
june 2013 | vol. 56 | no. 6 | communications of the acm 105

doi:10.1145/2461256.2461279

SimPL: An Algorithm for
Placing VLSI Circuits
By Myung-Chul Kim, Dong-Jin Lee, and Igor L. Markov

Abstract
VLSI placement optimizes locations of circuit components
so as to reduce interconnect. Formulated in terms of (hyper)
graphs, it is NP-hard, and yet must be solved for challenging
million-node instances within several hours. We propose
an algorithm for large-scale placement that outperforms
prior art both in runtime and solution quality on standard
benchmarks. The algorithm is more straightforward than
existing placers and easier to integrate into timing-closure
flows. Our C++ implementation is compact, self-contained
and exploits instruction-level and thread-level parallelism.
Due to its simplicity and superior performance, the algo-
rithm has been adopted in the industry and was extended
by several university groups to multi-objective optimization.

1. INTRODUCTION
The first algorithms for circuit placement have been
developed at Bell Labs and IBM Research in the 1960s and
followed the divide-and-conquer paradigm. They motivated
high-performance heuristics for balanced graph-partitioning
by Kernighan and Lin and, later, by Fiduccia and Mattheyses,
that minimize edge cut. In the mid-1980s, circuit place-
ment was a key application of the newly invented Simulated
Annealing methods. Fifteen years later, the number of com-
ponents in leading chips grew to the point where anneal-
ing was much too slow. The divide-and-conquer framework
temporarily regained leadership when it was combined with
bottom-up clustering and multi-level partitioning. However,
in the 2000s, increasing transistor density again demanded
faster algorithms with better performance. Linear program-
ming and network flows were tried with limited success.

Placement optimization gradually became more sig-
nificant in chip design over the years because the amount
of interconnect grows faster than the number of compo-
nents (except for grid-like circuits such as memory blocks).
On-chip interconnect now occupies greater volume than
transistors and consumes much power. Additionally, tran-
sistor delays improve faster than interconnect delay, which
today limits the speed of many chips. This is why circuit
placement has recently been integrated with more com-
prehensive optimizations that can reduce interconnect
by restructuring the circuit.1 But such optimizations need
initial component locations that minimize edge lengths.
This puts an easy-to-formulate graph problem at the core of
sophisticated industrial optimizations. For details the read-
ers are referred to Chapters 4 and 8 of Kahng et al.12

Modern techniques for VLSI placement approximate
interconnect length by differentiable functions and draw on
efficient numerical optimizations. Such global placement

tolerates various geometric misalignments and small overlaps
between rectangular components (represented by graph
nodes), which are subsequently repaired by combinatorial
algorithms for legalization and detailed placement. Despite
impressive improvements reported by researchers15 and
industry software in the last decade, global-placement algo-
rithms suffer several key shortcomings: (i) speed, (ii) solution
quality, (iii) simplicity and integration with other optimiza-
tions, and (iv) support for multi-threaded execution.

State-of-the-art algorithms for global placement form
two families: (i) force-directed quadratic placers, such as
Kraftwerk2,20 FastPlace3,22 and RQL,23 and (ii) nonconvex
optimization techniques, such as APlace2,8 NTU-Place3,4 and
mPL6.3 To form an intuition about force-directed algorithms,
one thinks of individual interconnects as coil springs subject
to Hooke’s law and seeks a force-equilibrium (min-energy)
configuration. Mathematically, the total interconnect length
is captured by a quadratic function of component locations
and minimized by solving a large sparse system of linear
equations. To discourage component overlap, forces are
added by pulling components away from high-density areas.
These forces are represented by pseudonodes and pseudo-
edges, which extend the original quadratic function.7 They
are updated after each linear-system solve until iterations
converge. Nonconvex optimization models interconnect
length by more sophisticated differentiable functions that
grow linearly with length. These functions are minimized by
the nonlinear conjugate gradient method. Component den-
sity is modeled by functional terms, which are more accurate
than forces, but also requires updates after each change to
placement.4, 8 Algorithms in both categories are used in the
industry or closely resemble those in industry placers.

Nonconvex optimization methods previously claimed the
best results for academic implementations4 and industry
software, but are significantly slower, which is problematic
for modern chip designs with components in many millions.
To scale the basic nonconvex optimization framework, best
tools in this family employ hypergraph clustering and multi-
level/multigrid extensions, sometimes at the cost of solution
quality. Such multilevel placers perform many sequential
steps, obstructing efficient parallelization. Moreover, clus-
tering and refinement do not fully benefit from modern mul-
ticore CPUs. Owing to their complexity, multilevel placers
are also harder to maintain and combine with other opti-
mizations. In particular, clustered circuits obscure analysis

The original version of this paper appeared in the IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems (Jan. 2012)

106 communications of the acm | june 2013 | vol. 56 | no. 6

research highlights

Its x and y components are cast in matrix form2, 20

	 � (3)

