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Abstract
VLSI placement optimizes locations of circuit components 
so as to reduce interconnect. Formulated in terms of (hyper)
graphs, it is NP-hard, and yet must be solved for challenging 
million-node instances within several hours. We propose 
an algorithm for large-scale placement that outperforms 
prior art both in runtime and solution quality on standard 
benchmarks. The algorithm is more straightforward than 
existing placers and easier to integrate into timing-closure 
flows. Our C++ implementation is compact, self-contained 
and exploits instruction-level and thread-level parallelism. 
Due to its simplicity and superior performance, the algo-
rithm has been adopted in the industry and was extended 
by several university groups to multi-objective optimization.

1. INTRODUCTION
The first algorithms for circuit placement have been 
developed at Bell Labs and IBM Research in the 1960s and 
followed the divide-and-conquer paradigm. They motivated 
high-performance heuristics for balanced graph-partitioning 
by Kernighan and Lin and, later, by Fiduccia and Mattheyses, 
that minimize edge cut. In the mid-1980s, circuit place-
ment was a key application of the newly invented Simulated 
Annealing methods. Fifteen years later, the number of com-
ponents in leading chips grew to the point where anneal-
ing was much too slow. The divide-and-conquer framework 
temporarily regained leadership when it was combined with 
bottom-up clustering and multi-level partitioning. However, 
in the 2000s, increasing transistor density again demanded 
faster algorithms with better performance. Linear program-
ming and network flows were tried with limited success.

Placement optimization gradually became more sig-
nificant in chip design over the years because the amount 
of interconnect grows faster than the number of compo-
nents (except for grid-like circuits such as memory blocks). 
On-chip interconnect now occupies greater volume than 
transistors and consumes much power. Additionally, tran-
sistor delays improve faster than interconnect delay, which 
today limits the speed of many chips. This is why circuit 
placement has recently been integrated with more com-
prehensive optimizations that can reduce interconnect 
by restructuring the circuit.1 But such optimizations need 
initial component locations that minimize edge lengths. 
This puts an easy-to-formulate graph problem at the core of 
sophisticated industrial optimizations. For details the read-
ers are referred to Chapters 4 and 8 of Kahng et al.12

Modern techniques for VLSI placement approximate 
interconnect length by differentiable functions and draw on 
efficient numerical optimizations. Such global placement 

tolerates various geometric misalignments and small overlaps 
between rectangular components (represented by graph 
nodes), which are subsequently repaired by combinatorial 
algorithms for legalization and detailed placement. Despite 
impressive improvements reported by researchers15 and 
industry software in the last decade, global-placement algo-
rithms suffer several key shortcomings: (i ) speed, (ii) solution 
quality, (iii) simplicity and integration with other optimiza-
tions, and (iv) support for multi-threaded execution.

State-of-the-art algorithms for global placement form 
two families: (i) force-directed quadratic placers, such as 
Kraftwerk2,20 FastPlace3,22 and RQL,23 and (ii) nonconvex 
optimization techniques, such as APlace2,8 NTU-Place3,4 and 
mPL6.3 To form an intuition about force-directed algorithms, 
one thinks of individual interconnects as coil springs subject 
to Hooke’s law and seeks a force-equilibrium (min-energy) 
configuration. Mathematically, the total interconnect length 
is captured by a quadratic function of component locations 
and minimized by solving a large sparse system of linear 
equations. To discourage component overlap, forces are 
added by pulling components away from high-density areas. 
These forces are represented by pseudonodes and pseudo-
edges, which extend the original quadratic function.7 They 
are updated after each linear-system solve until iterations 
converge. Nonconvex optimization models interconnect 
length by more sophisticated differentiable functions that 
grow linearly with length. These functions are minimized by 
the nonlinear conjugate gradient method. Component den-
sity is modeled by functional terms, which are more accurate 
than forces, but also requires updates after each change to 
placement.4, 8 Algorithms in both categories are used in the 
industry or closely resemble those in industry placers.

