
created by a generic supply and demand system.

2) The hold force is modeled as a constant force, not by fixed
points. Due to the hold force, no force accumulation over

the placement iterations is necessary, and each placement
iteration is decoupled from the preceding one.

3) A deterministic quality control is used to choose the
important tradeoff between runtime and quality.

4) An advanced method for module demand is applied to
handle modules of different dimensions and to prevent
halos around big modules.

5) To control the module density, an advanced approach for
module supply is utilized.

6) A flat placement approach is followed, which means
that Kraftwerk2 considers the complete netlist in each
placement iteration.

Fig. 2 shows the following different placement types that
are supported by Kraftwerk2: circuits with millions of standard
cells, circuits with movable macros, and circuits consisting of
some modules with various dimensions.

Kraftwerk2 and all other quadratic placers rely on a net
model to represent the nets by two-pin connections. The sum
of the quadratic length of all two-pin connections gives the
quadratic cost function. Traditionally, a clique net model is
used, which utilizes all possible two-pin connections of a
net. Another common net model is the star net model, which
introduces one star pin per net and connects each pin with the
star pin. Viswanathan and Chu [15] demonstrated the equiva-
lence of the star net model and the clique net model. Hence,
both net models (clique and star) can be used interchangeably.
Furthermore, different approaches exist to determine the weight
of the two-pin connections [11], [15], [25], [26].

The enhancements of the Bound2Bound net model, as pre-
sented in this paper, over other net models are as follows.

1) Accurate representation of the half-perimeter wirelength
(HPWL) in the quadratic cost function.

2) Compared with that of the clique net model, the number
of two-pin connections is lower.

3) Compared with that of the star net model, no additional
star pins are necessary.

4) Based on experimental results, the Bound2Bound net
model offers lower runtime and better netlength than a
hybrid clique/star net model.

The rest of this paper is organized as follows. Section II
gives an introduction to net models in quadratic placement.
Then, Section III presents the new Bound2Bound net model
and compares different net models. Section IV describes the
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background of force-directed quadratic placement. Section V
presents the force-directed placer Kraftwerk2. Section VII de-
scribes the quality control used. Sections VIII and IX present
the approaches for the module demand and the module sup-
ply, respectively. Section X is about convergence. Section XI
presents experimental results. Finally, Section XII concludes
the paper.

II. NET MODELS

Integrated circuits consist of modules (set M), the modules
have pins (set P), and the pins are connected by nets (set N ).
The term “modules” denotes standard cells and macros in this
paper. In quadratic placement, the nets are modeled by two-pin
connections. This modeling is done by a net model and results
in the representation of each net n ∈ N by a set En of two-pin
connections. One two-pin connection e = (p, q) connects pins
p and q. Each pin (p for example) is located at (xpin

p , ypin
p ). The

sum of the (weighted) quadratic Euclidean length of all two-
pin connections gives the quadratic cost function Γ. Thus, Γ
represents the netlength of the circuit

Γ =
1
2

∑
n∈N

∑
e∈En

wx,pq

(
xpin

p − xpin
q

)2
+ wy,pq

(
ypin

p − ypin
q

)2

(1)

=
∑
n∈N

Γn,x + Γn,y = Γx + Γy. (2)

This cost function Γ can be separated into the x- and
y-directions, and the cost Γn,x is the cost of net n in the
x-direction. In the following, the focus is on Γn,x.

Traditionally, the clique net model or the star net model
is used in quadratic placement. The clique net model utilizes
all possible two-pin connections of a net. The star net model
introduces an additional star pin per net and connects each pin
of the net to the star pin. With P representing the number of
pins in net n, the clique model is equivalent to the star model
in the quadratic cost if the clique cost is scaled with 1/P [15].
Due to this equivalence of both net models, the focus is on the
clique net model in the following. The quadratic cost of the
clique model is

Γn,x =
1
2

P∑
p=1

P∑
q=p+1

wx,pq

(
xpin

p − xpin
q

)2
. (3)

Different approaches exist for the connection weight wx,pq.
GordianL [25] uses the following technique:

wGordianL
x,pq =

1
P

2
P

4∣∣∣xpin
p − xpin

q

∣∣∣ . (4)

The first factor 1/P adapts the clique model to the star model.
The second factor 2/P adjusts the number of connections
of the clique to the number of connections in the corresponding
spanning tree. With the factor 1/|xpin

p − ypin
q |, the quadratic

distance between both pins p and q is linearized.
The (quadratic) clique length (3) is one metric for the

netlength. The ideal metric for the netlength would be the
routed wirelength, as given after final routing. However, place-

Fig. 3. Approximation error between the quadratic cost function and the
HPWL using different approaches for the connection weight wx,pq . The
statistic is based on 5.6 million nets in the ISPD 2005 contest benchmark suite.

ment is done iteratively, and in each iteration, the circuit would
have to be routed to obtain the routed wirelength, which would
take enormous CPU time. A good estimation of the routed
wirelength is the length of the rectilinear minimal Steiner tree
(RSMT) [27]. However, constructing the RSMT takes some
CPU time. A fast estimation of the routed wirelength is the
HPWL. The HPWL ΓHPWL

n of net n is defined by the width
wn and height hn of the smallest rectangle enclosing all p =
1, . . . , P pins of the net

wn = max
(
xpin

p

)
− min

(
xpin

p

)
hn = max

(
ypin

p

)
− min

(
ypin

p

)
(5)

ΓHPWL
n = wn + hn. (6)

Using GordianL’s connection weight (4), the approximation
error between the quadratic clique length Γn,x and ΓHPWL

n,x is
shown in Fig. 3. For two-pin nets, GordianL’s approach results
in no approximation error. This is due to the factor of four in
the last numerator in (4). However, with increasing numbers of
pins per net, the approximation error increases. On average, the
approximation error is about 30% and is too high to reflect the
HPWL precisely in the quadratic cost function Γ.

An unpublished approach by Eisenmann uses the following
two-pin connection weight:

wEisenmann
x,pq =

1
P

2
P

10
10 + wn

. (7)

Fig. 3 shows that the average approximation error with this
approach also depends on the number of pins per net. In
addition, Eisenmann’s approach has a higher approximation
error than GordianL’s approach.