The Hessian matrix Qx captures connections between pairs
of movable vertices, while vector x captures connections
between movable and fixed vertices. For more details, the
readers are referred to Section 4.3.2 of Kahng et al.12 When
Qx is nondegenerate, is a strictly convex function with a
unique minimum, which can be found by solving the system
of linear equations Qx = − x. Solutions can be quickly approxi-
mated by iterative Krylov-subspace techniques, such as the
conjugate gradient (CG) method and its variants.19 Since Qx
is symmetric positive definite, CG iterations provably mini-
mize the residual norm. The convergence is monotonic,21 but
its rate depends on the spectral properties of Qx, which can
be enhanced by preconditioning. In other words, we solve the
equivalent system P−1Qx = −P−1

x for a nondegenerate matrix P,
such that P−1 is an easy-to-compute approximation of .
Given that Qx is diagonally dominant, we chose P to be its
diagonal, also known as the Jacobi preconditioner. We delib-
erately enhance diagonal dominance in Qx (Section 4.3).
Quadratic placement example. Consider the graph G and
edge weights wij in Figure 1. Quadratic placement mini-
mizes the separable quadratic cost function Φ

G
 in the x and y

directions. For the x-direction,

Setting the partial derivatives to 0 (the condition for force
equilibrium), we solve for the global minimum cost.

	 � (4)

The connectivity matrix Qx has entry wij in the ith row and jth
column, and − x has entry ci in the ith row. The diagonal entries
wii correspond to the sum of net weights of all connec-
tions to movable module i. The off-diagonal entries wij are
calculated as the negative sum of net weights of connections
between movable modules i and j, and the resulting con
nectivity matrix becomes symmetric. Each element cx for

of routing congestion and timing, and complicate circuit
restructuring. State-of-the-art force-directed quadratic plac-
ers tend to run many times faster than nonconvex optimi-
zation, but also use multilevel extensions in their most
competitive configurations. Their solution quality is mixed.

In this work, we develop a self-contained technique for
global placement based on quadratic programming. It
maintains lower-bound and upper-bound placements that
converge to a final solution. The upper-bound placement is
produced by our new feasibility projection algorithm based
on top-down geometric partitioning and nonlinear scaling.
Research in VLSI placement includes a fiercely competitive
benchmarking component, and we show that our algorithm
performs very well on standard benchmarks.

In the remainder of this paper, Section 2 describes the
building blocks from which our algorithm was assembled.
Section 3 introduces our key ideas and articulates our solu-
tion of the force modulation problem. The SimPL algorithm
is presented in Section 4 along with complexity analysis.
Empirical validation is described in Section 5. The use of
parallelism is discussed in Section 6.

2. ESSENTIAL CONCEPTS
Circuit placement typically operates on a gate-level netlist,
which consists of standard cells (NAND, NOR, MUX, half-
adders, etc.) and interconnect. Each standard cell has a rect-
angular footprint with well-defined area. A cell’s output may
connect to inputs of multiple other cells—such interconnects
are captured by hyperedges, also known as signal nets. Given a
netlist N = (E, V ) with nets E and nodes (cells) V, global place-
ment seeks node locations (xi, yi) such that the area of nodes
within any rectangular region does not exceed the area of (cell
sites in) that region.a Some locations of cells may be given
initially and fixed. The interconnect objective optimized by
global placement is the Half-Perimeter WireLength (HPWL).
While easy to calculate, HPWL is a surprisingly good esti-
mate of the length of routed connections. For node locations

 = {xi} and = {yi},
, where

	 � (1)

This formula generalizes the so-called Manhattan (taxi-
cab) distance between two points. Given the rigorous
public benchmarking infrastructure developed by IBM
Research and academic colleagues,15 consistent improve-
ments by even several percent are considered signifi-
cant in both academic literature and industry practice.
Efficient optimization algorithms approximate HPWL

N
 by

differentiable functions.
Quadratic optimization. Consider a graph G = (E

G 
, V ) with

edges E
G 

, vertices V, and edge weights wij > 0 for all edges
eij ∈ E

G
. The quadratic objective Φ

G
 is defined as

	 � (2)

a  In practice, this constraint is enforced for bins of a regular grid. The layout
area is subdivided into equal, disjoint, small rectangles, so as to limit the
area of cells placed inside.

1.0

1.0

1.0
2.0

4.0

3.0

x1

x4

f2

x3

x2
f1

Figure 1. Blue boxes represent movable modules and black boxes
represent fixed modules.

june 2013 | vol. 56 | no. 6 | communications of the acm 107

orientation) and (2) determining the appropriate amount
of spreading (force modulation).13, 23 This is unlike previous
work, where spreading directions are typically based on local
information, for example, placers based on nonconvex opti-
mization use gradient information and require a large num-
ber of expensive iterations. Kraftwerk220 orients spreading
forces according to solutions of Poisson’s equation, providing
a global perspective and speeding up convergence. However,
this approach does not solve the force-modulation problem, as
articulated in Kennings and Vorwerk.13 The authors of RQL,23
which can be viewed as an improvement on FastPlace, revisit
the force-modulation problem and address it by a somewhat
ad hoc limit on the magnitude of spreading forces. In our
work, look-ahead legalization algorithm (Section 4.2), invoked
at each iteration, determines both the direction and the mag-
nitude of spreading forces. It is global in nature, accounts for
fixed obstacles, and preserves relative placement to ensure
interconnect optimization and convergence.
Global placement with look-ahead. The legalized upper-
bound placements built at every iteration can be viewed
as look-ahead because they are used temporarily and not
refined directly. The look-ahead placements approximately
satisfy constraints (e.g., legality and placement density)
while trying to retain quality of current lower-bound place-
ments as much as possible. These locations are then used
to update the current lower-bound placements by evolving
them toward look-ahead placements. They pull cell loca-
tions in lower-bound placements not just away from dense
regions but also toward the regions where space is avail-
able. Such area look-ahead is particularly useful around
fixed obstacles, where local information does not offer suf-
ficient guidance. Similar congestion look-ahead,6, 11 power
look-ahead, thermal look-ahead, and timing look-ahead based
on legalized placements help integrate our placement algo-
rithm into multi-objective circuit optimizations.

4. OUR GLOBAL PLACEMENT ALGORITHM
Our placement technique consists of three phases: initial
placement, global placement iterations, and post-global place-
ment (Figure 2). Initial placement, described next, is mostly an
exercise in judicious application of known components. Our
main innovation is in the global placement phase. Post-global
placement (legalization and detailed placement) is straight-
forward, given current state of the art.

4.1. Initial placement
Our initial-placement step is conceptually similar to those
of other force-directed placers20, 22, 23—it entirely ignores
cell areas and overlaps, so as to minimize the objective
function, a quadratic approximation of total intercon-
nect length. We found that this step notably impacts the
final result, as it can determine the overall shape of the
final placement solutions. Therefore, unlike FastPlace322
and RQL,23 we use the more accurate B2B net model from
Spindler et al.20 reviewed in Section 2. After the first qua-
dratic solve, we rebuild the circuit graph because the B2B
net model is placement-dependent. We then alternate
quadratic solves and graph rebuilding until HPWL stops
improving. In practice, this requires a small number of

a movable module i is calculated as the sum of wij · xj, where
x j is the pin location of each connected fixed module.With
(f1, f2) = (1.0, 3.5), a linear system solver finds a unique solu-
tion = [1.4762 1.9524 2.4286 3.1429]T that minimizes the
quadratic wirelength .
The Bound2Bound net model.20 To represent the HPWL
objective by the quadratic objective, the netlist N is trans-
formed into two graphs, Gx and Gy, that preserve the node
set V and represent each two-pin net by a single edge with
weight 1/length. Larger nets are decomposed depending on
node locations—for each p-pin net, the extreme nodes (min
and max) are connected to each other and to each internal
node by edges, with the following weight

	 � (5)

For example, 3-pin nets are decomposed into cliques14 with
edge weight 1/2l, where l is the length of a given edge. In gen-
eral, this quadratic objective and the Bound2Bound (B2B)
net decomposition capture the HPWL objective exactly,
but only for the given placement. As locations change, the
approximation error may grow, necessitating multiple
updates throughout the placement algorithm.

Most quadratic placers use the placement-independent
star or clique decompositions, so as not to rebuild Qx and Qy
many times.2, 22, 23 Yet, the B2B model uses fewer edges than
cliques (p > 3), avoids new variables used in stars, and is
more accurate than both stars and cliques.20

3. KEY IDEAS IN OUR WORK
Analytic placement techniques first minimize a function
of interconnect length, neglecting overlaps between stan-
dard cells and macros. This initial step places many cells
in densely populated regions, typically around the center of
the layout. Cell locations are then gradually spread through
a series of placement iterations, during which interconnect
length slowly increases, converging to a final overlap-free
placement (a small amount of overlap is often allowed and
later resolved during legalization).

Our algorithm also starts with interconnect minimi-
zation, but its next step is unusual—most overlaps are
removed using a fast look-ahead legalizer based on top-
down geometric partitioning and nonlinear scaling.
Locations of movable objects in the legalized placement
serve as anchors that coerce the initial locations to reduce
overlap by adding pseudonets to baseline force-directed
placement.7 Each subsequent iteration of our algorithm
produces (i) an almost-legal placement that overestimates
the final result through look-ahead legalization and
(ii) an illegal placement that underestimates the final
result—through linear system solver. The wirelength gap
between lower- and upper-bound placements helps moni-
tor convergence (Section 4.3).
Solving the force-modulation problem. A key innovation in
SimPL is the interaction between the lower-bound and the
upper-bound placements—it ensures convergence to a no-
overlap solution while optimizing interconnect length. It
solves two well-known challenges in analytic placement: (1)
finding directions in which to spread the locations (force

108 communications of the acm | june 2013 | vol. 56 | no. 6

research highlights

iterations (5–7), regardless of benchmark size, because
the relative ordering of locations stabilizes quickly.

4.2. Look-ahead legalization
Consider a set of cell locations produced by quadratic optimi-
zation (lower-bound placement) with a significant amount
of overlap as measured using bins of a regular grid. Look-
ahead legalization is invoked at each iteration of global-
placement process to change the global positioning of
those locations, seeking to remove most of the overlap (with
respect to the grid) while preserving the relative ordering.b
This step can be viewed as a projection of the lower-bound
placement onto the manifold of feasible placements. The
quality of look-ahead legalization is measured by its impact
on the entire placement flow. Our look-ahead legalization
is based on top-down recursive geometric partitioning and
nonlinear scaling (Algorithm 1). Cutlines Cc and CB are cho-
sen to be vertical at the top level (R.level = 1), and they alter-
nate between horizontal and vertical directions with each
successive level of top-down geometric partitioning.
Handling density constraints. For each grid bin of a given
regular grid, we calculate the total area of contained cells Ac
and the total available area of cell sites Aa. A bin is g-overfilled
if its cell density Ac/Aa exceeds given density limit 0 < g < 1.
Adjacent g-overfilled bins are clustered by Breadth-First
Search (BFS), and look-ahead legalization is performed on
such clusters. For each cluster, we find a minimal contain-
ing rectangular region with density ≤ g (these regions can
also be referred to as “clusters”). A key insight is that over-
lap removal in a region, which is filled to capacity, is more
straightforward because the absence of whitespace leaves
less flexibility for interconnect optimization.c If relative
placement must be preserved, overlap can be reduced by
means of x- and y-sorting with subsequent greedy packing.
The next step, nonlinear scaling, implements this intuition,
but relies on cell-area cutline Cc chosen in Algorithm 1 and
shifts it toward the median of available area CB in the region,
so as to equalize densities in the two sub regions (Figure 3).

Nonlinear scaling in one direction is illustrated in Figure 4,
where a new region was created by a vertical cutline CB dur-
ing top-down geometric partitioning. This region is subdi-
vided into vertical stripes parallel to CB. First, cutlines are
drawn along the boundaries of obstacles present in this
region. Each vertical stripe created in this process is further
subdivided if its available area exceeds 1/10 of the region’s
available area. Movable cells in the corresponding sub-
region created by Cc are then sorted by their distance from
CB and greedily packed into the stripes in that order. In other
words, the cell furthest from the cutline is assigned to the
furthest stripe. Each subsequent cell is assigned to the fur-
thest unfilled stripe. For each stripe, we calculate the avail-
able site area Aa and consider the stripe filled when the area

Algorithm 1. Look-ahead Legalization by Top-down
Geometric Partitioning and Nonlinear Scaling.

Maximum allowed density g, where 0 < g < 1
Placement of cells
Queue of bin clusters Q = 0

  1:	 Identify g-overfilled bins and cluster them // Figure 3(a)
  2:	 foreach cluster c do
  3:	� Find a minimal rectangular region R ⊃ c with

density(R) ≤ g
  4.	 R.level = 1
  5:	 Q.enqueue(R)
  6:	 while !Q.empty() do
  7:	 B = Q.dequeue()
  8:	 if (Area(B) is small enough  B.level ≥ 10) then
  9:	 continue
10:	 M = {movable cells in B}
11:	 Cc = A cutline to evenly split cell area in M
12:	 CB = A cutline to evenly partition whitespace in B
13:	 (S0, S1) = {two sub-regions of B created by cutline Cc}
14:	 (M0, M1) = {movable cells in S0, S1}
15:	 (B0, B1) = {two sub-regions of B created by cutline CB}
16:	 Perform nonlinear scaling on M0(M1) in B0(B1)
17:	 B0.level = B1.level = B.level + 1
18:	 Q.enqueue(B0, B1)
19:	 end while
20:	 end foreach

Initial Placement

Uniformly
Distributed
Placement

Netlist → Graph
(B2B Net Model)

Linear System
(Jacobi + CG)

Linear System
(Jacobi + CG)

(Lower Bounds)

B2B Graph
Update

Pseudonets
linking each cell
to its legalized

location

Look-ahead
Legalization

in Algorithm 1
(Upper Bounds)

Last Upper-bound
Placement

Legal Placement

Bookshelf
HPWL

Evaluator

Final Legalization
and Detailed
Placement

No

NoYes

Yes

Converged?
(∆HPWL)

Converged?
(Gap+∆HPWL)

Global Placement
Post-Global
Placement

Figure 2. The SimPL algorithm uses placement-dependent B2B
net model, which is updated on every iteration. Gap refers to the
difference between upper and lower bounds.

b  This formulation is related to the Monge–Kantorovich optimal transport,
although in our context runtime is extremely limited and optimal solutions
are not required.
c  In the presence of whitespace, the placer can move cells around without
changing their relative ordering. Removing whitespace suppresses this
degree of freedom, giving fewer choices to the placer.

june 2013 | vol. 56 | no. 6 | communications of the acm 109

of assigned cells reaches gAa. Cell locations within each
stripe are linearly scaled from current locations (nonlinear-
ity arises from different scaling in different stripes).

Look-ahead legalization applies nonlinear scaling in
alternating directions, as illustrated in Figure 5 on one of
ISPD 2005 benchmarks. Here, a region R is selected that
contains overfilled bins, but is wide enough to facilitate
overlap removal. R is first partitioned by a vertical cutline,
after which nonlinear scaling is applied in the two new sub-
regions. Subsequently, look-ahead legalization (Algorithm 1)
considers each sub region individually and selects different
horizontal cutlines. Four rounds of nonlinear scaling follow,
spreading cells over the region’s expanse (Figure 5).

4.3. Global placement iterations
Using legalized locations as anchors. Solving an uncon-
strained linear system results in a placement with

significant amount of overlap. To pull cells away from their
initial positions, we gradually perturb the linear system.
As explained in Section 4.2, at each iteration of our global
placement, top-down geometric partitioning and nonlinear
scaling generate a roughly legalized solution. We use these
legalized locations as fixed, zero-area anchors connected to
their corresponding cells in the lower-bound placement with
artificial two-pin pseudonets. Furthermore, following the dis-
cussion in Section 2, we note that connections to fixed loca-
tions do not increase the size of the Hessian matrix Q, and
only contribute to its diagonal elements. For more details,
the readers are referred to Section 4.3.2 of. Kahng et al.12
This enhances diagonal dominance, condition number of
P−1Q, and the convergence rate of Jacobi-preconditioned CG.

In addition to weights given by the B2B net model on
pseudonets, we control cell movement and iteration con-
vergence by multiplying each pseudonet weight by an
additional factor a > 0 computed as a = 0.01 × (1 + Iteration_
Number).d At early iterations, small a values weaken spread-
ing forces, giving greater significance to interconnect and
more freedom to the linear system solver. As the relative
ordering of cells stabilizes, increasing a values boost the
pull toward the anchors and accelerate the convergence
of lower bounds and upper bounds. Mathematically, the
a parameter can be viewed as a Lagrange multiplier. The
relevant constraint requires that each cell be placed over
its anchor, and the (Manhattan) distance between their
locations is the penalty for violating the constraint. The a
parameter gradually increases and shifts the emphasis of
quadratic optimization from reducing interconnect to sat-
isfying constraints (Figure 6).

Convergence criteria similar to that in Section 4.1 can be
adopted in global placement. We alternate (1) look-ahead
legalization, (2) updates to anchors and the B2B net model,
and (3) solution of the linear system, until HPWL of solu-
tions generated by look-ahead legalization stops improving.
Unlike in the initial placement step, however, HPWL values
of upper-bound solutions oscillate during the first four to
seven iterations, as seen in Figure 7. To prevent premature
termination, we monitor the gap between the lower and
upper bounds. Global placement continues until (1) the gap
is reduced to 25% of the gap at the 10th iteration and upper-
bound solution stops improving or (2) the gap is smaller

Bin cluster for look-ahead legalization(B)

(a) (b)
B0 B1

An overfilled bin

Cell-area
median(Cc)

Whitespace
median(Cb)

Figure 3. Clustering of overfilled bins in Algorithm 1 and adjustment
of cell-area to whitespace median by nonlinear scaling (also see
Figure 4). Movable cells are shown in blue, obstacles in solid gray.

B0 Cb II.

IV.III.

1

I. Obstacle borders

Uniform cutlines

2
3

4

5

6

7

8

1
2

3

4

5

6

7

8

Figure 4. Nonlinear scaling in a region with obstacles (I): the formation
of CB-aligned stripes (II), cell sorting by distance from CB (III),
and greedy cell positioning (IV).

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

Figure 5. Nonlinear scaling after the first vertical cut and two subsequent
horizontal cuts (adaptec1) between iterations 0 and 1 in Figure 8.

d  Further improvements in pseudonet weighting and convergence are
proposed in Kim and Markov.9

110 communications of the acm | june 2013 | vol. 56 | no. 6

research highlights

than 10% of the gap at the 10th iteration. On the ISPD 2005
benchmark suite, only 33–45 iterations are needed. The
final set of locations (global placement) is produced by the
last look-ahead legalization, as shown in Figure 2.

Convergence is guaranteed by the increasing weights of
pseudonets. At each iteration, these pseudonets pull the
lower-bound placement toward a legalized upper-bound
placement. As the lower-bound placement becomes closer
to a legal placement, it exhibits a decreasing amount of
cell overlap. This, in turn, results in smaller cell displace-
ments during look-ahead legalization. After the first few
iterations, one typically observes monotonic convergence
(see Figure 7). A progression of global placement is anno-
tated with HPWL values in Figure 8.

4.4. Asymptotic complexity analysis
The runtime of global placement iterations is dominated by
the conjugate gradient (CG) solver and look-ahead legaliza-
tion. The complexity of each CG invocation is , where
κ is the conditioning number of the matrix and m is the
number of nonzero elements.21 The number of nonzeros
reflects the number of graph edges in the B2B model of the
netlist. It grows linearly with the number of pins (cell-to-net
connections)—a key size metric of a netlist. Another way
to estimate the number of nonzeros is to observe that the

average cell degree (the number of nets connected to a cell)
is bounded by d = 5, or perhaps a slightly larger constant, for
practical netlists. Since m ≤ (d + 1)n for n cells (including
diagonal elements), CG runs in time.

Asymptotic runtime of look-ahead legalization is domi-
nated by sorting cell locations by their x and y coordinates
because nonlinear scaling takes O(n) time (several other
linear-time steps take even less time in practice, therefore
we do not discuss them). Given that look-ahead legaliza-
tion operates on blocks of progressively smaller size, we
can separately consider its processing pass for the top-level
blocks, then the pass for half-sized blocks, etc. Only O(log
n) such passes are required for n cells. Each pass takes O(n
log n) time because top-level blocks do not experience sig-
nificant overlaps—in fact, each subsequent pass becomes
faster because sorting is applied to smaller groups of cells.
Hence, look-ahead legalization runs in O(n log2 n) time.

We have observed that owing to preconditioning, iter-
ation counts in CG grow no faster than log n, and each
iteration takes linear time in n. Therefore, one global
placement iteration takes O(n log2 n) time. In practice,
SimPL requires less than 50 placement iterations, even for
million-gate circuits.

5. EMPIRICAL VALIDATION
The SimPL global placer is implemented as a stand-alone
software package with self-contained I/O, and initial place-
ment and global placement iterations. Living up to its name,
it consists of fewer than 5000 lines of C++ code and relies
only on standard C++ libraries (shipped with g++ 4.4.0).
Single-threaded benchmark runs were performed on an
Intel Xeon Quad CPU E31230 (3.2 GHz) Linux workstation
with 8GB RAM. We compared SimPL to other academic plac-
ers on the ISPD 2005 placement contest benchmark suitee
with target density g = 1.0. Focusing on global placement, we
delegate final legalization (into rows and sites) and detailed
placement to FastPlace-DP.16

Running in a single thread, SimPL completes the entire
ISPD 2005 benchmark suite in 1 hour 3 minutes, placing the
largest benchmark, bigblue4 (2.18 M cells), in 33 minutes
using 2.1GB of memory. We report the runtime breakdown
on bigblue4 according to Figure 2, excluding 1.4% run-
time for I/O. Initial placement takes 5.0% of total runtime,
of which 3.7% is spent in CG, and 1.3% in building B2B net
models and sparse matrices for CG. Global placement itera-
tions take 47.4%, of which 19% is in the CG solver, and 9.9% is
in sparse matrix construction and B2B net modeling. Look-
ahead legalization takes 17.7%. Legalization and detailed
placement take 46.2%.

When compared to prior software for VLSI placement
(Table 1), SimPL found placements with the lowest inter-
connect length and was the fastest. On average, SimPL
obtains wirelength improvement of 16.26%, 4.12%, 4.23%,
and 2.57% versus Capo10.5,18 NTUPlace3,4 FastPlace3,22
and mPL6,3 respectively. In comparison, one step of Moore
scaling reduces interconnect by 30% at the cost several
billion dollars. SimPL was 7.28 times faster than mPL6,

Figure 6. An anchor with a pseudonet. The a parameter prices the
penalty for the cell being far from its anchor.

Cell

Anchor

Pseudonet
(weight=a/Length)

Figure 7. Lower and upper bounds for HPWL, the scaled overflow per
bin (a placement density metric) of the lower-bound placement at
each iteration, and HPWL of the legal placement (adaptec1).

1.6e+8

0 10 20 30 40 50
0

10

20

30

40

50

H
P

W
L

S
ca

le
d

O
ve

rf
lo

w
 p

er
 b

in

Iteration number

Wirelength lower bound

Scaled overflow per bin

Legal solution

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8
Wirelength upper bound

e  http://archive.sigda.org/ispd2005/contest.htm.

june 2013 | vol. 56 | no. 6 | communications of the acm 111

Sparse Matrix-Vector multiply (SpMxV). Memory bandwidth
is a known bottleneck and becomes more critical when mul-
tiple cores access the main memory through a common bus.
We reduce memory bandwidth demand of SpMxV by using
the CSR (Compressed Sparse Row)19 memory layout for the
Hessian matrix Q.

Our implementation exploits streaming SIMD extensions
level 2 (SSE2)17 that perform several floating-point opera-
tions at once, especially in the conjugate gradient solver. In
practice, the impact of parallelization depends on the rela-
tion between CPU speed and memory bandwidth.

// inner product of two float vectors x and y
float inner_prod(vector<float> &x, vector<float> &y)
{
__m128 thread_acc[NUM_THREADS], X, Y;
float temp[4], inner_product=0.0;
int i;
for(int j = 0; j < NUM_THREADS; j++)

thread_acc[j]=_mm_setzero_ps();
#pragma omp parallel for private(X,Y) lastprivate(i)
...

schedule(static) ordered num_threads(NUM_THREADS)
for (i=0; i <= x.size()-4; i+=4)
{

X = _mm_load_ps(&x[i]);
Y = _mm_load_ps(&y[i]);
thread_acc[omp_get_thread_num()] = ...

_mm_add_ps(thread_acc[omp_get_thread_num()], ...
_mm_mul_ps(X,Y));

}
for(int j = 1; j < NUM_THREADS; j++)
thread_acc[0]=_mm_add_ps(thread_acc[0],thread_
acc[j]);

_mm_store_ps(temp, thread_acc[0]);
inner_product = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < x.size(); i++)
inner_product += x[i] * y[i];

return inner_product;
}

Listing 1. Sample code for OpenMP and SSE2 parallelization
for the inner-product operation.

After we parallelized the CG solver, look-ahead legaliza-
tion became a bottleneck and needed to be parallelized
as well. To this end, top-down partitioning generates an
increasing number of sub-tasks of similar sizes which can
be solved independently. Let Qg be the global queue of bin
cluster from Algorithm 1 and Qi be the private queue of
bin clusters of thread i. First, we statically assign initial
bin clusters to available threads such that each thread has
similar number of bin clusters to start. After each level of
top-down geometric partitioning and nonlinear scaling in
such a bin cluster, each thread generates two sub-clusters
with similar numbers of cells. Then, thread ti adds only
one of two sub-clusters to its private queue Qi for the next
level of top-down geometric partitioning and nonlinear
scaling, while the remainder is added to Qg. Whenever Qi
becomes empty, the thread ti dynamically retrieves clus-
ters from Qg. The number of clusters N to be retrieved is
given by N = max (Qg.size ( ) / NUM_Threads, 1)

0 2000 4000 6000 8000 10000 12000

HPWL=4.484e+07, Stage=IP, Iter=0

0 2000 4000 6000 8000 10000 12000

HPWL=1.501e+08, Stage=LAL, Iter=1

0 2000 4000 6000 8000 10000 12000

HPWL=5.556e+07, Stage=LSS, Iter=2

0 2000 4000 6000 8000 10000 12000

HPWL=1.173e+08, Stage=LAL, Iter=3

0 2000 4000 6000 8000 10000 12000

HPWL=6.496e+07, Stage=LSS, Iter=10

0 2000 4000 6000 8000 10000 12000

HPWL=9.208e+07, Stage=LAL, Iter=11

0 2000 4000 6000 8000 10000 12000

HPWL=6.824e+07, Stage=LSS, Iter=20

0 2000 4000 6000 8000 10000 12000

HPWL=8.572e+07, Stage=LAL, Iter=21

Figure 8. A progression of global placement snapshots from different
iterations and algorithm steps (adaptec1). IP = initial placement,
LAL = look-ahead legalization, LSS = linear system solver. Left-side
placements show lower bounds and right-side placements show
upper bounds.

which appears to be the strongest preexisting placer. SimPL
was 1.12 times faster than FastPlace3—previously the fast-
est academic software. Multi-objective placers based on
SimPL6, 11 also demonstrate their consistent speed advan-
tages over other state-of-the-art placers, and especially so
on larger circuit instances.

6. EXPLOITING PARALLELISM
Further speed-up is possible for SimPL on workstations with
multicore CPUs.
Algorithmic details. Runtime bottlenecks in the sequential
variant of the SimPL algorithm (Section 5)—updates to the
B2B net model and the CG solver—can be parallelized. Given
that the B2B net model is separable, we process the x and
y cases in parallel. When more than two cores are available,
we split the nets of the netlist into equal groups that can be
processed by multiple threads. To parallelize the CG solver, we
applied a coarse-grain row partitioning scheme to the Hessian
Matrix Q, where different blocks of rows are assigned to dif-
ferent threads using OpenMP.5 A core operation in CG is the

112 communications of the acm | june 2013 | vol. 56 | no. 6

research highlights

scales poorly. The initial placement stage was accel-
erated by about three times. While CG remained the
runtime bottleneck of SimPL on eight threads (36% of
global placement), look-ahead legalization became a
close second (>31% of global placement).

7. CONCLUSION
In this work, we developed an algorithm for large-scale VLSI
placement. Typical state-of-the-art placers require over
100,000 lines of C++ code, but our self-contained implemen-
tation of SimPL uses fewer than 5000 lines.f The algorithm is
iterative and maintains two placements—one computes
a lower bound and one computes an upper bound on the
final wirelength. These two placements interact, ensuring
stability and fast convergence of the algorithm. The upper-
bound placement is produced by a new feasibility projection
algorithm—look-ahead legalization.

The SimPL algorithm has seen rapid adoption since its pub-
lication at ICCAD 2010. Two placers6, 11 based on the SimPL
framework finished in top three at the ISPD 2011, DAC 2012,
and ICCAD 2012 routability-driven placement contests orga-
nized by IBM Research. In particular, He et al.6 successfully

Empirical studies evaluated SimPL on an 8-core AMD-
based system with four dual-core CPUs and 16GB
RAM. Each CPU was Opteron 880 processor run-
ning at 2.4 GHz with 1024KB cache. Single-thread
execution is compared to eight-thread execution
in Figure 9. Our combination of multi-threading
and SIMD instruction-level parallelization was 1.6
times faster on average than parallelization based
on multi-threading alone. Theoretically, using
SIMD instruction-level parallelization may speed
up CG by at most four times. However, SIMD-based
implementation of SpMxV only provided marginal
speedups. This is because irregular memory access
patterns of SpMxV prohibit the aligned loading of
values (MOVAPS or _mm_load_ps in Listing 1) to SSE
registers. Nevertheless, SSE instructions were help-
ful elsewhere and contributed to the overall speedup
in global placement. The overall speedups in global
placement runtimes are shown in Figure 10. Solution
quality did not appreciably change, but peak memory
usage increased by 1.91 times whereas global place-
ment was 2.4 times faster. The speedups saturate for
more than four threads as look-ahead legalization

Benchmark Capo10.5 NTUPlaces3 FastPlace3.0 mpl6 SimPL

Name #Cells #Nets HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time

adaptec1 211 K 221 K 88.14 21.08 81.82 7.62 78.67 2.03 77.93 15.65 77.42 2.01
adaptec2 255 K 266 K 100.25 25.44 88.79 7.07 94.06 2.88 92.04 16.20 91.01 2.60
adaptec3 452 K 467 K 276.80 62.19 214.83 14.33 214.13 6.51 214.16 48.29 203.84 5.44
adaptec4 496 K 516 K 231.30 64.60 195.93 14.55 197.50 6.11 193.89 45.90 184.70 4.88
bigblue1 278 K 284 K 110.92 33.42 98.41 12.32 96.65 3.09 96.80 20.43 94.66 3.88
bigblue2 558 K 577 K 162.81 64.44 151.55 23.25 155.75 6.11 152.34 54.02 145.87 5.01
bigblue3 1.10 M 1.12 M 405.40 146.35 360.66 44.90 365.16 18.87 344.10 75.75 351.55 15.51
bigblue4 2.18 M 2.23 M 1016.19 453.72 866.43 100.48 836.20 28.83 829.44 163.15 790.28 23.26
Geometric mean 1.19× 11.55× 1.04× 3.32× 1.04× 1.12× 1.03× 7.28× 1.00× 1.00×

Table 1. Comparison of HPWL (×10e6) and runtime (minutes) on ISPD 2005 benchmarks. Each placer ran as a single thread on a 3.2 GHz Intel
CPU. FastPlace-DP took 40% of runtime for SimPL and FastPlace.

4

3.5

3

2.5

2

1.5

1

0.5

0

1.00

1 2
Number of threads

S
p

ee
d

u
p

s

4 8

CG CG+SSE B2B T&N

1.60

1.00
1.00

1.92
2.28

1.54
1.52

2.00

3.21

1.74
2.15 2.02

3.63

1.87
1.68

Figure 9. Speedup for conjugate gradient (CG) with SSE instructions,
B2B net model construction (B2B), and top-down geometric
partitioning and nonlinear scaling (T&N).

2.5

2

1.5

1

0.5

0

1.00

1 2

Number of threads

S
p

ee
d

u
p

s

4 8

No SSE SSE

1.39

1.68 1.75 1.84

2.32

1.82

2.40

Figure 10. Speedup ratios for global placement on the ISPD 2005
benchmark suite.

f  The SimPL binary is available upon request.

june 2013 | vol. 56 | no. 6 | communications of the acm 113

References
	 1.	A lpert, C.J., et al. Techniques for fast

physical synthesis. Proc. IEEE 95, 3
(2007), 573–599.

	 2.	B renner, U., Struzyna, M., Vygen, J.
BonnPlace: Placement of leading-
edge chips by advanced combinatorial
algorithms. IEEE TCAD 27, 9 (2008),
1607–1620.

	 3.	C han, T.F., et al. mPL6: Enhanced
multilevel mixed-size placement.
ISPD (2006), 212–214.

	 4.	C hen, T.C., et al. NTUPlace3: An
analytical placer for large-scale
mixed-size designs with preplaced
blocks and density constraints. IEEE
TCAD 27, 7 (2008), 1228–1240.

	 5.	D agum, L., Menon, R. OpenMP: An

reimplemented SimPL without having access to our source
code. Recent industry and academic software packages for
ASIC and FPGA placement are now using similar algorithms.
The SimPL algorithm has been extended to multilevel opti-
mization within an industry infrastructure, which currently
produces the best HPWL results on average.10 In this context,
SimPL’s reduced complexity enables fast implementation,
parallel processing, and effective software maintenance.
Upper-bound placements help integrate timing and conges-
tion optimizations; the baseline SimPL algorithm has been
extended to multi-objective optimization, including power-/
thermal-/structure-aware placement as summarized and ref-
erenced in Kim and Markov.9 The recent prosperity of SimPL-
derived algorithms suggests the applicability of look-ahead
techniques to other constrained-optimization problems.

Acknowledgment
This work was supported by Texas Instruments and the
Semiconductor Research Corporation (SRC) Task 2264.001
funded by Intel and IBM.�

© 2013 ACM 0001-0782/13/06

industry standard API for shared-
memory programming. IEEE Comput.
Sci. Eng. (1998), 46–55.

	 6.	H e, X., Huang, T., Xiao, L., Tian,
H., Cui, G., Young, E.F.Y. Ripple: An
effective routability-driven placer by
iterative cell movement. ICCAD (2011),
74–79.

	 7.	H u, B., Marek-Sadowska, M. FAR: Fixed-
points addition & relaxation based
placement. ISPD (2005), 161–166.

	 8.	K ahng, A.B., Wang, Q. A faster
implementation of APlace. ISPD
(2006), 218–220.

	 9.	K im, M.C., Markov, I.L. ComPLx:
A competitive primal-dual Lagrange
optimization for global placement.
DAC (2012), 747–752.

	10.	K im, M.C., et al. MAPLE: Multilevel
adaptive PLacEment for mixed-size
designs. Proc. ISPD (2012).

	11.	K im, M.C., Hu, J., Lee, D., Markov, I.L.
A SimPLR method for routability-driven
placement. ICCAD (2011), 67–73.

	12.	K ahng, A.B., