
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Combined Architecture/Algorithm Approach to
Fast FPGA Routing

Marcel Gort and Jason H. Anderson, Member, IEEE

Abstract— We propose a new field-programmable gate array
(FPGA) routing approach, which, when combined with a low-cost
architecture change, results in a 40% reduction in router runtime,
at the cost of a 6% area overhead and with no increase in critical
path delay. Our approach begins with PathFinder-style routing,
which we run on a coarsened representation of the routing
architecture. This leads to fast generation of a partial routing
solution where the signals are assigned to groups of wire segments
rather than individual wire segments. A Boolean satisfiability
(SAT)-based stage follows, generating a legal routing solution
from the partial solution. We explore approximately 165 000
FPGA switch block architectures, showing that the choice of the
architecture has a significant impact on the complexity of the SAT
formulation, and by extension, on routing runtime. Our approach
points to a new research direction, namely, reducing FPGA
computer-aided design runtime by exploring FPGA architectures
and algorithms together.

Index Terms— Computer-aided design (CAD), field-
programmable gate array (FPGA) architecture, FPGA routing,
satisfiability (SAT).

I. INTRODUCTION

AS FIELD-PROGRAMMABLE GATE ARRAYS
(FPGAs) become larger, the runtime required to execute

the associated computer-aided design (CAD) tools gets worse.
It can now take days to compile the largest industrial FPGA
designs from hardware description level to bitstream. In the
past, worsening CAD tool runtime was mitigated by increases
in the uniprocessor clock speed. However, this is no longer
the case. The high current density in modern processors has
created a “power wall,” which restricts increases in processor
clock speeds. The gap between the size of FPGA devices
and the ability of CAD tools to handle them is widening
with every process generation. In addition to decreasing
productivity for hardware engineers, long runtimes are an
impediment to the adoption of FPGAs by software developers,
who are used to compilation times measured in seconds or
minutes, not hours or days.

Previous efforts to reduce FPGA CAD runtimes have
focused on algorithmic changes [1]–[5] or parallelization
[6]–[8]. In this paper, we reduce router runtime via a combined
CAD and architecture approach. Interactions between CAD
and architecture are known to affect FPGA speed, area, and
power, however, the impact of these interactions on runtime

Manuscript received November 9, 2011; revised March 1, 2012; accepted
May 18, 2012.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
gortmarc@eecg.utoronto.ca; janders@eecg.utoronto.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2202326

has not been well studied. We propose a new two-stage FPGA
routing algorithm that takes advantage of increased flexibility
in the FPGA switch block (SB), resulting in reduced router
runtime.

At a high level, our routing approach works as follows: first,
a PathFinder-style router [9] assigns signals to small groups
of wire segments, called wide wires, rather than to single wire
segments. This is made possible by coarsening the routing
resource (RR) graph, which allows PathFinder to terminate
early. Second, an embedding stage assigns each signal from
a wide wire onto one of the wire segments contained within.
We express the embedding problem as a Boolean satisfiability
(SAT) problem and use a SAT solver (MiniSat [10]) to solve it.
The combination of this new routing approach with a modified
routing architecture leads to router runtime reductions of up to
40% compared to an accelerated version of VPR [11] routing,
with only 6% area overhead, and no increase to the critical
path delay or wire length.

Our approach bears some resemblance to two-stage
global-detailed routing, where global routing assigns sig-
nals to entire FPGA channels, and detailed routing assigns
signals to wire segments within those channels. In our case,
however, the first stage assigns signals to small groups
of wire segments rather than to entire channels, meaning
that routing decisions can be made using detailed timing
and congestion information, leading to high-quality routes.
A preliminary version of this paper [12] described our two-
stage routing approach and presented a new grouped routing
architecture that allows embedding to find legal signal-to-wire
segment assignments. A preliminary architecture exploration
for this grouped routing architecture was also described.
In this paper, we build on the prior work, making several
contributions, including the following.

1) A detailed treatment of the SAT formulation used for
the embedding step.

2) An exploration and analysis of approximately 165 000
permutations of the grouped routing architecture are
carried out.

3) An analysis of the robustness of SB architectures to
changes in logic block (LB) placements is presented.

4) Modifications to the PathFinder algorithm are made to
make it aware of the embedding stage.

We believe that our approach of addressing routing algorithms
and architecture together represents an entirely new direction
for reducing tool runtime—one with fertile ground for further
research. The remainder of this paper is organized as follows.
Section II provides the relevant background on FPGA routing
algorithms and architecture, SAT, and previous work related

1063–8210/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. FPGA architecture.

to runtime-driven FPGA architecture design. The proposed
two-stage routing approach is described in Section III. In
Section IV, we describe our grouped routing architecture
and present results from an extensive architecture study.
In Section V, we outline modifications to VPR PathFinder
that generate coarse routes more likely to lead to SAT. An
experimental study appears in Section VI. Conclusions and
suggestions for future work are offered in Section VII.

II. BACKGROUND

A. FPGA Architecture

Fig. 1 depicts a basic island-style FPGA. Each LB has
a capacity, which represents the number of lookup tables
(LUTs) and flip-flops that can be contained therein. LBs
connect to wire segments through programmable switches
in the connection blocks (CBs). Wire segments connect to
other wire segments using programmable switches in the SBs.
Connections between LBs are made by turning on the appro-
priate switches in the SBs and CBs. The degree of connectivity
inside SBs and CBs is described using the parameters Fs and
Fc, respectively. Fs describes the number of wire segments
coming out of an SB than can be reached by each wire
segment coming into an SB, on average. In other words, it
represents the average fanout of each wire coming into an
SB. Fc describes the fraction of wire segments in a channel
that can be directly reached by an LB pin through a CB. Fcin

refers to the connectivity to LB input pins while Fcout refers
to the connectivity to LB output pins.

B. FPGA Routing

FPGA routing is one of the most time-consuming stages
in the CAD flow. It is responsible for finding routes for
connections between LBs, using wire segments and program-
mable switches. Naturally, no two signals may use the same
wire segment. The two largest FPGA vendors, Xilinx and
Altera, use a variant of the PathFinder negotiated congestion
routing algorithm [9] in their commercial routers [13], [14].
PathFinder is also used in the publicly available VPR FPGA
placement and routing framework [11], which we modified and

Fig. 2. Negotiated congestion routing flow.

used in this paper. Fig. 2 gives an overview of the negotiated
congestion approach used in the VPR PathFinder. First, all
signals in a placed design are routed in the best manner
possible (e.g., minimum delay), permitting shorts between the
signals (two or more signals may use the same wire). Then,
the penalties associated with the shorts are increased, and
the signals are rerouted, avoiding shorts where possible. The
process of increasing the penalties for shorts and rerouting the
signals continues iteratively until all shorts are removed and
the routing is feasible.

VPR PathFinder uses a RR graph to represent the FPGA
interconnect. Graph nodes represent wire segments, input
pins, or output pins. Programmable switches between wires
or pins are represented as edges between the nodes. Each
node has a capacity, which indicates the number of signals
it can accommodate, and an occupancy, which indicates the
number of signals that currently occupy the RR node. Routing
continues until the occupancy of each node is not greater than
its capacity, at which point the routing is feasible.

C. Enhancements to Baseline Router

VPR routing was used for all experiments reported in this
paper. However, in order to bring the router more in line with
modern industrial routers, we made two modifications, which
were first described in [5]. The first modification reduces the
contention for LB output pins by forcing a multisink signal to
use the same LB output pin for all of its sinks. The second
modification allows a PathFinder iteration to skip the rerouting
of signals that use no congested RR nodes. When combined,
these two modifications result in a 3.3× speedup in router
runtime at the cost of a 2% increase in both critical path
delay and wire length [5]. We use this enhanced version of
VPR routing as our baseline in this paper. In other words, the
runtime improvements reported in this paper are on top of the
“fast” baseline.

D. Architectures for Fast CAD

A limited number of papers have explored the interaction of
FPGA architecture and CAD runtime. In [15], the PLASMA

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 3

FPGA architecture was proposed, which was intended as
a prototyping platform. The entire routing process takes
3 seconds because of a very flexible routing fabric, which
leads to a much simplified routing problem. The cost of fast
routing is a dramatically higher silicon area. In [16], Lysecky
et al. use a simplified planar FPGA routing architecture to
reduce the number of possible routing paths. The authors split
the routing into a global PathFinder-based routing stage and
a detailed routing stage, which can be represented as a graph
coloring problem owing to the planar architecture. The authors
also modify their implementation of PathFinder to only rip up
and reroute signals with shorts. A 3× improvement in router
runtime is reported compared to VPR, at the cost of 30%
increase in critical path delay [17]. No comparison is made
with a standard (nonplanar) routing architecture.

In [18], Chin et al. explore the interaction between routing
architecture parameters and place and route runtime. They
show that increasing the LB capacity significantly impacts
the place and route runtime by reducing the number of LBs
that have to be placed and the number of connections that
must be made to connect them. In [19], the same authors
explore how changes to the LB architecture can affect the
CAD runtime. In this paper, we explore the CAD runtime
impact of FPGA architecture changes in conjunction with
CAD algorithm changes. By tailoring CAD algorithms to the
architectures for which they are being run, new insights can
be obtained on the interaction between FPGA architectures,
CAD algorithms, and CAD runtime.

E. Boolean SAT

A SAT problem is a Boolean formula typically expressed
in conjunctive normal form (CNF), which essentially is a
product-of-sums functional representation. The solution to the
SAT problem is an assignment of TRUE or FALSE to each
of the variables such that the Boolean formula evaluates
to TRUE. If a solution exists, the problem is said to be
SAT; otherwise, it is unsatisfiable (UNSAT). Several efficient
academic SAT solvers exist, the most popular of which is the
MiniSat [10], which we use in this paper (ver. 2.2.0). We chose
SAT because of the rapid advances in SAT runtime in the last
decade. One alternative approach, which we did not explore,
is to use binary integer linear programming to solve a SAT
formulation, as in [20].

III. NEW TWO-STAGE ROUTING APPROACH

A. Motivating Experiment

For all experiments in this paper, we target an FPGA with
single-driver wire segments that span two LB tiles, though our
approach can be adapted to work with mixed wire segment
lengths. The 16 benchmark circuits with the longest router
runtime were selected from the 20 largest MCNC benchmarks
commonly used in FPGA CAD research, as well as the set of
benchmarks that are packaged with VPR 5.0 [11]. Circuits
were mapped into four-input LUTs using ABC [21], then
clustered using T-Vpack [22] into LBs with 10 four-LUTs
and 22 inputs, then placed to the smallest m row × m column
FPGA that would fit the circuit. Across all runs, each circuit

Fig. 3. Percentage of router runtime versus maximum RR node shorts.

Fig. 4. Geometric mean router runtime versus coarseness.

was routed using a fixed channel width of 1.2× the minimum
channel width needed to route the circuit.

Our routing approach is based on the observation that the
unmodified PathFinder spends a significant amount of time
attempting to legalize almost legal routing solutions. Fig. 3
shows the normalized geometric mean runtime of PathFinder
(across all circuits) as a function of the maximum number of
signals shorted on any single wire segment. The figure shows
that approximately 40% of the runtime is spent resolving
the congestion of a routing solution where no RR node
is overutilized by more than one signal. This suggests that
PathFinder quickly reduces congestion in general, but is slow
at fine-tuning the routing solution to make it entirely legal.
Our routing approach takes advantage of this property by first
terminating PathFinder when the routing solution is almost
legal, and then using a SAT-based approach to generate a fully
legal solution, providing an overall runtime reduction.

B. Coarse Routing Stage

Our first routing stage leverages the observation made above
by routing with a coarsened RR graph, where some low-
level details are abstracted away. The RR nodes that represent
sets of adjacent wire segments are collapsed together, creating
super nodes. While RR nodes typically have a capacity of 1,
our super nodes have capacities greater than 1, meaning that
they can accommodate more than one signal’s route. We refer
to these super nodes as wide wires. Wire segments may be
grouped only with other wire segments of the same length,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Coarse routing solution for four signals: n1, n2, n3, and n4.

with end points at the same locations, and that drive in the
same direction.

Edges in the RR graph are also coarsened to create super
edges. A super edge connects two wide wires if there are
any connections between their constituent wire segments. The
bold lines going through the SB in Fig. 5 represent super
edges connecting wide wires. Fig. 6 shows the uncoarsened
edges that correspond to these super edges. Since details of
the flat edges are abstracted away, our coarsening method is
lossy. Additionally, signals that are grouped together on one
wide wire are not tied together for the entirety of their routes
(as in bus-based routing). Rather, different signals can follow
different edges out of a wide wire.

As expected, the impact of RR graph coarsening on router
runtime varies depending on the number of wire segments in
a wide wire, which we term coarseness, n. At one extreme,
when the coarseness is equal to the channel width (n = W),
our coarse routing is equivalent to global routing. Conversely,
setting n = 1 leads to an uncoarsened RR graph (standard
PathFinder). The points in between can be viewed as partial
global routing. In Fig. 4, we vary n and show the geometric
mean runtime of PathFinder across all benchmarks. W is set to
1.2 times the minimum W needed to route the circuit, rounded
to the nearest even factor of n to avoid having wide wires
with different capacities. Router runtime decreases when n is
increased, with a 60% runtime reduction observed with n = 5
compared to when n = 1. Note that the runtime values shown
in Fig. 4 do not consider the embedding time that would be
necessary to finalize the solution. After the coarse routing
phase, routes are not fully defined in terms of individual wire
segments on the FPGA; rather, they are defined in terms of
wide wires. We refer to the not yet fully defined routes as
“illegal” for the remainder of this paper. In the next section,
we show that a net runtime improvement can be achieved by
using a fast embedding approach.

C. Embedding Stage

The output of the coarsened routing stage is not a complete
routing solution because signals are not assigned to individual
wire segments. A decoarsening or embedding stage must be

Fig. 6. Best embedding solution based on the coarse routing in Fig. 5.

included in order to generate a legal detailed routing solution
from the partial solution, assigning each signal to a single
wire segment. The embedding difficulty depends on the con-
nection patterns of the underlying routing architecture. If the
routing architecture has full connectivity between wires within
each wide wire, embedding is trivial, since any assignment
of signals to tracks is legal. On the other hand, if only
one-to-one connectivity exists, meaning that a wire segment
within a wide wire only connects to a single wire within a
different wide wire, then it is possible that no legal embedding
exists. In such a case, PathFinder could be rerun on an
uncoarsened RR graph.

We provide an example of a routing with no legal embed-
ding in Figs. 5 and 6. Fig. 5 shows the routes through an SB for
four signals (n1, n2, n3, n4). In this figure, solid lines indicate
wide wires with n = 2. Each is labeled with the signals (up
to 2) that use it. Fig. 6 shows the best embedding solution
constrained to the routes chosen in Fig. 5. The wide wires have
been expanded (flattened) so that, in this figure, each solid line
represents one wire segment. Observe that no assignment of
signals to wire segments can avoid shorts. However, by adding
some flexibility to the connectivity between the wide wires,
it is possible to arrive at a legal embedding. We speculate
that an intermediate amount of connectivity will allow the
vast majority of coarse routing solutions to be embedded
while avoiding the significant area overhead of having full
connectivity between constituent wire segments of connected
wide wires. We test this hypothesis in Section IV.

1) SAT Formulation: We formulate the embedding problem
as a Boolean SAT problem in the CNF form. Our formula-
tion is inspired by the SAT-based detailed routing approach
presented in [23], which, given a global routing, formulates
detailed routing as a SAT problem instance. The authors
generate two types of clauses to represent routing constraints:
exclusivity constraints and liveness constraints. Exclusivity
constraints ensure that no shorts exist on any routing track.
Liveness constraints ensure that, for each signal, there exists
a path from the signal’s source to each of its sinks. Our SAT
formulation uses the same types of constraints, though we
express them differently to best serve our embedding problem.
In our formulation, each variable represents a signal-to-wire

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 5

Fig. 7. Flattened representation of one-to-one connections between two wide
wires.

segment assignment. If the variable is TRUE, then the signal
is routed through the wire segment. We express exclusivity
and liveness constraints in terms of these variables.

Exclusivity constraints express that, if a variable is TRUE,
all other variables for the same wire segment must be FALSE.
For example, if n = 3, and signals 1, 2, and 3 are on a
wide wire with a constituent wire segment A, we generate
the clauses (1A ∨ 2A) ∧ (1A ∨ 3A) ∧ (2A ∨ 3A) for that wire
segment, where variable 1A corresponds to signal 1 using wire
segment A. These clauses ensure that at most one of 1A, 2A,
and 3A is TRUE.

Liveness constraints ensure that at least one legal connection
is made through each CB and SB on a signal’s path, thereby
ensuring that there is a path from that signal’s source to each
of its sinks. They are represented using two types of clauses.
The first type ensures that at least one wire segment within
each wide wire through which a signal passes is used by the
signal. In other words, at least one of the variables tied to the
signal/wide wire pair must be TRUE. This type of clause is
simply an OR of these variables. For example, to ensure that
signal 1 uses least one of wire segments A, B , or C (all within
the same wide wire), the clause (1A ∨ 1B ∨ 1C) is generated.
The second type of clause ensures that connection patterns
in SBs are honored. Each super edge has an underlying
connection pattern that is not represented in the coarsened
routing stage, but must be considered in the embedding stage.
Clauses are generated to ensure that variables corresponding
to wire segments in adjacent wide wires (connected by a super
edge) are not both TRUE when no connection exists between
them.

For example, consider a RR graph with n = 2. Suppose
that signal 1 passes through two adjacent wide wires. The
connection pattern between these two wide wires is shown in
Fig. 7. The following clauses are generated to ensure that only
legal connections are formed: (1A ∨ 1D) ∧ (1B ∨ 1C).

The main differences between our SAT-based embedding
approach and the detailed routing approach presented by
Nam et al. [23] are as follows. 1) Our liveness constraints
through the SBs ensure that illegal connections are not made,
rather than ensure that legal connections are made. This
results in fewer SAT clauses when there are many possi-
ble legal connections. 2) We support multiterminal signals.
3) Our formulation supports any arbitrary connectivity patterns
between wide wires.

We now describe the full SAT formulation to solve the
embedding problem shown in Fig. 9. For this example, we
would like to embed signals 1 and 2, which have been mapped

Fig. 8. Connectivity pattern (flattened) guaranteed to lead to SAT assignment.

Fig. 9. Embedding example of assigning signals 1 and 2 to wire segments
A, B, C, and D.

onto wide wires with n = 2, onto individual wire segments A,
B, C, and D. The SAT formulation described below can be
used as input to a SAT solver to obtain a legal embedding for
this problem.

The exclusivity clauses ensure that no two signals embed
onto the same wire. The clauses below ensure that only one
of the signals 1 and 2 can use wire segments A, B, C, or D

(1A ∨ 2A) ∧ (1B ∨ 2B) ∧ (1C ∨ 2C) ∧ (1D ∨ 2D). (1)

The first type of liveness constraints ensures that each signal
uses at least one of the constituent wire segments within each
used wide wire

(1A ∨ 1B) ∧ (2A ∨ 2B) ∧ (1C ∨ 1D) ∧ (2C ∨ 2D). (2)

The second type of liveness constraints ensures that no
invalid connections are made through the SBs. In the example,
this amounts to ensuring that, for a given signal, the variables
associated with wire segments B are not TRUE while variables
associated with wire segments C are also TRUE. Connections
between all other wire segment pairs are valid, so no clauses
need be generated for those pairs. The liveness constraints are
given by

(1B ∨ 1C) ∧ (2B ∨ 2C). (3)

This means that signal 1 cannot use both wire segments B
and C, and signal 2 cannot use both wire segments B and C.
The above clauses can be AND’ed together to make a Boolean
formula. A legal embedding can be generated by finding an
assignment of TRUE or FALSE for each of the variables
in this formula that makes the formula evaluate to TRUE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

The overall formula, as well as a SAT solution, is

F = (1A ∨ 2A) ∧ (1B ∨ 2B) ∧ (1C ∨ 2C) ∧ (1D ∨ 2D)

∧(1A ∨ 1B) ∧ (2A ∨ 2B) ∧ (1C ∨ 1D) ∧ (2C ∨ 2D)

∧(1B ∨ 1C) ∧ (2B ∨ 2C) (4)

(1A = T, 1B = F, 1C = T, 1D = F, 2A = F, 2B = T,

2C = F, 2D = T). (5)

Interestingly, we also tried using PathFinder for our embedding
stage, with routes constrained to those chosen during the
coarse routing stage. PathFinder was usually unable to find
a legal embedding, except where full connectivity existed
on all super edges. This makes intuitive sense because the
embedding problem is highly constrained, which makes it
difficult to solve using heuristic approaches, such as those
in PathFinder. In the embedding stage, PathFinder cannot
encourage routes to avoid entire congested areas of the FPGA,
since the routes have already been heavily constrained by
the coarse routing step. It appears as though the embedding
step must be solved by directly considering conflicts between
individual routes. Our SAT-based embedding approach
discovers viable solutions that cannot be found by PathFinder
when constrained by the coarse routing.

IV. ROUTING ARCHITECTURE STUDY

In this section, we describe a grouped routing architecture
with connection patterns that match those required at each
stage of our routing approach. We chose to make connections
between wide wires in an SB in accordance with the well-
known Wilton connectivity pattern [24], as it has been shown
to result in good routability. In the Wilton architecture, each
wide wire end point entering an SB connects to three other
wide wires (Fs = 3).

Regarding the low-level connectivity between the con-
stituent wire segments of two connected wide wires, a broad
range of options is available. Increasing the amount of connec-
tivity causes a higher area overhead, but also makes finding
a satisfactory assignment more likely, as well as faster. In
a previous study [12], we explored a small fraction of all
potential connection patterns, approximately 2000 in total. We
allowed for different connectivity patterns between wide wires
by making connections in each of the six directions through
an SB (N↔S, E↔W, N↔E, N↔W, S↔E, S↔W).1 In total,
there are 26n2

possible low-level connectivity patterns for a
particular value of n (2n2

for each direction, to the power
of six directions), or 1.4 × 1045 connectivity patterns in total
for n ranging from 2 to 5. Although some interesting SBs
were found in our original experiments (e.g. Fig. 8, which
is guaranteed to lead to SAT for any benchmark), the search
space was left largely unexplored.

For this paper, we explore approximately 165 000 randomly
generated SB connectivity patterns, using a Monte Carlo
approach. For any wide edge existing between two wide
wires, there exist n2 switches that can potentially exist in

1We do not split wire segments that span multiple FPGA tiles. This means
that connectivity added to the straight connections of a given wide wire are
only added at the end points.

Fig. 10. CB pattern with n = 1.

Fig. 11. CB pattern with n = 2.

the underlying connectivity pattern. We randomly generate SB
patterns by assigning each of these potential switches a certain
probability of existing. For example, with n = 2, there are
four (22) potential switches in each wide edge. If we set the
existence probability to 0.5, a wide edge with two underlying
switches is most likely, but other wide edges are also possible.
Fig. 7 shows a wide edge with two out of four potential edges
existing. Using higher or lower existence probabilities will
cause our SB generator to focus on SB architectures with more
or less area overhead, respectively. To generate a wide range
of SB architectures, we use a range of existence probabilities
for each value of n.

To constrain the solution space, all wide edges going in
the same direction have the same connectivity pattern. To
generate a connectivity pattern for an SB, we randomly gen-
erate connectivity for six wide edges (one for each direction).
Additionally, SBs that are very unlikely to lead to SAT
solutions are not explored. For example, to have a reasonable
chance of leading to a SAT solution, at least one switch in a
wide edge must connect to each constituent wire segment to
which it is adjacent. Another way of avoiding the exploration
of UNSAT SBs is to check against known UNSAT SBs before
running experiments. If the switches in a potential SB are a
subset of the switches in an SB known to be UNSAT, then it
is guaranteed that the potential SB will also be UNSAT, so it
can be left unexplored.

For all connectivity patterns, we assume full connectivity in
the super edges within CB:2 a choice which does not increase
the overall number of switches in the CB, as shown in Figs. 10
and 11. An Fc value of 0.5 is used in these figures for
simplicity. Our experiments, however, are run with Fcin = 0.2
and Fcout = 0.1.

A. Experimental Methodology

Fig. 12 shows the flow used to evaluate connectivity pat-
terns. Before beginning this flow, we generate coarse routes for
each benchmark using VPR routing, for each value of n that
we explore. Pregenerating coarse routes saves experimentation
time, since the first phase of routing does not have to be

2A pin connecting to a wide wire through a super edge has a switch to all
of the wire’s constituent wire segments.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 7

Fig. 12. Monte Carlo SB exploration flow.

Fig. 13. Scatter plot showing the SAT runtime versus the area for all SAT
SBs with n = 2.

performed for every SB connectivity pattern that we explore.
The first step in the flow, after having generated coarse routes,
is to generate a new SB architecture using our Monte Carlo
SB generator. A SAT formulation is then generated using
the coarse route of each benchmark and the SB architecture.
The SAT formulation is then provided as input to MiniSat,
which then produces either a legal routing or else an UNSAT
result.

Because of the large number of SB connectivity patterns
that we wanted to explore, we required a large amount of
computation. We made extensive use of a large-scale cluster
run by SciNet [25]. The SciNet general-purpose cluster is
composed of 30 240 cores of Intel Xeon E5540, with 2 GB
of RAM per core. In total, the results presented here repre-
sent approximately 167 000 core-hours (19.1 core-years) of
computing time.

Figs. 13–16 show the tradeoff between area and SAT
runtime for n = 2, n = 3, n = 4, and n = 5, respectively,
for all SB connectivity patterns that we considered in our
experiments. Each point in the graph represents the geomean
routing runtime of 16 benchmarks routed using a distinct SB
architecture. In these figures, we use average Fs as a proxy for
area overhead because it is easy to calculate for a large number
of architectures. We use actual area overhead for our final
results. Of all connectivity patterns considered, we only show
those that led to satisfactory assignments for all benchmarks.
For these connectivity patterns, the SAT runtime varied, with
richer connectivity generally leading to lower SAT time. The
figures show that using the minimum area connectivity pattern
tends to lead to higher SAT runtime, especially for n = 4

Fig. 14. Scatter plot showing the SAT runtime versus the area for all SAT
SBs with n = 3.

Fig. 15. Scatter plot showing the SAT runtime versus the area for all SAT
SBs with n = 4.

Fig. 16. Scatter plot showing the SAT runtime versus the area for all SAT
SBs with n = 5.

and n = 5. The figures show that it is possible to use a
connectivity pattern with slightly more area to achieve the
majority of the runtime benefit of a high-area connectivity
pattern. The figures also show that, as n increases, the area
necessary to have a reasonable SAT runtime also increases.
As a point of illustration, Fig. 17 shows an SB pattern for
n = 3, which offers a good tradeoff between area overhead
and SAT runtime.

B. SB Robustness Analysis

While all SBs included in Figs. 13–16 lead to SAT embed-
dings for the 16 benchmarks that we considered, they may

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 17. Example connectivity pattern for n = 3.

Fig. 18. Scatter plot showing the SAT runtime versus the area for robust
and fragile SBs near the Pareto optimal curve with n = 2.

Fig. 19. Scatter plot showing the SAT runtime versus the area for robust
and fragile SBs near the Pareto optimal curve with n = 3.

not necessarily do so for the universe of all designs. It is
useful to determine which of the SBs are robust to changes.
If a pattern is robust, it will lead to satisfactory assignments
for a wide range of benchmarks. Otherwise, it is said to be
fragile. In this section, we present the results of experiments
that aim to determine the robustness of otherwise desirable SB
patterns, meaning those that provide a good tradeoff between
area and SAT runtime. In Figs. 13–16, this corresponds to the
SBs near the Pareto optimal curve, where low runtime and low
area overhead are both desirable properties. To generate a set
of desirable SBs, we first determine the points in the scatter
plots that are on the Pareto optimal curve as follows.

1) Add the lowest area point to the set of Pareto points.
2) Add the point to the Pareto set which results in the most

negative slope from the lowest area point, where slope
is δruntime/δarea.

Fig. 20. Scatter plot showing the SAT runtime versus the area for robust
and fragile SBs near the Pareto optimal curve with n = 4.

Fig. 21. Scatter plot showing the SAT runtime versus the area for robust
and fragile SBs near the Pareto optimal curve with n = 5.

3) Repeatedly add the point to the Pareto set with the most
negative slope from the most recently added point in the
Pareto set until points with negative slopes no longer
exist.

Next, a Pareto optimal curve is interpolated by drawing
straight lines between points in the Pareto set. To increase the
number of architectures in our robustness analysis, we then add
points that have a runtime within 10% of an area-equivalent
point on the Pareto optimal curve. For each of n = 2, n = 3,
n = 4, and n = 5, this creates a set of approximately 320
SB patterns. For each of these patterns, we would ideally
test robustness by routing a new set of benchmarks. However,
because we do not have access to many large benchmarks,
we generate three different placements of LBs for the same
16 benchmarks, leading to 48 new benchmark–placement
combinations. SB patterns that lead to satisfactory assignments
for each of the 48 new inputs (three placements for each of
the 16 benchmarks) are considered robust, while those that do
not are considered fragile.

Figs. 18–21 show the SB patterns on or near the Pareto
optimal curve. The robust patterns are shown in the upper
half of the figures, while the fragile ones are shown in the
lower half. Table I shows the percentage of robust and fragile
SB architectures in the Pareto optimal set for each value
of n.

These results show that, on average, for n = 2, 3, 4,
and 5, 88% of SB architectures that show the best tradeoff

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 9

TABLE I

PERCENTAGE OF ROBUST AND SB ARCHITECTURES FOR n = 2, 3, 4, 5

n Robust Fragile Percent UNSAT benchmarks
2 91.9% 8.1% 0.23%

3 88.8% 11.2% 0.45%

4 94.4% 5.6% 0.12%
5 78.4% 21.6% 0.45%

avg 88.4% 11.6% 0.31%

between area and runtime are completely robust, meaning
that SAT is achieved for all benchmark–placement combi-
nations. Additionally, for all SB architectures considered,
across all benchmarks and placements, only 0.31% of bench-
marks resulted in UNSAT, on average. For these 0.31%
of runs, PathFinder could be rerun on an uncoarsened RR
graph, without the embedding step, to get a legal routing
solution.

V. PATHFINDER UNSAT AVOIDANCE

In the previous experiments, no consideration was given to
how the PathFinder routing algorithm itself could be altered to
reduce the probability of an UNSAT condition occurring. In
this section, we examine one method of doing so and discuss
the associated results.

The conditions that cause UNSAT are complex and it is
difficult to predict whether a coarse route will be SAT or
UNSAT. Nevertheless, we have created a heuristic that aims
to reduce the likelihood of UNSAT conditions. Consider two
adjacent wide wires connected by a wide edge and a signal
that uses both these wide wires, traversing the wide edge.
During embedding, the SAT solver must find unoccupied wire
segments for this signal to use within each of these wide wires.
Intuitively, if these wide wires on either side of a wide edge
have high occupancy, the SAT solver has less flexibility and
has a greater chance of failing, potentially resulting in UNSAT.
Wide edges that connect underutilized wide wires will have
a smaller chance of causing UNSAT than edges that connect
fully utilized wide wires.

We have created a cost associated with each wide edge that
predicts how likely an UNSAT condition is at that edge based
on edge occupancy. The cost is as follows:

EdgeCost = α ∗ occ1 + occ2

cap1 + cap2
(6)

where occ1 is the occupancy of the RR node on one side of
the edge, and cap2 is the capacity of the RR node on the other
side of the edge.

The cost is essentially the average utilization of the two
wide wires connected by a wide edge. When routing a signal,
we multiply the path cost from the source to the current RR
node by this cost. Ideally, the EdgeCost would, on average,
be equal to 1, so that it does not alter the average of all
costs. Unfortunately, for a legal routing, the utilization fraction
will, on average, be less than 1. To compensate for this, the
utilization fraction is multiplied by correction factor (α), which
we set to the empirically determined value of 1.5.

TABLE II

PERCENTAGE OF ROBUST AND FRAGILE SB ARCHITECTURES FOR

n = 3, 4, AND 5 USING EDGECOST

n Robust Fragile Percent UNSAT benchmarks
2 89.3% 11.7% 0.65%

3 95.6% 4.4% 0.11%

4 97.5% 2.5% 0.06%

5 97.8% 2.2% 0.05%

avg 95.1% 4.9% 0.22%

Table II shows that SB robustness is greatly improved by
incorporating EdgeCost into RR costs in PathFinder. Unfor-
tunately, using EdgeCost also results in significantly longer
routing runtimes. This is likely because, when using EdgeCost,
instead of using a heuristic that simply attempts to make a legal
coarse routing, PathFinder is now also attempting to spread
signals out beyond the legality requirement. Extra effort, and
hence runtime, is required to accomplish this goal. Because
of the extra runtime penalty incurred when using EdgeCost in
Pathfinder, we do not use it. Regardless, we believe it is still
interesting to consider that it is possible to generate coarse
routes that are more likely to result in SAT.

VI. OVERALL RESULTS

Table III shows the total two-stage router runtime for each
circuit. For each of n = 2, 3, 4, and 5 the table shows
results for the lowest area, the lowest runtime, and the lowest
area/runtime product SB architectures from our experiments.
The geometric mean of the runtimes across all benchmarks
is shown near the bottom of the table. Also included in this
table are these runtimes compared against three baseline flows.
The first baseline, indicated as “versus standard” refers to
the runtimes using our flow divided by the runtimes achieved
using a standard VPR flow using a standard architecture with
W = 1.2 ∗ Wmin. The next two baselines refer to area-neutral
comparisons, which we will describe in Section VI-A. The
results show that the best combined two-stage router runtime
occurs when using n = 3 and when using the lowest runtime
SB architecture (44% lower runtime than the standard flow).
The lowest area/runtime product SB architecture also produces
a very low runtime (43% lower). All area results were gener-
ated using VPR’s area model by running unmodified VPR on
the final routing results produced by our flow. The area results
include new switches added to SBs. Details on the area models
used by VPR can be found in [26].

Table IV shows the critical path delay values for our
approach using the lowest area/runtime product SB archi-
tectures. These delay values were generated by reading the
final routing solutions into VPR for timing analysis using a
flattened RR graph. All reported critical path delay values
account for the extra capacitive loading due to the additional
switches in the grouped architecture. The results show that
our two-stage routing approach has a negligible impact on
critical path delay. In fact, on average, the critical path is
slightly improved. Table V shows that the wire length is also
not negatively affected by our approach. It improves slightly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III

COMBINED ROUTING AND SAT RUNTIMES IN SECONDS FOR RR GRAPH COARSENESS BETWEEN 1 AND 5. THE COLUMNS LABELED “AREA”

CORRESPOND TO THE ROBUST SB ARCHITECTURE WITH THE LOWEST AREA FOR A PARTICULAR VALUE OF n. THE COLUMNS

LABELED “rt” CORRESPOND TO THE ROBUST SB ARCHITECTURE WITH THE LOWEST SAT RUNTIME. THE COLUMNS

LABELED “rt*AREA” CORRESPOND TO THE SB ARCHITECTURE WITH THE LOWEST RUNTIME/AREA PRODUCT

Benchmark
Coarseness (n)

1 2 3 4 5

Area rt*area rt Area rt*area rt Area rt*area rt Area rt*area rt

cf_cordic_
2.757 2.37 2.34 2.37 1.84 1.73 1.73 3.08 2.92 2.70 3.36 2.91 2.91

v_18_18_18

cf_fir_24_16_16 4.41 2.24 2.24 2.26 2.39 2.32 2.31 2.61 2.48 2.31 3.84 3.64 3.67

clma 7.373 4.67 4.66 4.69 4.58 4.11 4.04 23.94 4.81 4.57 9.58 6.24 6.24

des_perf 2.129 1.57 1.57 1.57 1.45 1.30 1.28 2.54 2.24 2.07 3.21 2.74 2.70

ex1010 3.743 2.50 2.49 2.51 2.94 2.72 2.68 3.91 2.88 2.77 5.68 4.74 4.72

frisc 1.711 1.25 1.25 1.26 1.34 1.22 1.19 1.71 1.44 1.37 3.33 2.11 2.15

mac2 19.734 5.52 5.53 5.56 6.19 5.76 5.70 7.58 5.12 4.81 15.58 7.71 7.55

paj_raygentop 4.465 2.09 2.09 2.08 1.41 1.32 1.30 2.44 2.34 2.18 2.11 1.90 1.86

paj_top 36.299 156.29 156.21 156.44 22.93 21.63 21.15 112.71 36.36 32.22 129.53 69.72 65.78

pdc 6.537 3.60 3.60 3.61 3.56 3.08 3.02 79.03 3.93 3.77 202.75 4.53 4.68

rs_decoder_2 2.152 1.27 1.26 1.28 1.31 1.24 1.23 1.54 1.29 1.25 2.52 2.13 2.09

s38417 2.29 1.70 1.71 1.71 2.04 1.93 1.91 1.90 1.75 1.63 2.58 2.26 2.29

spla 2.648 2.00 2.00 2.01 1.87 1.70 1.68 12.64 2.12 2.06 153.84 3.08 3.04

sv_chip0 2.869 2.95 2.97 2.99 2.56 2.34 2.29 4.87 4.21 3.83 5.53 4.63 4.71

sv_chip1 55.604 33.69 33.67 33.76 32.20 31.83 31.70 28.23 25.69 24.96 28.54 24.16 25.07

sv_chip2 253.004 178.03 177.90 178.32 156.11 154.43 154.20 219.71 178.51 175.02 239.80 197.23 195.86

geomean 6.62 4.72 4.71 4.74 4.05 3.77 3.72 8.39 4.67 4.40 12.22 5.99 5.98

versus standard 1.00 0.71 0.71 0.72 0.61 0.57 0.56 1.27 0.71 0.67 1.85 0.91 0.90

versus higher W 1.00 0.94 0.94 0.95 0.84 0.78 0.77 1.86 1.04 0.98 2.81 1.38 1.37

versus flattened RR 1.00 0.74 0.74 0.74 0.59 0.55 0.54 1.29 0.72 0.68 1.60 0.78 0.78

Fig. 22. Runtime versus coarseness (n).

because PathFinder has an easier routing problem, and so is
able to use less circuitous routes.

Fig. 22 breaks down the runtime of the coarse routing
and embedding stages using the best area/runtime product SB
architecture for values of n = 2, 3, 4, and 5. Observe that
n = 3 leads to the best overall runtime, and that, as expected,
SAT runtime increases with n owing to larger and more
complex SAT problem instances. We examine the scalability
of SAT runtime with respect to circuit size later in this section.

A. Area Equivalent Comparisons

To ensure that the runtime improvements were not due
solely to the extra flexibility provided by the changes that we
made to the SB architecture, we ran two sets of experiments

Fig. 23. Runtime versus channel width (W) relative to the minimum channel
width (min. W) required to route each circuit.

that examine the tradeoff between area and routing runtime.
The goal of these experiments was to compare our routing
flow and SB architecture against other routing flows that use
the same amount of area. In the first set of experiments, we ran
unmodified VPR routing on the grouped routing architectures
that led to the best area–runtime tradeoff for n = 2, 3, 4, and 5.
In other words, we did not use a coarsened RR graph. The
second set of experiments compares our area–runtime tradeoff
against a more conventional approach to trading off area for
runtime, namely, varying the channel width (W). Increasing
W leads to an easier routing problem, which generally leads
to reduced runtime, as shown in Fig. 23. To compare against
the runtime benefits provided by increasing W , we set the W

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 11

TABLE IV

CRITICAL PATH DELAY FOR COARSENESS BETWEEN 1 AND 5

USING THE SB ARCHITECTURES WITH THE LOWEST

RUNTIME/AREA PRODUCT

Coarseness (n)

Benchmark 1 2 3 4 5

cf_cordic_
5.09E-09 5.09E-09 5.09E-09 5.09E-09 5.09E-09

v_18_18_18

cf_fir_24_16_16 1.21E-08 1.21E-08 1.22E-08 1.21E-08 1.22E-08

clma 9.94E-09 1.00E-08 9.94E-09 9.94E-09 9.94E-09

des_perf 4.95E-09 4.85E-09 4.85E-09 4.93E-09 4.85E-09

ex1010 7.91E-09 7.19E-09 7.27E-09 7.27E-09 7.43E-09

frisc 9.57E-09 9.14E-09 9.06E-09 9.14E-09 8.98E-09

mac2 2.55E-08 2.55E-08 2.55E-08 2.55E-08 2.55E-08

paj_raygentop 1.09E-08 1.08E-08 1.08E-08 1.08E-08 1.09E-08

paj_top 6.10E-08 6.08E-08 6.07E-08 6.06E-08 6.06E-08

pdc 7.96E-09 7.61E-09 6.97E-09 6.88E-09 6.96E-09

rs_decoder_2 1.88E-08 1.74E-08 1.76E-08 1.76E-08 1.74E-08

s38417 5.85E-09 5.85E-09 5.85E-09 5.85E-09 5.85E-09

spla 6.79E-09 6.71E-09 6.39E-09 6.39E-09 6.39E-09

sv_chip0 3.82E-09 3.74E-09 3.74E-09 3.74E-09 3.82E-09

sv_chip1 1.24E-08 1.24E-08 1.25E-08 1.25E-08 1.25E-08

sv_chip2 2.73E-08 2.75E-08 2.77E-08 2.74E-08 2.74E-08

Geomean 1.07E-08 1.05E-08 1.04E-08 1.04E-08 1.04E-08

TABLE V

WIRELENGTH FOR COARSENESS BETWEEN 1 AND 5 USING THE SB

ARCHITECTURES WITH THE LOWEST RUNTIME/AREA PRODUCT

Coarseness (n)

Benchmark 1 2 3 4 5

cf_cordic_
40 038 40 306 38 781 39 520 38 910

v_18_18_18

cf_fir_24_16_16 35 202 33 497 33 691 33 688 34 233

clma 79 601 76 642 77 582 74 249 74 626

des_perf 48 145 47 347 46 451 48 024 46 773

ex1010 48 260 46 000 45 077 43 999 46 957

frisc 30 251 28 810 28 518 27 078 28 760

mac2 90 928 86 218 86 120 83 938 86 380

paj_raygentop 29 263 28 155 26 966 28 312 27 093

paj_top 589 494 624 688 596 748 582 497 573 596

pdc 61 146 56 515 54 235 54 392 53 418

rs_decoder_2 23 068 21 344 21 308 20 664 22 221

s38417 35 394 34 392 35 502 34 363 34 093

spla 37 400 35 825 34 928 33 981 35 605

sv_chip0 81 782 81 594 79 581 83 096 80 282

sv_chip1 159 519 156 842 157 193 155 750 154 005

sv_chip2 522 984 514 474 510 383 511 672 512 940

Geomean 66 810 64 787 63 873 63 394 63 887

value of an n = 1 standard routing architecture (i.e., with no
additional SB flexibility) so that its area was equivalent to the
area of a W = 1.2 · Wmin grouped architecture with values of
n ranging from 2 to 5. This permitted us to evaluate router
runtime on different interconnect architectures that occupy
about the same area.

Figs. 24 and 25 show the results. Fig. 24 shows one area-
neutral comparison for each of n = 2, 3, 4, and 5 between
our flow and the two area-neutral flows described above.

Fig. 24. Area-neutral runtime versus coarseness (n).

Fig. 25. Runtime–area tradeoff using three methods: varying channel width
(W). Varying SB arch without using wide wires. Varying both W and SB arch
using wide wires.

Our flow is labeled “grouped routing, coarsened RR graph,”
while the two area-neutral flows are labeled “higher W,
standard routing,” and “grouped routing, flat RR graph.” For
n = 3, the runtime of our approach, including SAT time,
is 22% lower than the runtime that results from increasing
the channel width until the area is equivalent. It is interesting
that standard VPR PathFinder routing run on an uncoarsened
routing graph cannot take advantage of the additional flexibil-
ity in the SB to reduce router runtime. In fact, the runtime
increases as a result of the increased number of RR graph
edges that result from more SB connectivity. Fig. 25 examines
the tradeoff between area and routing runtime for each of
the three approaches. To generate points that correspond to
a variety of area overheads, we ran our flow with n = 3 and
W = 1.1∗Wmin, 1.2∗Wmin, 1.3∗Wmin. This figure shows that
our approach, labeled “Wide wires, varying SB arch and W,”
offers the best tradeoff between area and runtime. Compared
to a standard VPR flow using W = 1.2 (labeled “varying W”),
we can get a 26% reduction in routing runtime for 2%
area overhead, a 40% reduction in routing runtime for 6%
area overhead, and a 45% reduction in routing runtime for
14% area overhead. We conclude that our combined rout-
ing/architecture approach is a more effective way in tackling
runtime than simply increasing W , though the two methods are
somewhat orthogonal. This figure also shows that increasing
SB flexibility without using our two-step routing approach
(labeled “Varying SB arch”) leads to a poor area–runtime
tradeoff.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE VI

SAT SCALABILITY. NUMBER OF VARIABLES, NUMBER OF CLAUSES, AND SAT RUNTIMES VERSUS COARSENESS OF THE RR GRAPH

RR_nodes Number of Variables Number of Clauses Run-time (s)

Benchmark n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
cf_cordic_

77 337 52 624 91 006 70 632 110 254 77 028 154 175 268 144 392 440 0.16 0.40 1.07 1.52
v_18_18_18

cf_fir_24_16_16 58 965 41 836 58 296 74 498 91 551 56 782 121 371 209 167 311 514 0.12 0.33 0.79 1.20

clma 127 419 92 256 131 735 164 754 201 773 136 090 294 654 472 497 676 525 0.28 0.91 2.09 2.79

des_perf 88 822 58 958 80 975 107 252 127 609 83 608 169 210 30 941 425 005 0.17 0.47 1.27 1.64

ex1010 70 644 58 415 80 292 100 629 129 812 88 136 187 258 299 732 491 126 0.18 0.54 1.23 1.94

frisc 46 998 35 411 50 039 62 273 79 169 53 404 115 932 185 015 292 348 0.11 0.34 0.72 1.13

mac2 142 480 102 235 143 038 180 681 228 840 143 964 307 279 488 687 778 793 0.30 0.94 1.95 3.26

paj_raygentop 61 180 35 965 48 938 64 751 76 207 52 920 110 379 201 843 276 242 0.10 0.30 0.75 1.01

paj_top 1 075 857 65 348 90 717 117 526 143 009 99 734 206 613 349 768 502 022 0.21 0.66 1.53 2.00

pdc 81 460 28 733 39 403 49 775 63 533 41 396 89 975 150 549 242 573 0.08 0.25 0.52 0.84

rs_decoder_2 42 042 44 616 63 314 78 718 95 278 62 836 139 389 219 898 320 957 0.12 0.38 0.80 1.14

s38417 71 937 43 818 61 039 76 204 98 031 67 386 141 971 231 382 377 111 0.14 0.42 0.94 1.38

spla 61 269 102 481 141 537 186 953 223 174 139 510 268 180 473 842 654677 0.30 0.74 1.77 2.52

sv_chip0 173 482 192 865 270 597 350 607 427 808 263 312 506 019 865 990 1 251 348 0.58 1.51 3.64 5.36

sv_chip1 288 747 703 775 987 007 1 288 041 1 554 515 950 630 1 849 323 3 205 286 4 462 850 2.20 5.68 12.89 19.88

sv_chip2 1 092 041 603 968 851 422 1 101 928 1 353 648 816 836 1 530 141 2 610 245 3 715 664 1.90 4.74 11.63 17.12

geomean 117 538 79 989 111 233 142 427 175 285 114 639 236 693 398 714 590 309 0.24 0.68 1.59 2.33

For completeness, Table VI shows the number of
variables in the SAT formulation, number of clauses in the SAT
formulation, and SAT runtimes for values of n from 2 to 5.
The number of flattened RR graph nodes is also provided to
show how SAT scales with circuit size. The ratio between SAT
runtime and the number of RR nodes does not increase with
larger circuits, indicating that SAT-based embedding should
work well for larger industrial benchmarks. This is especially
true for n = 2 because there are no clauses with more than
two variables. Solving this type of problem, called 2-SAT, can
be done in linear time [27].

VII. CONCLUSION

In this paper, we showed that CAD runtime can be reduced
by considering FPGA architecture and algorithms together.
We described a two-stage routing approach that first routes
to a coarsened representation of the FPGA architecture, and
then uses SAT to convert the coarse routing solution to a
legal detailed routing solution. We also presented a grouped
FPGA routing architecture that supports our new routing
approach. We explored a total of approximately 165 000 SB
architectures, generated using a Monte Carlo methodology,
highlighting an interesting tradeoff between area and embed-
ding runtime. Additionally, we examined the robustness of
these architectures to changes in placements and benchmarks.
Using the combined architecture and algorithm, we could
decrease the router runtime by 40% at the cost of 6% area
overhead, with no impact on circuit critical path delay.

We also presented a method of making the PathFinder
algorithm aware of the likeliness of SAT or UNSAT resulting
from a coarse route. Unfortunately, changing the costs to
promote coarse routes that are more likely to result in SAT
increases router runtime substantially. The methods could,
however, be used in a limited capacity to modify coarse routes
in order to resolve UNSAT conditions in a feedback loop with
the SAT solver. This is an interesting avenue of future research,
as it would avoid having to do a full rerouting in the rare case
of an UNSAT coarse routing.

ACKNOWLEDGMENT

The authors would like to thank H. Bian for her helpful
comments on this paper, and H. Mangassarian for useful
discussions on the satisfiability formulation.

REFERENCES

[1] J. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for
FPGAs,” in Proc. ACM/SIGDA FPGA, 1998, pp. 140–149.

[2] Y. Sankar and J. Rose, “Trading quality for compile time: Ultrafast
placement for FPGAs,” in Proc. ACM/SIGDA FPGA, 1999, pp. 157–
166.

[3] R. Tessier, “Fast placement approaches for FPGAs,” ACM Trans. Design
Autom. Electron. Syst., vol. 7, no. 2, pp. 284–305, 2002.

[4] P. Maidee, C. Ababei, and K. Bazargan, “Fast timing-driven partitioning-
based placement for island style FPGAs,” in Proc. ACM/IEEE Design
Autom. Conf., Jun. 2003, pp. 598–603.

[5] M. Gort and J. H. Anderson, “Accelerating FPGA routing through
parallelization and engineering enhancements,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 31, no. 1, pp. 61–74, Jan. 2012.

[6] M. Gort and J. H. Anderson, “Deterministic multi-core parallel routing
for FPGAs,” in Proc. IEEE Field-Program. Technol., Dec. 2010, pp.
78–86.

[7] V. Betz, A. Ludwin, and K. Padalia, “High-quality, determinstic parallel
placement for FPGAs on commodity hardware,” in Proc. ACM/SIGDA
FPGA, 2008, pp. 14–23.

[8] C. C. Wang and G. G. Lemieux, “Scalable and deterministic timing-
driven parallel placement for FPGAs,” in Proc. ACM/SIGDA FPGA,
2011, pp. 153–162.

[9] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. ACM/SIGDA FPGA,
1995, pp. 111–117.

[10] N. Eén and N. Sörensson. (2011). MiniSAT [Online]. Available: http://
minisat.se

[11] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang, and J. Rose,
“VPR 5.0: FPGA CAD and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,” in Proc. ACM/SIGDA
FPGA, 2009, pp. 133–142.

[12] M. Gort and J. H. Anderson, “Reducing FPGA router run-time through
algorithm and architecture,” in Proc. IEEE Field Program. Logic Appl.,
Sep. 2011, pp. 336–342.

[13] S. Gupta, J. Anderson, L. Farragher, and Q. Wang, “CAD techniques for
power optimization in virtex-5 FPGAs,” in Proc. IEEE Custom Integr.
Circuits Conf., Sep. 2007, pp. 85–88.

[14] W. C. R. Fung and V. Betz, “Simultaneous short-path and long-path
timing optimization for FPGAs,” in Proc. Int. Conf. Comput.-Aided
Design, 2004, pp. 838–845.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORT AND ANDERSON: COMBINED ARCHITECTURE/ALGORITHM APPROACH TO FAST FPGA ROUTING 13

[15] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, and
L. Albertson, “Plasma: An FPGA for million gate systems,” in Proc.
ACM/SIGDA FPGA, 1996, pp. 10–16.

[16] R. Lysecky, F. Vahid, and S. Tan, “Dynamic FPGA routing for just-in-
time FPGA compilation,” in Proc. ACM/IEEE Design Autom. Conf., Jul.
2004, pp. 954–959.

[17] R. Lysecky, F. Vahid, and S. X. D. Tan, “A study of the scalability
of on-chip routing for just-in-time FPGA compilation,” in Proc. 13th
Annu. IEEE Symp. Field-Program. Custom Comput. Mach., Apr. 2005,
pp. 57–62.

[18] S. Y. Chin and S. J. Wilton, “An analytical model relating FPGA
architecture and place and route runtime,” in Proc. IEEE Field Program.
Logic Appl., Sep. 2009, pp. 146–153.

[19] S. Y. Chin and S. J. Wilton, “Toward scalable FPGA CAD through
architecture,” in Proc. ACM/SIGDA FPGA, 2011, pp. 143–152.

[20] R. Li, D. Zhou, and D. Du, “Satisfiability and integer programming as
complementary tools,” in Proc. Asia South Pacific Design Autom. Conf.,
2004, pp. 879–882.

[21] Berkeley Logic Synthesis and Verification Group. (2011). ABC: A
System for Sequential Synthesis and Verification, Berkeley, CA [Online].
Available: http://www.eecs.berkeley.edu/∼alanmi/abc/

[22] A. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve FPGA speed and density,” in Proc.
ACM/SIGDA FPGA, 1999, pp. 37–46.

[23] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar, “Satisfiability-based
layout revisited: Detailed routing of complex FPGAs via search-based
Boolean SAT,” in Proc. ACM/SIGDA FPGA, 1999, pp. 167–175.

[24] S. J. Wilton, “Architectures and algorithms for field-programmable gate
arrays with em-bedded memories,” Ph.D. dissertation, Dept. Electron.
Commun. Eng., Univ. Toronto, Toronto, ON, Canada, 1997.

[25] C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Hen-
riques, J. Dempsey, C. H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup,
J. Pinto, N. Knecht, and R. V. Zon, “SciNet: Lessons learned from
building a power-efficient top-20 system and data centre,” J. Phys., Conf.
Ser., vol. 256, no. 1, p. 012026, 2010.

[26] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Boston, MA: Kluwer, 1999.

[27] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified Boolean formulas,” J. Inf. Process.
Lett., vol. 8, no. 3, pp. 121–123, 1979.

Marcel Gort received the B.A.Sc. degree in com-
puter engineering from the University of Western
Ontario, London, ON, Canada, in 2007, and the
M.A.Sc. degree in computer engineering from the
University of British Columbia, Vancouver, BC,
Canada, in 2009. He is currently pursuing the Ph.D.
degree with the University of Toronto, Toronto, ON.

He was with the IBM Toronto Software Labo-
ratory, working in the compiler group. His current
research interests include fast and scalable computer-
aided design algorithms for FPGAs as well as FPGA

architectures amenable to these algorithms.

Jason H. Anderson (S’96–M’05) received the B.Sc.
degree in computer engineering from the Univer-
sity of Manitoba, Winnipeg, MB, Canada, and the
M.A.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University of Toronto
(U of T), Toronto, ON, Canada.

He joined the FPGA Implementation Tools Group,
Xilinx, Inc., San Jose, CA, working on placement,
routing, and synthesis, in 1997. From 2005 to 2008,
he managed various groups with Xilinx, focusing
on strategic research and development projects. He

became a Principal Engineer with Xilinx in 2007. He joined the ECE
Department, U of T in 2008, where he is currently an Assistant Professor. He
has authored numerous papers published in refereed conference proceedings
and journals, and holds 20 issued U.S. patents. His current research interests
include computer-aided design and architecture for FPGAs.

Dr. Anderson was a recipient of the Ross Freeman Award for Technical
Innovation, the highest innovation award from Xilinx, for his contributions to
the Xilinx placer technology in 2000. He received four awards for excellence
in undergraduate teaching from 2009 to 2012. He serves on the technical
program committees of various conferences, including the ACM International
Symposium on Field Programmable Gate Arrays and the IEEE International
Conference on Field Programmable Technology.