III. BOUND2BOUND NET MODEL

In the clique net model, there is a high approximation error
between the length of the clique net and the HPWL, indepen-
dent of the different approaches for the connection weights
wx,pq . The basic problem in the clique model is the existence of
connections between inner pins, and the lengths of these inner
connections contribute to the clique length but are ignored in
the HPWL metric; the HPWL is just the distance between the
boundary pins. This problem in the clique net model is shown
in Fig. 4(a). Here, the boundary pins are those pins with the
highest or lowest coordinate; all other pins are inner pins.
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Fig. 4. Traditional clique net model and our Bound2Bound net model.
(a) Clique. (b) Bound2Bound.

The new Bound2Bound net model is based on the idea
of removing all inner two-pin connections and utilizing only
connections to the boundary pins. With this, the boundary pins
span the net, and the property of the HPWL netlength being the
distance between the boundary pins is emulated. An example of
a Bound2Bound net model is shown in Fig. 4(b). The two-pin
connection weight wB2B

x,pq of the Bound2Bound net model is
determined as follows:

wB2B
x,pq =




0, if pin p and pin q are
inner pins

2
P−1

1

|xpin
p −xpin

q | , else.
(8)

With this connection weight, the quadratic cost function Γn,x

(3) of the net is exactly the HPWL in the x-direction

Γn,x =
1
2

P∑
p=1

P∑
q=p+1

wB2B
x,pq

(
xpin

p − xpin
q

)2
(9)

=
1
2

2
P − 1

[∣∣∣xpin
1 − xpin

2

∣∣∣ +
P∑

q=3

∣∣∣xpin
1 − xpin

q

∣∣∣
+

P∑
q=3

∣∣∣xpin
2 − xpin

q

∣∣∣
]

(10)

=
1

P − 1
[wn + (P − 2)wn] (11)

=wn. (12)

In (10), the linearization factor 1/|xpin
p − xpin

q | is multiplied
with the quadratic distance (xpin

p − xpin
q )2, which gives the

linear distance |xpin
p − xpin

q |. Furthermore, all possible two-
pin connections are separated into the following three cate-
gories: connections between the two boundary pins (p = 1,
q = 2), connections between the “left” boundary pin 1 and the
inner pins (p = 1, q ≥ 3), and connections between the “right”
boundary pin 2 and the inner pins (p = 2, q ≥ 3). The inner
two-pin connections (p ≥ 3, q > 3) are not considered, as they
have a connection weight of zero (8). With wn = |xpin

1 − xpin
2 |,

(11) is given. At last, (12) expresses that the quadratic cost
function Γn,x is exactly the HPWL in the x-direction wn. By
using similar operations for the y-direction, it can be shown
that the Bound2Bound net model exactly represents the HPWL
in the cost function Γn of each net. Thus, the approximation
error is zero in the Bound2Bound net model (independent of
the number of pins per net), which is shown in Fig. 3.

TABLE I
COMPARISON BETWEEN THE NEW BOUND2BOUND NET MODEL AND TWO

APPROACHES (GORDIANL AND EISENMANN) FOR THE CONNECTION

WEIGHTS IN A CLIQUE/STAR NET MODEL. RESULTS REPRESENT LEGAL

PLACEMENTS OF THE ISPD 2005 CONTEST BENCHMARK SUITE.
CPU IS IN SECONDS AND REPRESENTS THE RUNTIME TO PLACE

EACH CIRCUIT. HPWL IS IN METERS AND REPRESENTS THE

COMPLETE NETLENGTH OF EACH CIRCUIT

A. Comparison

For nets with two and three pins, the new Bound2Bound
net model has the same number of two-pin connections as the
clique net model. For all other nets, the clique net model has
the most two-pin connections—with a quadratic complexity.
The Bound2Bound net model has just a linear complexity in
the number of two-pin connections, but it has more two-pin
connections than the star net model. However, no additional
star pins are introduced in the Bound2Bound net model. In an
average circuit, most of the nets have two or three pins, and
nets with lots of pins are rare. Based on such a circuit, the
number of all two-pin connections is about 75% lower in the
Bound2Bound net model than in the clique net model.

In [15], the hybrid usage of the clique net model and the star
net model in a circuit is presented. For small nets (i.e., nets with
a low number of pins), the clique net model is used. For big
nets (i.e., nets with a high number of pins), the star net model is
used in order to reduce the number of two-pin connections. The
disadvantage of increasing the number of pins by the additional
star pins is accepted here because there are just a few big nets
in an average circuit. Compared with such a hybrid clique/star
net model, the number of all two-pin connections is about the
same as in the Bound2Bound net model.

Table I shows experimental results comparing the
Bound2Bound net model with the hybrid clique/star net
model. The results represent legal placements of modern
circuits and are obtained with the placer Kraftwerk2. The
placer is described in the rest of this paper. In the hybrid
clique/star net model, GordianL and Eisenmann’s approaches
for the two-pin connection weights are used. To obtain the best
CPU times for the hybrid clique/star net model when using
Kraftwerk2, all nets with up to five pins are modeled as cliques;
the remaining nets are modeled as stars. Table I demonstrates
that the new Bound2Bound net model offers the best results
in HPWL netlength and CPU time. Eisenmann’s approach
increases the HPWL by about 8% and the CPU time by about
10%. By using GordianL’s approach, the HPWL is increased
by about 7%, and the CPU time is increased by about 17%.
The Bound2Bound net model has the best HPWL because it
accurately models the HPWL in the quadratic cost function.
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Fig. 5. Change in approximation error due to the module movement for
different net models. Results are based on the bigblue1 circuit of the ISPD
2005 contest benchmark suite. The module movement is normalized to the
movement, which gives a good tradeoff between runtime and quality (see
Section VII).

The Bound2Bound net model has the lowest CPU time because
no additional star pins are used.

B. Approximation Error Versus Module Movement

In each placement iteration of quadratic placement, the
quadratic cost function Γ is minimized, and the modules are
moved to the minimum. Before minimization, a net model is
applied to represent the netlength in Γ and to determine the
connection weight wx,pq . There, wx,pq depends on the pin po-
sitions and, thus, on the module positions. Once the connection
weights are determined, they remain constant, i.e., neither they
are updated during minimization nor after the modules have
been moved.1 Hence, there is an inherent approximation error
ε̂ between the quadratic cost function and the HPWL netlength
after the modules have been moved. ε is the approximation error
before the modules have been moved, i.e., right at the point
where the net model is applied. Based on the statements in the
previous section, ε = 0 in the Bound2Bound net model.

Fig. 5 shows the change in the approximation error ∆ε =
|ε − ε̂|, depending on the average module movement µ for
three approaches: the Bound2Bound net model and the hybrid
clique/star net model with both GordianL and Eisenmann’s
approaches for the connection weights. In general, ∆ε increases
with the module movement, and there is no essential difference
between the net models and between the approaches for the
connection weights. Thus, the Bound2Bound net model also
has an inherent approximation error ε̂ in the case where the two-
pin connection weights wB2B

x,pq remain constant while the mod-
ules are moved. Aside from this, Fig. 5 shows that the lowest
∆ε and, consequently, the best placements are obtained if the
modules are moved as little as possible during each placement
iteration. This is of interest in Section VII addressing quality
control.

IV. FORCE-DIRECTED QUADRATIC PLACEMENT

In quadratic placement, the quadratic cost function Γ repre-
sents the netlength. The placement (i.e., the module positions)
with minimal netlength is obtained by minimizing Γ. Because

1The weights are determined/updated in the next placement iteration.

Γ is separable in the x- and y-directions, this paper focuses
on the x-direction. The y-direction is obtained similarly. The
formulation of Γx in (1) depends on the pin positions and not on
the module positions. Hence, a transformation from pin position
to module position is necessary. To do this transformation, the
function π(p) = m maps the pin p ∈ P to the module m ∈ M
according to the relation between module m and pin p

π : (P) → M
π(p) = m : pin p ∈ P belongs to module m ∈ M. (13)

Assuming that the pins are located at the center of the modules,
the position xpin

p of pin p is the center position xi of the corre-
sponding module i = π(p) : xpin

p = xπ(p). During placement,
the modules are separated into movable modules (cardinality
M ) and fixed modules (cardinality F ) because only the
positions of the movable modules have to be determined. The
x-positions of the M movable modules are represented in
vector x

x = (x1, x2, x3, . . . , xM )T. (14)

With (13) and (14), the quadratic cost function Γx that
is represented as a sum in (1) can be transformed into a
matrix–vector notation

Γx =
1
2
xTCxx + xTdx + const. (15)

The matrix Cx represents the connectivity between movable
modules, and the vector dx reflects the connections between
movable and fixed modules. Cx is of dimension M × M , and
has entry cij in row i, and column j. dx is of dimension M
and has entry di in row i.

The contribution of one two-pin connection e = (p, q) ∈ E
(with π(p) = i, π(q) = j, and a connection weight wx,e) on
Cx and dx is as follows. If both modules i and j are movable,
then wx,e is added to the diagonal matrix entries cii and cjj ,
and wx,e is subtracted from the off-diagonal entries cij and cji.
If one module is fixed, e.g., module j, then wx,e is added to
cii, and we,x · xj is subtracted from the vector entry di. If both
modules are fixed, then Cx and dx do not change.

With no modules fixed, the matrix Cx is positive semidef-
inite [28]. With some modules fixed, the matrix is positive
definite [17]. In both cases, Γx is convex, and its minimum
is obtained by setting its derivative to zero. The derivative
in the x-direction is described by the nabla operator ∇x =
(∂/∂x1, ∂/∂x2, . . . , ∂/∂xM )T

∇xΓ = Cxx + dx = 0. (16)

Solving the system of linear equations (16) with respect to x
gives the x-positions of the modules with minimal netlength.

In quadratic placement, each two-pin connection can be
viewed as an elastic spring, and the cost function Γ represents
the total energy of the spring system. As the derivative of an
energy is a force, the derivative of the cost function (16) is the
net force Fnet

x , which is created by the springs (representing
the nets) between the pins

Fnet
x = ∇xΓx = Cxx + dx. (17)
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If just the net force is acting on the modules, then the modules
are strongly contracted somewhere on the chip, resulting in a
lot of module overlap. Force-directed quadratic placers utilize
an additional force to spread the modules over the chip, and this
is done in a sequence of placement iterations.

V. KRAFTWERK2

Kraftwerk2 is a fast force-directed quadratic placer, which
separates the additional force into a hold force and a move
force. Both forces are implemented in a novel and systematic
way. In the following, the force implementation is described on
the basis of one placement iteration. At the start of the iteration,
the modules are located at x′. The new positions of the modules
are represented in vector x. ∆x is the change in the module
positions

∆x = x − x′. (18)

Next, the force implementation is formally presented. After
that, an illustration of one placement iteration is given (see
Section V-C).

A. Move Force

The move force moves the modules in the placement iteration
in order to reduce the module overlap and to spread the modules
over the chip. To determine the move force, the placement is
represented in a supply and demand system D

D(x, y) = Ddem
mod (x, y) − Dsup

mod (x, y). (19)

The demand Ddem
mod (x, y) represents the modules, and the

supply Dsup
mod (x, y) is the placement area given by the chip.

As a prerequisite, the supply and demand system has to be
balanced, i.e., the integral over the demand has to equal the
integral over the supply. This is necessary to adapt the demand
completely to the supply

∞∫
−∞

∞∫
−∞

Ddem
mod (x, y)dxdy =

∞∫
−∞

∞∫
−∞

Dsup
mod (x, y)dxdy. (20)

To formulate the demand of the modules, a rectangle function
R is used. R is one for all points (x, y) inside a given rectangle,
and R is zero outside. The rectangle is defined by its lower left
corner (xll, yll), its width w, and its height h

R(x, y;xll, yll, w, h) =

{ 1, if 0 ≤ x − xll ≤ w
∧0 ≤ y − yll ≤ h

0, else.
(21)

The demand of one module i is

Ddem
mod ,i(x, y) = d mod ,i · R

(
x, y;x′

i −
wi

2
, y′

i −
hi

2
wi, hi

)
.

(22)

Here, module i is located at (x′
i, y

′
i), has a width wi, a height hi,

and an area A mod ,i = wi · hi. In the following, the individual
module density d mod ,i is set to one. However, Section VIII
presents an advanced approach for scaling d mod ,i to control
unwanted halos, i.e., to remove unwanted free space, around

large modules. The module demand Ddem
mod for all M movable

and F fixed modules is the sum of all single module demands
Ddem

mod ,i

Ddem
mod (x, y) =

M+F∑
i=1

Ddem
mod ,i(x, y). (23)

With d mod ,i = 1, the value of Ddem
mod at point (x, y) reflects the

number of modules covering this point. In the module demand
(23), there is no fundamental difference between small and
large modules or between fixed and movable modules. Thus,
it can be used to place various circuit types like standard cell
circuits with millions of small modules, mixed-size circuits
with small and big modules, and circuits with fixed modules.

Aside from the module demand, a module supply
Dsup

mod (x, y) is necessary for the supply and demand system
D. This supply is given by the chip area

Dsup
mod (x, y) = dsup · R(x, y;xChip, yChip, wChip, hChip).

(24)

(xChip, yChip) is the lower left corner of the chip, wChip and
hChip are the dimensions of the chip, and AChip is the area
of the chip. The module supply density dsup is determined by
using (20) and (23): dsup =

∑M+F
i=1 (d mod ,iA mod ,i)/AChip.

With (24), the modules are spread over the whole chip area.
Section IX presents an advanced module supply to spread the
modules according to a user-given module density.

After defining the module demand Ddem
mod and the module

supply Dsup
mod , the supply and demand system D (19) is given.

D is interpreted as a charge distribution and creates an electro-
static potential Φ by Poisson’s equation(

∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = −D(x, y). (25)

This differential equation is solved, for example, with the
geometric multigrid solver DiMEPACK [29]. The usage of a
potential is similar to other force-directed quadratic placement
approaches. However, Kraftwerk2 utilizes a hold force besides
the move force, and the gradients of the potential are not ac-
cumulated over the placement iterations in Kraftwerk2. Rather,
the gradients of the potential are directly used to determine the
location

◦
xi of the target point of each module i

◦
xi= x′

i −
∂

∂x
Φ(x, y)

∣∣∣∣
(x′

i
,y′

i
)

. (26)

The move force Fmove
x,i of module i is created by a spring

connection between the module and its target point

Fmove
x,i =

◦
wi (xi−

◦
xi). (27)

Based on the move force, the modules, represented in the de-
mand, are moved away from high-density regions (i.e., regions
with a lot of demand) to low-density regions (i.e., regions with
remaining supply). In other words, in each placement iteration,
the demand is adapted further to the supply.

◦
wi in (27) is the

spring constant of the move force and affects the distance that a
module i is moved during one placement iteration: With a high
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Fig. 6. Illustration of one placement iteration. The numbers in the big arrows represent the sequence of the steps executed in each placement iteration.
(d), (e) Density plots, with white and black colors representing low and high densities, respectively. (a) Starting placement. (b) Hold force. (c) Resulting placement.
(d) Supply and demand system D. (e) Potential Φ. (f) Target points and move force.

◦
wi, the move force of module i pulls a lot on its module, and
the module will be moved a long distance. The opposite is true
for a small

◦
wi.

By using target points for the move force, each module can
be moved at most up to its target point during one placement
iteration, i.e., the module movement is limited. This enforces
the convergence of Kraftwerk2.

To represent the move force (27) in a matrix–vector no-
tation, the weights of the move force are collected in the

diagonal matrix
◦
C= diag(

◦
wi). The gradients of the po-

tential are collected in the vector Φ = ((∂/∂x)Φ|(x′
1,y′

1)
,

(∂/∂x)Φ|(x′
2,y′

2)
, . . . , (∂/∂x)Φ|(x′

M
,y′

M
))T. All target points

are represented in the vector
◦
x= x′ − Φx. Therefore, the move

force Fmove
x in matrix–vector notation is

Fmove
x =

◦
Cx (x− ◦

x). (28)

The generic supply and demand system D gives the target
points

◦
x of the move force (25) and (26). D is used in (19) to

represent the modules and the placement area. However, D can
be extended to consider other supply and demand systems. For
example, it can be extended by the routing supply and demand
system in order to optimize routability during placement [30],
or D can be used to optimize the temperature profile of a
chip [31].

B. Hold Force

To spread the modules iteratively over the chip, the move
force is used. However, besides the move force, the net force
is acting on the modules and minimizes the netlength. Thus,
the net force has to be compensated for at the start of each

placement iteration. Otherwise, the modules would collapse
back to the initial placement, where the netlength is minimal
but the modules overlap too much. The compensation of the net
force is done by the hold force. Hence, the hold force Fhold

x

equals the negative net force

Fhold
x = −(Cxx′ + dx). (29)

By using only the hold force as one additional force, the
modules will not collapse back but will stay at their current
position. In other words, the change in module position ∆x
is zero. This can be shown by Fnet

x + Fhold
x = 0 ⇔ Cx∆x =

0 ⇔ ∆x = 0. It should be noted here that the hold force equals
the net force only at the start of the placement iteration, where
the modules are located at x′. Moreover, the hold force is a
constant force, as it does not depend on x.

The result of the hold force is that no force accumulation
is necessary, and each placement iteration is decoupled from
the previous one. Therefore, the placement algorithm can be
restarted at any iteration, and the engineering change order is
supported best.

C. Illustration

The previous sections formally described how the move force
and the hold force are determined and how they are modeled.
This section gives an illustration of one placement iteration,
particularly of the forces.

The placement iteration starts with a given placement, and
Fig. 6(a) shows such a placement. Ignoring the move force,
only the net force is acting on the modules, and the modules are
contracted. To compensate for this, the hold force is used, which
preserves the given placement. The hold forces are shown as
arrows in Fig. 6(b).
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Based on the module positions, the supply and demand
system D is created, which represents the local module density
and the chip area. Fig. 6(d) shows D of the given placement. D
is treated as a charge distribution and creates the electrostatic
potential Φ shown in Fig. 6(e). Comparing Fig. 6(d) with
Fig. 6(e) reveals that the potential Φ can be viewed as a
smoothed representation of the supply and demand system D.
Moreover, in regions where D is low, the potential Φ is low, and
in regions where D is high, the potential Φ is high.

The gradients of the potential determine the target points, and
the target points are shown as crosses in Fig. 6(e). The move
force is created by spring connections between the modules and
their target points. The target points move the modules away
from high-density regions [black regions in Fig. 6(d) and (e)] to
low-density regions [white regions in Fig. 6(d) and (e)].

Therefore, the following three forces are acting on the mod-
ules in each placement iteration: the net force, the hold force,
and the move force. These forces move the modules until the
sum of the forces is zero. The placement where the sum of all
three forces is zero is the resulting placement of one placement
iteration, and Fig. 6(c) shows such a placement. Comparing
Fig. 6(c) with Fig. 6(f) shows that the modules are moved
toward the target points, the modules are spread more over the
placement area, and the module overlap is reduced.

D. Core of Kraftwerk2

In summary, the following three forces are used by
Kraftwerk2: the net force Fnet

x , and two additional forces: the
move force Fmove

x and the hold force Fhold
x . Setting the sum of

the three forces to zero gives the core system of linear equations
used in Kraftwerk2’s iterative placement process

(Cx+
◦
Cx)∆x = −

◦
Cx Φx. (30)

Solving (30) with respect to ∆x and updating x′ by ∆x give
the new module position x in the current placement iteration.

Because the matrix Cx+
◦
Cx is symmetric, positive definite,

and highly sparse, solving (30) can be done efficiently, e.g.,
with the conjugate-gradient method. Based on (30), Kraftwerk2
has the following three degrees of freedom: first, the cost
function Γ, represented in Cx; second, the supply and demand
system D, represented in Φx; and third, the weights of the move

force
◦
wi, represented in

◦
Cx. The degrees of freedom are used to

minimize the netlength, spread the modules over the placement
area, and control the tradeoff between quality and runtime.

VI. OVERVIEW OF THE PLACEMENT ALGORITHM

Fig. 7 shows the complete placement algorithm of
Kraftwerk2. At first, an initial placement is computed by mini-
mizing the quadratic cost function Γ (15) over a few iterations.
In each iteration, the Bound2Bound net model is applied to ad-
just the two-pin connection weights. The initial placement has
a minimal netlength. However, the modules are concentrated
somewhere on the chip (mostly at the center), and the modules
may overlap a lot.

Fig. 7. Complete algorithm of Kraftwerk2.

In global placement, the modules are spread iteratively over
the chip. Each placement iteration starts with determining the
supply and demand system D and with computing the potential
Φ. Then, the Bound2Bound net model is applied to determine
the weights of the two-pin connections. Here, (8) is utilized
for the x-direction, and a similar equation is used for the
y-direction. Once the two-pin connection weights are deter-
mined, they remain constant for the rest of the placement
iteration. The next step in each placement iteration is to solve
the system of linear equations (30) for the x-direction and a
similar one for the y-direction. Then, the module positions are
updated. Solving the systems of linear equations and updating
the module positions are done once per placement iteration. At
the end of each placement iteration, a quality-control procedure
(presented in Section VII) is called to adjust the weights of
the move force. The global placement is stopped if the module
overlap Ω is below a certain limit, e.g., below 20%. The
definition of Ω is given in (35).

After global placement, final placement is done. Here, the
modules are legalized first, i.e., the remaining overlap is re-
moved, and the modules are aligned to rows if necessary.
Kraftwerk2 utilizes an approach similar to Tetris [32] for le-
galizing standard cells. Macros are legalized with an approach
similar to that published in [33] and [34]. Legalizing a place-
ment with 20% overlap is done in short CPU time (about 5% of
the CPU time of global placement), and the netlength increases
by around 1%. After legalization, a simple greedy detailed
placement method is applied to improve the legal placement:
Single modules are rotated, or pairs of neighboring modules
are exchanged. This improves the netlength by about 2%. Most
of the runtime of Kraftwerk2 is spent for global placement and
to solve the systems of linear equations.

VII. QUALITY CONTROL

The weights
◦
wi (where i = 1, 2, 3, . . . ,M) of the move

force (28) are 1 degree of freedom in Kraftwerk2. They are
utilized to control the iterative global placement process and
to control the quality of placement. The weight

◦
wi of module

i is initialized at the beginning of the global placement process
with

◦
wi=

A mod ,i

Aavg
· 1
M

. (31)



1406 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 8, AUGUST 2008

Fig. 8. Scale factor κ, depending on the module movement µ and the target
module movement µT .

Aavg represents the average module area, and M is the number
of movable modules. With the factor A mod ,i/Aavg, the move
force (27) of module i is proportional to its module area
A mod ,i. Consequently, big modules are moved farther in each
placement iteration than small modules. Thus, big modules
are moved away from small modules, and over all iterations,
small modules have to be moved less to obtain an overlap-
free placement. This improves the netlength, particularly in
mixed-size placements, where most of the modules are small
and where most of the nets interconnect small modules.

Based on Rent’s rule [35], with increasing M , there are more
connections between movable modules than connections to
fixed modules.2 Hence, with increasing M and by minimizing
the netlength, the movable modules are more contracted, the
module overlap is higher in the initial placement, and the target
points are farther away from the modules. Consequently, the
move force (27) would increase with M if its weight

◦
wi remains

constant. However,
◦
wi is scaled with 1/M in (31). With this, the

move force is not increasing with M .
To control the quality during the placement process, the

characteristics presented in Section III-B and shown in Fig. 5
are used. There, ∆ε, which is the inherent change in the
approximation error between the quadratic cost function Γ and
the real objective, depends mainly on the module movement
µ. To obtain a high-quality placement, ∆ε should be low, and
thus, µ should be low. However, with a low µ, a high number of
placement iterations are necessary to spread the modules over
the chip. Consequently, high-quality placements need a high
CPU time and vice versa. Thus, there is a tradeoff between
quality and runtime, and this tradeoff is controlled by the user
in setting a target module movement µT . The regulation of
the module movement µ according to the target movement µT

is done by updating the weights
◦
wi of the move force in the

quality-control procedure. This procedure is called at the end
of each placement iteration (see Fig. 7) and is implemented as
follows. First, the average movement µ of all modules is calcu-
lated. Then, a scale factor κ is determined on the basis of µ and
µT : If µ < µT , then κ > 1; if µ > µT , then κ < 1; else, κ = 1.
Fig. 8 shows a suitable function κ(µ) = 1 + tanh(ln(µT /µ)).

After the scale factor κ is determined on the basis of µ and
µT , the weights

◦
wi of the move force are multiplied with κ

◦
wi←

◦
wi ·κ. (32)

2Fixed modules means fixed macros and fixed I/O pins.

Fig. 9. Tradeoff between runtime and quality based on µT . µT is normalized
to the average module dimension. Results are based on all eight circuits of the
ISPD 2005 contest benchmark suite.

Fig. 10. Impact of scaling down the module density d mod ,i for large
modules. Global placements are displayed here. (a) With d mod ,i = 1: Halo
around the large module. (b) With scaling down d mod ,i for large modules:
No halo.

Fig. 9 shows the tradeoff between runtime (CPU time) and
quality (netlength in HPWL). The tradeoff is achieved with
the presented quality control and is determined by the user
parameter µT . With a low µT , the CPU time is high, and the
netlength is good. The opposite is true for a high µT . To choose
a suitable target movement µT , the average module size is a
good rule of thumb.

VIII. MODULE DEMAND

In Section V-A, the individual module density d mod ,i of
the module demand was set to one for simplicity: d mod ,i = 1.
However, this results in a halo, i.e., free space, around each
module. Fig. 10(a) shows such halos, in particular around
the large module at the center. This halo around the large
module is not wanted because the small modules are “pushed
away” from the large module, and the netlength is increased.
A better placement with no halo around the large module is
shown in Fig. 10(b). This placement is achieved by scaling
down d mod ,i for large modules. This section describes details
about this approach for preventing unwanted halos around large
modules.

The reason for the halos is the potential Φ and, thus, the
supply and demand system D. Kraftwerk2 converges to a
placement where each module i is in an exclusive region Ri,
and no module other than i is in this region Ri. In the region
Ri, the total demand (A mod ,i · d mod ,i) equals the total supply
(AR,i · dsup). Hence, the area AR,i of the region Ri depends on
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the module supply density dsup, the individual module density
d mod ,i, and the module area A mod ,i

AR,i =
d mod ,i

dsup
A mod ,i. (33)

In Fig. 10(a), dsup = 0.5 and d mod ,i = 1. Thus, AR,i = 2 ·
A mod ,i, and the exclusive region for the large module in the
center is quite big. Consequently, there is free space, i.e., a halo,
around the large module. To prevent the halo, d mod ,i has to be
scaled down, depending on the module area A mod ,i. A good
approach for d mod ,i is

d mod ,i =

{
1, if A mod ,i <Alarge√

Alarge
A mod ,i

(1 − dsup)+dsup, else.

(34)

Here, the individual module density d mod ,i stays one for small
modules (A mod ,i < Alarge). This conserves the halos around
small modules because these halos are necessary to spread
the small modules over the placement area. For large modules
(A mod ,i ≥ Alarge), d mod ,i is scaled down with increasing
module area A mod ,i. In addition, d mod ,i is bound from below
by the supply density dsup. If d mod ,i is not bound this way,
the placement algorithm would not achieve convergence to an
overlap-free placement. A good value for the reference area
Alarge used in (34) is 50 Aavg, with Aavg denoting the average
module area.

IX. MODULE SUPPLY

In Section V-A, the whole placement area provides supply for
the modules. This results in the modules being spread over the
whole placement area [see Fig. 11(a)]. To lower the netlength,
it may be allowed to pack the modules to a user-given target
density td and not to spread them over the whole placement
area [see Fig. 11(b)–(d)].

This section presents an approach to control the module den-
sity and, thus, to control the netlength. As Kraftwerk2 adapts
the demand to the supply, and the modules are represented
in the demand, the supply can be used to control the module
density. The creation of the module supply is done in two steps.
First, an initial module supply Dsup

mod,init(x, y) with the value
td is created at each point (x, y), where the module demand
is greater than zero: Ddem

mod (x, y) > 0. Second, an additional
module supply Dsup

mod,add(x, y) with the value td is created
around the initial module supply. With this, the initial module
supply is framed by the additional module supply, the frame
has a constant width, and the supply density inside the frame
is td and constant. The sum of the initial and the additional
module supply gives the module supply: Dsup

mod = Dsup
mod,init +

Dsup
mod,add. Because the potential is solved by numeric methods,

a grid structure is used to represent the potential and the supply
and demand system. Hence, the grid structure can be used to
create the initial and the additional module supply.

X. CONVERGENCE

Due to the systematic force implementation, in particular
using a potential formulation, target points, and a constant hold

Fig. 11. Control of the module density. Module density plots (a), (b), and
(d) represent a low density with white color and a high density with black color.
The big black rectangles represent fixed big modules. Based on a circuit with
0.2 million small movable modules and some big fixed modules.

force, Kraftwerk2 converges such that the module overlap is
reduced in each placement iteration. This can be analyzed in
theory, but various assumptions and a lot of formulas are neces-
sary. Hence, this section focuses more on the practical issues of
the convergence. Fig. 12 shows the results of one typical exper-
iment and demonstrates the convergence of Kraftwerk2. Here,
a circuit with 0.2 million small movable modules and some big
fixed modules is placed over a few placement iterations.

Fig. 12(a) shows that the module overlap Ω is continuously
decreasing over all placement iterations and best shows the
convergence. The module overlap Ω can be calculated on
the basis of Ddem

mod (23) using d mod ,i = 1. With a function
ω(x, y) = {1 if Ddem

mod (x, y) ≥ 1; 0 else}, the area A∪ of the
union of all modules is given: A∪ =

∫ +∞
−∞

∫ +∞
−∞ ω(x, y)dxdy.

With A mod =
∑M+F

i=1 A mod ,i being the sum of the area of
all modules, Ω is

Ω = 1 − A∪
A mod

. (35)

If no modules are overlapping, A∪ equals A mod , and Ω is zero.
If there is some module overlap, A∪ is smaller than A mod , and
Ω is between zero and one.

The parameter δ, as shown in Fig. 12(b), represents the
average length of the potential’s gradient Φ

δ =
1
M

M∑
i=1

∣∣∣∇Φ(x, y)|(x′
i
,y′

i)

∣∣∣ , i = 1, 2, 3, . . . ,M.

(36)

Comparing Fig. 12(a) and (b) shows that, similar to Ω, δ is
also continuously decreasing. This is because the modules are
spread more and more over the placement area during the
iterations. With this, the peaks in the module demand Ddem

mod

are decreasing, and the supply and demand system D is getting
more and more even. As the potential Φ represents D by
Poisson’s equation (25), the average length δ of the potential’s
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Fig. 12. Demonstration of Kraftwerk2’s convergence based on the smooth and continuous progress of some characteristic parameters. Circuit: adaptec1 of the
ISPD 2005 contest benchmark suite. (a) Module overlap. (b) Module movement. (c) Netlength.

gradient is decreasing continuously, as shown in Fig. 12(b). The
parameter δ is also the upper limit of the module movement
µ. This can be shown by approximating first the matrix Cx

with a diagonal matrix Ax = diag(αx,i). This approximation
is valid because Cx is diagonal dominant, and the average
approximation error3 between Cx and Ax is about 12% for
various circuits. Thus, the ith equation of the system of linear
equations (30) is

(αx,i+
◦
wi)∆xi = − ◦

wi
∂

∂x
Φ

∣∣∣∣
(x′

i
,y′

i)
. (37)

With βx,i =
◦
wi /(αx,i+

◦
wi), (37) becomes

∆xi = −βx,i
∂

∂x
Φ

∣∣∣∣
(x′

i
,y′

i
)

, 0 < βx,i ≤ 1. (38)

Based on (38), the movement µx,i of module i in the x-direction
is limited by the potential’s gradient in one placement iteration

µx,i = |∆xi| ≤
∣∣∣∣ ∂

∂x
Φ

∣∣
(x′

i
,y′

i)

∣∣∣∣ = δx,i. (39)

Thus, the average movement of all modules µ is limited by δ

µ =
1
M

M∑
i=1

∣∣∣(∆xi,∆yi)
T
∣∣∣ ≤ δ. (40)

This relation between µ and δ, i.e., µ is bound from above
by δ, is shown in Fig. 12(b). Moreover, the progress of µ has
three characteristics. µ is small in the first placement iteration
because the weights of the target points

◦
wi are initialized with

a small value (31). Then, µ is increasing and is around the
target movement µT because of the quality control described
in Section VII. After placement iteration 20, µ is continuously
decreasing, as it reached its upper limit δ, and δ is continuously
decreasing over all placement iterations.

Fig. 12(c) shows that the netlength L is continuously and
steadily increasing up to around placement iteration 20. This
is because the module movement µ is almost constant in these
iterations. Then, L increases with a lower rate and is almost
not changing after iteration 30. This is also due to the module

3Based on the Frobenius matrix norm ‖E‖2
F =

∑N

i,j=1
e2
ij .

movement µ, which is decreasing after iteration 20 and has a
very low value after iteration 30.

The global placement, as shown in Fig. 12(a)–(c), is stopped
at around iteration 25, as the module overlap Ω is below 20%
there.

Some limitations of the convergence of Kraftwerk2 should
be noted. First, if two modules are exactly on top of each other,
then they must have different adjacent modules. If not, these
critical stacked modules will always be moved in the same way,
and the overlap between them will not be removed. However,
in all performed experiments, such critical stacked modules
were never detected. Another limitation of Kraftwerk2 is the
number of placement iterations that is necessary to obtain a
complete overlap-free placement. This number of iterations is
infinity in theory. However, the module overlap is reduced in
each iteration. In addition, Kraftwerk2 is a global placer, and
it is stopped if there is little module overlap remaining (e.g.,
Ω < 20%). These almost overlap-free placements are obtained
in about 25 placement iterations.

XI. EXPERIMENTAL RESULTS

This section demonstrates the high quality and very low
CPU time of Kraftwerk2 using various benchmark suites.
All benchmark suites were placed on an AMD Opteron 248
machine running at 2.2 GHz and using one CPU core. The
memory usage of the biggest benchmark was below 4 GB.
To compare with the CPU times of other placers, their CPU
times are scaled according to the SPEC CPU2000 benchmark
[36]. This scaling factor will be noted as “CPU scaling” in the
following. All HPWL netlengths are expressed in meters. The
CPU times are in seconds. The results of NTUPlace3 are taken
from [8], using a CPU scaling of 1.1. The results of FastPlace3
are taken from [37], and the CPU scaling is 1.2. The results of
RQL are taken from [18], with a CPU scaling of 1.2.

Section VII presented the quality control used in Kraftwerk2
to choose the tradeoff between quality and CPU time. The
results of Kraftwerk2 presented in the following are obtained at
a good tradeoff point. In principle, the results can be improved
in quality by about 0.5% with an increase in the CPU time by
about a factor of two. On the other hand, the CPU time can be
improved by about a factor of two with a decline in quality of
about 2%.

In all benchmark suites, the chip area of the circuits is given.
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TABLE II
RESULTS IN THE ISPD 2005 CONTEST BENCHMARK SUITE

TABLE III
RESULTS IN THE ISPD 2006 CONTEST BENCHMARK SUITE. (a) KRAFTWERK’S RESULTS. AS REQUIRED IN THIS BENCHMARK SUITE, THE CPU FACTOR

IS LIMITED TO ±10%. THE “RAW” CPU FACTORS ARE −13.50% AND −10.98%, RESPECTIVELY. (b) RESULTS OF OTHER PLACERS

A. ISPD 2005 Contest Benchmark Suite

The ISPD 2005 contest benchmark suite [38], [39] consists
of eight circuits with up to 2.2 million movable modules. The
quality of placement is measured by the HPWL netlength.
Table II shows the results of Kraftwerk2 and of other state-of-
the-art placers. The results of APlace2, mFAR, Dragon, mPL5,
Capo, and FengShui are taken from [40]. Unfortunately, in [40],
no detailed CPU times and no results for the circuits adaptec1
and adaptec3 are published.

On average, Kraftwerk2 is as good as FastPlace3 in netlength
but is two times faster. Compared with RQL, Kraftwerk2
has a 5.38% higher netlength but is more than three times
faster. Compared with NTUPlace3, Kraftwerk2 has a 2.2%
higher netlength but is more than three times faster. Relative to
APlace2, Kraftwerk2 has a 3.5% higher netlength but is almost
40 times faster. Based on the netlength of the remaining other
placers, Kraftwerk2 is between 2.7% and 30% better.

B. ISPD 2006 Contest Benchmark Suite

The ISPD 2006 contest benchmark suite [41] consists of
eight circuits with up to 2.5 million movable modules. The
quality of a placer is measured based on the following three
parameters: the netlength in HPWL, the CPU factor, and an
overflow factor. The overflow factor is zero if the given upper
limit dup for the module density is respected everywhere on
the chip. Thus, the overflow factor, in combination with a low
dup, should assure routability. The CPU factor is derived from
the logarithmic ratio between the placer’s CPU time and the

median over the CPU times of all placers that completed this
benchmark suite. For example, a CPU factor of −4% (+4%)
represents that the placer’s CPU time is two times smaller
(greater) than the median CPU time. The three parameters are
combined in the following three scoring functions: HPWL,
HPWL + Overflow, and HPWL + Overflow + CPU. All three
scoring functions are normalized to the best values published
in [41].

Table III(a) shows the detailed results of Kraftwerk2. The
low overflow factor of 1.87% demonstrates that Kraftwerk2
respects the upper limit dup of the module density very well.
The very low CPU factor of −9.35% reveals that Kraftwerk2’s
CPU time is more than four times smaller than the median CPU
time. To obtain the CPU factor, the CPU times in Table III(a)
are scaled with 0.86. This is because the results in [41], which
are used to calculate the CPU factor, are based on a different
machine.

Table III(b) summarizes the results of Kraftwerk2 and of
other state-of-the-art placers. Results other than those of RQL,
NTUPlace3, and FastPlace3 are taken from [41]. Unfortunately,
there are no CPU times available for RQL. Based on the CPU
factor, Kraftwerk2 is the fastest placer. According to the main
scoring function HPWL + Overflow + CPU, Kraftwerk2 is the
best placer. NTUPlace3 is the second best and has a 3.9%
higher value in this scoring function. Ignoring the CPU factor,
and using the scoring function HPWL + Overflow, Kraftwerk2
is the fourth best. NTUPlace3, RQL, and mPL6 are 4.1%,
3.0%, and 2.9% better, respectively. There are no scores of
FastPlace3 in HPWL + Overflow and HPWL available or of
RQL in HPWL + Overflow + CPU.
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TABLE IV
RESULTS IN MIXED-SIZE AND FLOORPLACEMENT BENCHMARK SUITES. (a) ICCAD 2004 MIXED-SIZED

BENCHMARK SUITE. (b) IBM-HB+ FLOORPLACEMENT BENCHMARK SUITE

Fig. 13. CPU time of Kraftwerk2, depending on the number of movable
modules M per circuit.

C. ICCAD 2004 Mixed-Size Benchmark Suite

The ICCAD 2004 mixed-sized benchmark suite [42] con-
sists of 18 circuits with up to 200 000 movable modules [see
Table IV(a)]. The number of big movable modules is about 400
per circuit. The results of FDP are taken from [43], with a CPU
scaling of 1.1. The results of APlace2 and mPL5 are taken from
[8], with a CPU scaling of 1.1. Kraftwerk2 is the fastest placer,
ranging from 3.52 times faster than NTUPlace3 to 24 times
faster than APlace2. In the netlength, Kraftwerk2 is 1.0% and
5.3% better than mPL5 and FDP, respectively. Compared with
APlace2 and NTUPlace3, Kraftwerk2 has a 0.5% and 1.8%
higher netlength, respectively.

D. IBM-HB+ Floorplacement Benchmark Suite

The IBM-HB+ Floorplacement Benchmark Suite [44] con-
sists of 17 circuits [see Table IV(b)] and is derived from the
same benchmark suite (IBM/ISPD’98) as the ICCAD 2004
mixed-sized benchmark suite. However, the IBM-HB+ circuits
do not have standard cells but consist of about a thousand
modules with various dimensions. To legalize these circuits,
Kraftwerk2 uses the same technique as legalizing the big
modules of the ICCAD 2004 mixed-size benchmark suite. The
results of SCAMPI, which is a feature of Capo, are taken
from [44], with a CPU scaling of 1.1. Aside from the results

of Kraftwerk2 and SCAMPI, no results of other placers that
successfully place the complete benchmark suite are avail-
able. Compared with SCAMPI, Kraftwerk2 has a 12% better
netlength and is about eight times faster.

E. Average-Case Computational Complexity

Fig. 13 shows the CPU time of Kraftwerk2 versus the
number M of movable modules per circuit. The results are
based on the ISPD 2005/2006 contest benchmark suites.
Using Fig. 13, the average-case computational complexity of
Kraftwerk2 is Θ(M1.18) and, thus, nearly linear. Hence, the
placer can cope easily with future circuits having an increasing
number of modules.

XII. CONCLUSION

This paper presents the force-directed quadratic placer
“Kraftwerk2,” which offers high quality and excellent compu-
tational efficiency. Due to the systematic force implementation,
Kraftwerk2 converges such that the module overlap is reduced
in each placement iteration. By using the Bound2Bound net
model, Kraftwerk2 accurately optimizes the HPWL netlength.
Other features of the placer are the prevention of halos around
large modules, the control of the module density, and the
control of the tradeoff between runtime and quality by using
one parameter.
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