Nonconvex optimization methods previously claimed the 
best results for academic implementations4 and industry 
software, but are significantly slower, which is problematic 
for modern chip designs with components in many millions. 
To scale the basic nonconvex optimization framework, best 
tools in this family employ hypergraph clustering and multi-
level/multigrid extensions, sometimes at the cost of solution 
quality. Such multilevel placers perform many sequential 
steps, obstructing efficient parallelization. Moreover, clus-
tering and refinement do not fully benefit from modern mul-
ticore CPUs. Owing to their complexity, multilevel placers 
are also harder to maintain and combine with other opti-
mizations. In particular, clustered circuits obscure analysis 

The original version of this paper appeared in the IEEE 
Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (Jan. 2012)
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Its x and y components are cast in matrix form2, 20

	 � (3)

The Hessian matrix Qx captures connections between pairs 
of movable vertices, while vector x captures connections 
between movable and fixed vertices. For more details, the 
readers are referred to Section 4.3.2 of Kahng et al.12 When 
Qx is nondegenerate,  is a strictly convex function with a 
unique minimum, which can be found by solving the system 
of linear equations Qx  = − x. Solutions can be quickly approxi-
mated by iterative Krylov-subspace techniques, such as the 
conjugate gradient (CG) method and its variants.19 Since Qx 
is symmetric positive definite, CG iterations provably mini-
mize the residual norm. The convergence is monotonic,21 but 
its rate depends on the spectral properties of Qx, which can 
be enhanced by preconditioning. In other words, we solve the 
equivalent system P−1Qx = −P−1

x for a nondegenerate matrix P, 
such that P−1 is an easy-to-compute approximation of . 
Given that Qx is diagonally dominant, we chose P to be its 
diagonal, also known as the Jacobi preconditioner. We delib-
erately enhance diagonal dominance in Qx (Section 4.3).
Quadratic placement example. Consider the graph G and 
edge weights wij in Figure 1. Quadratic placement mini-
mizes the separable quadratic cost function Φ

G
 in the x and y 

directions. For the x-direction,

Setting the partial derivatives to 0 (the condition for force 
equilibrium), we solve for the global minimum cost.

	 � (4)

The connectivity matrix Qx has entry wij in the ith row and jth 
column, and − x has entry ci in the ith row. The diagonal entries 
wii correspond to the sum of net weights of all connec-
tions to movable module i. The off-diagonal entries wij are 
calculated as the negative sum of net weights of connections 
between movable modules i and j, and the resulting con
nectivity matrix becomes symmetric. Each element cx for 

of routing congestion and timing, and complicate circuit 
restructuring. State-of-the-art force-directed quadratic plac-
ers tend to run many times faster than nonconvex optimi-
zation, but also use multilevel extensions in  their most 
competitive configurations. Their solution quality is mixed.

In this work, we develop a self-contained technique for 
global placement based on quadratic programming. It 
maintains lower-bound and upper-bound placements that 
converge to a final solution. The upper-bound placement is 
produced by our new feasibility projection algorithm based 
on top-down geometric partitioning and nonlinear scaling. 
Research in VLSI placement includes a fiercely competitive 
benchmarking component, and we show that our algorithm 
performs very well on standard benchmarks.

In the remainder of this paper, Section 2 describes the 
building blocks from which our algorithm was assembled. 
Section 3 introduces our key ideas and articulates our solu-
tion of the force modulation problem. The SimPL algorithm 
is presented in Section 4 along with complexity analysis. 
Empirical validation is described in Section 5. The use of 
parallelism is discussed in Section 6.

2. ESSENTIAL CONCEPTS
Circuit placement typically operates on a gate-level netlist, 
which consists of standard cells (NAND, NOR, MUX, half-
adders, etc.) and interconnect. Each standard cell has a rect-
angular footprint with well-defined area. A cell’s output may 
connect to inputs of multiple other cells—such interconnects 
are captured by hyperedges, also known as signal nets. Given a 
netlist N = (E, V ) with nets E and nodes (cells) V, global place-
ment seeks node locations (xi, yi) such that the area of nodes 
within any rectangular region does not exceed the area of (cell 
sites in) that region.a Some locations of cells may be given 
initially and fixed. The interconnect objective optimized by 
global placement is the Half-Perimeter WireLength (HPWL). 
While easy to calculate, HPWL is a surprisingly good esti-
mate of the length of routed connections. For node locations 

 = {xi} and  = {yi}, 
, where

	 � (1)

This formula generalizes the so-called Manhattan (taxi-
cab) distance between two points. Given the rigorous 
public benchmarking infrastructure developed by IBM 
Research and academic colleagues,15 consistent improve-
ments by even several percent are considered signifi-
cant in both academic literature and industry practice. 
Efficient optimization algorithms approximate HPWL

N
 by 

differentiable functions.
Quadratic optimization. Consider a graph G = (E

G 
, V ) with 

edges E
G 

, vertices V, and edge weights wij > 0 for all edges 
eij ∈ E

G
. The quadratic objective Φ

G
 is defined as

	 � (2)

a  In practice, this constraint is enforced for bins of a regular grid. The layout 
area is subdivided into equal, disjoint, small rectangles, so as to limit the 
area of cells placed inside.
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Figure 1. Blue boxes represent movable modules and black boxes 
represent fixed modules.
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orientation) and (2) determining the appropriate amount 
of spreading ( force modulation).13, 23 This is unlike previous 
work, where spreading directions are typically based on local 
information, for example, placers based on nonconvex opti-
mization use gradient information and require a large num-
ber of expensive iterations. Kraftwerk220 orients spreading 
forces according to solutions of Poisson’s equation, providing 
a global perspective and speeding up convergence. However, 
this approach does not solve the force-modulation problem, as 
articulated in Kennings and Vorwerk.13 The authors of RQL,23 
which can be viewed as an improvement on FastPlace, revisit 
the force-modulation problem and address it by a somewhat 
ad hoc limit on the magnitude of spreading forces. In our 
work, look-ahead legalization algorithm (Section 4.2), invoked 
at each iteration, determines both the direction and the mag-
nitude of spreading forces. It is global in nature, accounts for 
fixed obstacles, and preserves relative placement to ensure 
interconnect optimization and convergence.
Global placement with look-ahead. The legalized upper-
bound placements built at every iteration can be viewed 
as look-ahead because they are used temporarily and not 
refined directly. The look-ahead placements approximately 
satisfy constraints (e.g., legality and placement density) 
while trying to retain quality of current lower-bound place-
ments as much as possible. These locations are then used 
to update the current lower-bound placements by evolving 
them toward look-ahead placements. They pull cell loca-
tions in lower-bound placements not just away from dense 
regions but also toward the regions where space is avail-
able. Such area look-ahead is particularly useful around 
fixed obstacles, where local information does not offer suf-
ficient guidance. Similar congestion look-ahead,6, 11 power 
look-ahead, thermal look-ahead, and timing look-ahead based 
on legalized placements help integrate our placement algo-
rithm into multi-objective circuit optimizations.

4. OUR GLOBAL PLACEMENT ALGORITHM
Our placement technique consists of three phases: initial 
placement, global placement iterations, and post-global place-
ment (Figure 2). Initial placement, described next, is mostly an 
exercise in judicious application of known components. Our 
main innovation is in the global placement phase. Post-global 
placement (legalization and detailed placement) is straight-
forward, given current state of the art.

4.1. Initial placement
Our initial-placement step is conceptually similar to those 
of other force-directed placers20, 22, 23—it entirely ignores 
cell areas and overlaps, so as to minimize the objective 
function, a quadratic approximation of total intercon-
nect length. We found that this step notably impacts the 
final result, as it can determine the overall shape of the 
final placement solutions. Therefore, unlike FastPlace322 
and RQL,23 we use the more accurate B2B net model from 
Spindler et al.20 reviewed in Section 2. After the first qua-
dratic solve, we rebuild the circuit graph because the B2B 
net model is placement-dependent. We then alternate 
quadratic solves and graph rebuilding until HPWL stops 
improving. In practice, this requires a small number of 

a movable module i is calculated as the sum of wij · xj, where 
x j is the pin location of each connected fixed module.With 
( f1, f2) = (1.0, 3.5), a linear system solver finds a unique solu-
tion  = [1.4762 1.9524 2.4286 3.1429]T that minimizes the 
quadratic wirelength .
The Bound2Bound net model.20 To represent the HPWL 
objective by the quadratic objective, the netlist N is trans-
formed into two graphs, Gx and Gy, that preserve the node 
set V and represent each two-pin net by a single edge with 
weight 1/length. Larger nets are decomposed depending on 
node locations—for each p-pin net, the extreme nodes (min 
and max) are connected to each other and to each internal 
node by edges, with the following weight

	 � (5)

For example, 3-pin nets are decomposed into cliques14 with 
edge weight 1/2l, where l is the length of a given edge. In gen-
eral, this quadratic objective and the Bound2Bound (B2B) 
net decomposition capture the HPWL objective exactly, 
but only for the given placement. As locations change, the 
approximation error may grow, necessitating multiple 
updates throughout the placement algorithm.

Most quadratic placers use the placement-independent 
star or clique decompositions, so as not to rebuild Qx and Qy 
many times.2, 22, 23 Yet, the B2B model uses fewer edges than 
cliques ( p > 3), avoids new variables used in stars, and is 
more accurate than both stars and cliques.20

3. KEY IDEAS IN OUR WORK
Analytic placement techniques first minimize a function 
of interconnect length, neglecting overlaps between stan-
dard cells and macros. This initial step places many cells 
in densely populated regions, typically around the center of 
the layout. Cell locations are then gradually spread through 
a series of placement iterations, during which interconnect 
length slowly increases, converging to a final overlap-free 
placement (a small amount of overlap is often allowed and 
later resolved during legalization).

Our algorithm also starts with interconnect minimi-
zation, but its next step is unusual—most overlaps are 
removed using a fast look-ahead legalizer based on top-
down geometric partitioning and nonlinear scaling. 
Locations of movable objects in the legalized placement 
serve as anchors that coerce the initial locations to reduce 
overlap by adding pseudonets to baseline force-directed 
placement.7 Each subsequent iteration of our algorithm 
produces (i) an almost-legal placement that overestimates 
the final result through look-ahead legalization and 
(ii) an illegal placement that underestimates the final 
result—through linear system solver. The wirelength gap 
between lower- and upper-bound placements helps moni-
tor convergence (Section 4.3).
Solving the force-modulation problem. A key innovation in 
SimPL is the interaction between the lower-bound and the 
upper-bound placements—it ensures convergence to a no-
overlap solution while optimizing interconnect length. It 
solves two well-known challenges in analytic placement: (1) 
finding directions in which to spread the locations ( force 
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iterations (5–7), regardless of benchmark size, because 
the relative ordering of locations stabilizes quickly.

4.2. Look-ahead legalization
Consider a set of cell locations produced by quadratic optimi-
zation (lower-bound placement) with a significant amount 
of overlap as measured using bins of a regular grid. Look-
ahead legalization is invoked at each iteration of global-
placement process to change the global positioning of 
those locations, seeking to remove most of the overlap (with 
respect to the grid) while preserving the relative ordering.b 
This step can be viewed as a projection of the lower-bound 
placement onto the manifold of feasible placements. The 
quality of look-ahead legalization is measured by its impact 
on the entire placement flow. Our look-ahead legalization 
is based on top-down recursive geometric partitioning and 
nonlinear scaling (Algorithm 1). Cutlines Cc and CB are cho-
sen to be vertical at the top level (R.level = 1), and they alter-
nate between horizontal and vertical directions with each 
successive level of top-down geometric partitioning.
Handling density constraints. For each grid bin of a given 
regular grid, we calculate the total area of contained cells Ac 
and the total available area of cell sites Aa. A bin is g-overfilled 
if its cell density Ac/Aa exceeds given density limit 0 < g < 1. 
Adjacent g-overfilled bins are clustered by Breadth-First 
Search (BFS), and look-ahead legalization is performed on 
such clusters. For each cluster, we find a minimal contain-
ing rectangular region with density ≤ g (these regions can 
also be referred to as “clusters”). A key insight is that over-
lap removal in a region, which is filled to capacity, is more 
straightforward because the absence of whitespace leaves 
less flexibility for interconnect optimization.c If relative 
placement must be preserved, overlap can be reduced by 
means of x- and y-sorting with subsequent greedy packing. 
The next step, nonlinear scaling, implements this intuition, 
but relies on cell-area cutline Cc chosen in Algorithm 1 and 
shifts it toward the median of available area CB in the region, 
so as to equalize densities in the two sub regions (Figure 3).

Nonlinear scaling in one direction is illustrated in Figure 4, 
where a new region was created by a vertical cutline CB dur-
ing top-down geometric partitioning. This region is subdi-
vided into vertical stripes parallel to CB. First, cutlines are 
drawn along the boundaries of obstacles present in this 
region. Each vertical stripe created in this process is further 
subdivided if its available area exceeds 1/10 of the region’s 
available area. Movable cells in the corresponding sub-
region created by Cc are then sorted by their distance from 
CB and greedily packed into the stripes in that order. In other 
words, the cell furthest from the cutline is assigned to the 
furthest stripe. Each subsequent cell is assigned to the fur-
thest unfilled stripe. For each stripe, we calculate the avail-
able site area Aa and consider the stripe filled when the area 

Algorithm 1. Look-ahead Legalization by Top-down 
Geometric Partitioning and Nonlinear Scaling.

Maximum allowed density g, where 0 < g < 1
Placement of cells
Queue of bin clusters Q = 0

  1:	 Identify g-overfilled bins and cluster them // Figure 3(a)
  2:	 foreach cluster c do
  3:	� Find a minimal rectangular region R ⊃ c with 

density(R) ≤ g
  4.	 R.level = 1
  5:	 Q.enqueue(R)
  6:	 while !Q.empty() do
  7:	 B = Q.dequeue()
  8:	 if (Area(B) is small enough  B.level ≥ 10) then
  9:	 continue
10:	 M = {movable cells in B}
11:	 Cc = A cutline to evenly split cell area in M
12:	 CB = A cutline to evenly partition whitespace in B
13:	 (S0, S1) = {two sub-regions of B created by cutline Cc}
14:	 (M0, M1) = {movable cells in S0, S1}
15:	 (B0, B1) = {two sub-regions of B created by cutline CB}
16:	 Perform nonlinear scaling on M0(M1) in B0(B1)
17:	 B0.level = B1.level = B.level + 1
18:	 Q.enqueue(B0, B1)
19:	 end while
20:	 end foreach

Initial Placement

Uniformly
Distributed
Placement

Netlist → Graph
(B2B Net Model)

Linear System
(Jacobi + CG)

Linear System
(Jacobi + CG)

(Lower Bounds)

B2B Graph
Update

Pseudonets
linking each cell
to its legalized

location

Look-ahead
Legalization

in Algorithm 1
(Upper Bounds)

Last Upper-bound
Placement

Legal Placement

Bookshelf
HPWL

Evaluator

Final Legalization
and Detailed
Placement

No

NoYes

Yes

Converged?
(∆HPWL)

Converged?
(Gap+∆HPWL)

Global Placement
Post-Global
Placement

Figure 2. The SimPL algorithm uses placement-dependent B2B 
net model, which is updated on every iteration. Gap refers to the 
difference between upper and lower bounds.

b  This formulation is related to the Monge–Kantorovich optimal transport, 
although in our context runtime is extremely limited and optimal solutions 
are not required.
c  In the presence of whitespace, the placer can move cells around without 
changing their relative ordering. Removing whitespace suppresses this 
degree of freedom, giving fewer choices to the placer.
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of assigned cells reaches gAa. Cell locations within each 
stripe are linearly scaled from current locations (nonlinear-
ity arises from different scaling in different stripes).

Look-ahead legalization applies nonlinear scaling in 
alternating directions, as illustrated in Figure 5 on one of 
ISPD 2005 benchmarks. Here, a region R is selected that 
contains overfilled bins, but is wide enough to facilitate 
overlap removal. R is first partitioned by a vertical cutline, 
after which nonlinear scaling is applied in the two new sub-
regions. Subsequently, look-ahead legalization (Algorithm 1) 
considers each sub region individually and selects different 
horizontal cutlines. Four rounds of nonlinear scaling follow, 
spreading cells over the region’s expanse (Figure 5).

4.3. Global placement iterations
Using legalized locations as anchors. Solving an uncon-
strained linear system results in a placement with 

significant amount of overlap. To pull cells away from their 
initial positions, we gradually perturb the linear system. 
As explained in Section 4.2, at each iteration of our global 
placement, top-down geometric partitioning and nonlinear 
scaling generate a roughly legalized solution. We use these 
legalized locations as fixed, zero-area anchors connected to 
their corresponding cells in the lower-bound placement with 
artificial two-pin pseudonets. Furthermore, following the dis-
cussion in Section 2, we note that connections to fixed loca-
tions do not increase the size of the Hessian matrix Q, and 
only contribute to its diagonal elements. For more details, 
the readers are referred to Section 4.3.2 of. Kahng et  al.12 
This  enhances diagonal dominance, condition number of 
P−1Q, and the convergence rate of Jacobi-preconditioned CG.

In addition to weights given by the B2B net model on 
pseudonets, we control cell movement and iteration con-
vergence by multiplying each pseudonet weight by an 
additional factor a > 0 computed as a = 0.01 × (1 + Iteration_
Number).d At early iterations, small a values weaken spread-
ing forces, giving greater significance to interconnect and 
more freedom to the linear system solver. As the relative 
ordering of cells stabilizes, increasing a values boost the 
pull toward the anchors and accelerate the convergence 
of lower bounds and upper bounds. Mathematically, the 
a parameter can be viewed as a Lagrange multiplier. The 
relevant constraint requires that each cell be placed over 
its anchor, and the (Manhattan) distance between their 
locations is the penalty for violating the constraint. The a 
parameter gradually increases and shifts the emphasis of 
quadratic optimization from reducing interconnect to sat-
isfying constraints (Figure 6).

Convergence criteria similar to that in Section 4.1 can be 
adopted in global placement. We alternate (1) look-ahead 
legalization, (2) updates to anchors and the B2B net model, 
and (3) solution of the linear system, until HPWL of solu-
tions generated by look-ahead legalization stops improving. 
Unlike in the initial placement step, however, HPWL values 
of upper-bound solutions oscillate during the first four to 
seven iterations, as seen in Figure 7. To prevent premature 
termination, we monitor the gap between the lower and 
upper bounds. Global placement continues until (1) the gap 
is reduced to 25% of the gap at the 10th iteration and upper-
bound solution stops improving or (2) the gap is smaller 

Bin cluster for look-ahead legalization(B)

(a) (b)
B0 B1

An overfilled bin

Cell-area
median(Cc)

Whitespace
median(Cb)

Figure 3. Clustering of overfilled bins in Algorithm 1 and adjustment 
of cell-area to whitespace median by nonlinear scaling (also see 
Figure 4). Movable cells are shown in blue, obstacles in solid gray.
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Figure 4. Nonlinear scaling in a region with obstacles (I): the formation 
of CB-aligned stripes (II), cell sorting by distance from CB (III),  
and greedy cell positioning (IV).

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

Figure 5. Nonlinear scaling after the first vertical cut and two subsequent 
horizontal cuts (adaptec1) between iterations 0 and 1 in Figure 8.

d  Further improvements in pseudonet weighting and convergence are 
proposed in Kim and Markov.9
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than 10% of the gap at the 10th iteration. On the ISPD 2005 
benchmark suite, only 33–45 iterations are needed. The 
final set of locations (global placement) is produced by the 
last look-ahead legalization, as shown in Figure 2.

Convergence is guaranteed by the increasing weights of 
pseudonets. At each iteration, these pseudonets pull the 
lower-bound placement toward a legalized upper-bound 
placement. As the lower-bound placement becomes closer 
to a legal placement, it exhibits a decreasing amount of 
cell  overlap. This, in turn, results in smaller cell displace-
ments during look-ahead legalization. After the first few 
iterations, one typically observes monotonic convergence 
(see Figure 7). A progression of global placement is anno-
tated with HPWL values in Figure 8.

4.4. Asymptotic complexity analysis
The runtime of global placement iterations is dominated by 
the conjugate gradient (CG) solver and look-ahead legaliza-
tion. The complexity of each CG invocation is , where 
κ is the conditioning number of the matrix and m is the 
number of nonzero elements.21 The number of nonzeros 
reflects the number of graph edges in the B2B model of the 
netlist. It grows linearly with the number of pins (cell-to-net 
connections)—a key size metric of a netlist. Another way 
to estimate the number of nonzeros is to observe that the 

average cell degree (the number of nets connected to a cell) 
is bounded by d = 5, or perhaps a slightly larger constant, for 
practical netlists. Since m ≤ (d + 1)n for n cells (including 
diagonal elements), CG runs in  time.

Asymptotic runtime of look-ahead legalization is domi-
nated by sorting cell locations by their x and y coordinates 
because nonlinear scaling takes O(n) time (several other 
linear-time steps take even less time in practice, therefore 
we do not discuss them). Given that look-ahead legaliza-
tion operates on blocks of progressively smaller size, we 
can separately consider its processing pass for the top-level 
blocks, then the pass for half-sized blocks, etc. Only O(log 
n) such passes are required for n cells. Each pass takes O(n 
log n) time because top-level blocks do not experience sig-
nificant overlaps—in fact, each subsequent pass becomes 
faster because sorting is applied to smaller groups of cells. 
Hence, look-ahead legalization runs in O(n log2 n) time.

We have observed that owing to preconditioning, iter-
ation counts in CG grow no faster than log n, and each 
iteration takes linear time in n. Therefore, one global 
placement iteration takes O(n log2 n) time. In practice, 
SimPL requires less than 50 placement iterations, even for 
million-gate circuits.

5. EMPIRICAL VALIDATION
The SimPL global placer is implemented as a stand-alone 
software package with self-contained I/O, and initial place-
ment and global placement iterations. Living up to its name, 
it consists of fewer than 5000 lines of C++ code and relies 
only on standard C++ libraries (shipped with g++ 4.4.0). 
Single-threaded benchmark runs were performed on an 
Intel Xeon Quad CPU E31230 (3.2 GHz) Linux workstation 
with 8GB RAM. We compared SimPL to other academic plac-
ers on the ISPD 2005 placement contest benchmark suitee 
with target density g = 1.0. Focusing on global placement, we 
delegate final legalization (into rows and sites) and detailed 
placement to FastPlace-DP.16

Running in a single thread, SimPL completes the entire 
ISPD 2005 benchmark suite in 1 hour 3 minutes, placing the 
largest benchmark, bigblue4 (2.18 M cells), in 33 minutes 
using 2.1GB of memory. We report the runtime breakdown 
on bigblue4 according to Figure 2, excluding 1.4% run-
time for I/O. Initial placement takes 5.0% of total runtime, 
of which 3.7% is spent in CG, and 1.3% in building B2B net 
models and sparse matrices for CG. Global placement itera-
tions take 47.4%, of which 19% is in the CG solver, and 9.9% is 
in sparse matrix construction and B2B net modeling. Look-
ahead legalization takes 17.7%. Legalization and detailed 
placement take 46.2%.

When compared to prior software for VLSI placement 
(Table 1), SimPL found placements with the lowest inter-
connect length and was the fastest. On average, SimPL 
obtains wirelength improvement of 16.26%, 4.12%, 4.23%, 
and 2.57% versus Capo10.5,18 NTUPlace3,4 FastPlace3,22 
and mPL6,3 respectively. In comparison, one step of Moore 
scaling reduces interconnect by 30% at the cost several 
billion dollars. SimPL was 7.28 times faster than mPL6, 

Figure 6. An anchor with a pseudonet. The a parameter prices the 
penalty for the cell being far from its anchor.

Cell

Anchor

Pseudonet
(weight=a/Length)

Figure 7. Lower and upper bounds for HPWL, the scaled overflow per 
bin (a placement density metric) of the lower-bound placement at 
each iteration, and HPWL of the legal placement (adaptec1).
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e  http://archive.sigda.org/ispd2005/contest.htm.
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Sparse Matrix-Vector multiply (SpMxV). Memory bandwidth 
is a known bottleneck and becomes more critical when mul-
tiple cores access the main memory through a common bus. 
We reduce memory bandwidth demand of SpMxV by using 
the CSR (Compressed Sparse Row)19 memory layout for the 
Hessian matrix Q.

Our implementation exploits streaming SIMD extensions 
level 2 (SSE2)17 that perform several floating-point opera-
tions at once, especially in the conjugate gradient solver. In 
practice, the impact of parallelization depends on the rela-
tion between CPU speed and memory bandwidth.

// inner product of two float vectors x and y
float inner_prod(vector<float> &x, vector<float> &y)
{
__m128 thread_acc[NUM_THREADS], X, Y;
float temp[4], inner_product=0.0;
int i;
for(int j = 0; j < NUM_THREADS; j++)

thread_acc[j]=_mm_setzero_ps();
#pragma omp parallel for private(X,Y) lastprivate(i) 
...

schedule(static) ordered num_threads(NUM_THREADS)
for (i=0; i <= x.size()-4; i+=4)
{

X = _mm_load_ps(&x[i]);
Y = _mm_load_ps(&y[i]);
thread_acc[omp_get_thread_num()] = ...

_mm_add_ps(thread_acc[omp_get_thread_num()], ...
_mm_mul_ps(X,Y));

}
for(int j = 1; j < NUM_THREADS; j++)
thread_acc[0]=_mm_add_ps(thread_acc[0],thread_
acc[j]);

_mm_store_ps(temp, thread_acc[0]);
inner_product = temp[0] + temp[1] + temp[2] + temp[3];
for ( ; i < x.size(); i++)
inner_product += x[i] * y[i];

return inner_product;
}

Listing 1. Sample code for OpenMP and SSE2 parallelization 
for the inner-product operation.

After we parallelized the CG solver, look-ahead legaliza-
tion became a bottleneck and needed to be parallelized 
as well. To this end, top-down partitioning generates an 
increasing number of sub-tasks of similar sizes which can 
be solved independently. Let Qg be the global queue of bin 
cluster from Algorithm 1 and Qi be the private queue of 
bin clusters of thread i. First, we statically assign initial 
bin clusters to available threads such that each thread has 
similar number of bin clusters to start. After each level of 
top-down geometric partitioning and nonlinear scaling in 
such a bin cluster, each thread generates two sub-clusters 
with similar numbers of cells. Then, thread ti adds only 
one of two sub-clusters to its private queue Qi for the next 
level of top-down geometric partitioning and nonlinear 
scaling, while the remainder is added to Qg. Whenever Qi 
becomes empty, the thread ti dynamically retrieves clus-
ters from Qg. The number of clusters N to be retrieved is 
given by N = max (Qg.size ( ) / NUM_Threads, 1)
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Figure 8. A progression of global placement snapshots from different 
iterations and algorithm steps (adaptec1). IP = initial placement,  
LAL = look-ahead legalization, LSS = linear system solver. Left-side 
placements show lower bounds and right-side placements show 
upper bounds.

which appears to be the strongest preexisting placer. SimPL 
was 1.12 times faster than FastPlace3—previously the fast-
est academic software. Multi-objective placers based on 
SimPL6, 11 also demonstrate their consistent speed advan-
tages over other state-of-the-art placers, and especially so 
on larger circuit instances.

6. EXPLOITING PARALLELISM
Further speed-up is possible for SimPL on workstations with 
multicore CPUs.
Algorithmic details. Runtime bottlenecks in the sequential 
variant of the SimPL algorithm (Section 5)—updates to the 
B2B net model and the CG solver—can be parallelized. Given 
that the B2B net model is separable, we process the x and 
y cases in parallel. When more than two cores are available, 
we split the nets of the netlist into equal groups that can be 
processed by multiple threads. To parallelize the CG solver, we 
applied a coarse-grain row partitioning scheme to the Hessian 
Matrix Q, where different blocks of rows are assigned to dif-
ferent threads using OpenMP.5 A core operation in CG is the 
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scales poorly. The initial placement stage was accel-
erated by about three times. While CG remained the 
runtime bottleneck of SimPL on eight threads (36% of 
global placement), look-ahead legalization became a 
close second (>31% of global placement).

7. CONCLUSION
In this work, we developed an algorithm for large-scale VLSI 
placement. Typical state-of-the-art placers require over 
100,000 lines of C++ code, but our self-contained implemen-
tation of SimPL uses fewer than 5000 lines.f The algorithm is 
iterative and maintains two placements—one computes 
a lower bound and one computes an upper bound on the 
final wirelength. These two placements interact, ensuring 
stability and fast convergence of the algorithm. The upper-
bound placement is produced by a new feasibility projection 
algorithm—look-ahead legalization.

The SimPL algorithm has seen rapid adoption since its pub-
lication at ICCAD 2010. Two placers6, 11 based on the SimPL 
framework finished in top three at the ISPD 2011, DAC 2012, 
and ICCAD 2012 routability-driven placement contests orga-
nized by IBM Research. In particular, He et al.6 successfully 

Empirical studies evaluated SimPL on an 8-core AMD-
based system with four dual-core CPUs and 16GB 
RAM. Each CPU was Opteron 880 processor run-
ning at 2.4 GHz with 1024KB cache. Single-thread 
execution is compared to eight-thread execution 
in Figure 9. Our combination of multi-threading 
and SIMD instruction-level parallelization was 1.6 
times faster on average than parallelization based 
on multi-threading alone. Theoretically, using 
SIMD instruction-level parallelization may speed 
up CG by at most four times. However, SIMD-based 
implementation of SpMxV only provided marginal 
speedups. This is because irregular memory access 
patterns of SpMxV prohibit the aligned loading of 
values (MOVAPS or _mm_load_ps in Listing 1) to SSE 
registers. Nevertheless, SSE instructions were help-
ful elsewhere and contributed to the overall speedup 
in global placement. The overall speedups in global 
placement runtimes are shown in Figure 10. Solution 
quality did not appreciably change, but peak memory 
usage increased by 1.91 times whereas global place-
ment was 2.4 times faster. The speedups saturate for 
more than four threads as look-ahead legalization 

Benchmark Capo10.5 NTUPlaces3 FastPlace3.0 mpl6 SimPL

Name #Cells #Nets HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time

adaptec1 211 K 221 K 88.14 21.08 81.82 7.62 78.67 2.03 77.93 15.65 77.42 2.01
adaptec2 255 K 266 K 100.25 25.44 88.79 7.07 94.06 2.88 92.04 16.20 91.01 2.60
adaptec3 452 K 467 K 276.80 62.19 214.83 14.33 214.13 6.51 214.16 48.29 203.84 5.44
adaptec4 496 K 516 K 231.30 64.60 195.93 14.55 197.50 6.11 193.89 45.90 184.70 4.88
bigblue1 278 K 284 K 110.92 33.42 98.41 12.32 96.65 3.09 96.80 20.43 94.66 3.88
bigblue2 558 K 577 K 162.81 64.44 151.55 23.25 155.75 6.11 152.34 54.02 145.87 5.01
bigblue3 1.10 M 1.12 M 405.40 146.35 360.66 44.90 365.16 18.87 344.10 75.75 351.55 15.51
bigblue4 2.18 M 2.23 M 1016.19 453.72 866.43 100.48 836.20 28.83 829.44 163.15 790.28 23.26
Geometric mean 1.19× 11.55× 1.04× 3.32× 1.04× 1.12× 1.03× 7.28× 1.00× 1.00×

Table 1. Comparison of HPWL (×10e6) and runtime (minutes) on ISPD 2005 benchmarks. Each placer ran as a single thread on a 3.2 GHz Intel 
CPU. FastPlace-DP took 40% of runtime for SimPL and FastPlace.
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Figure 9. Speedup for conjugate gradient (CG) with SSE instructions, 
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f  The SimPL binary is available upon request.
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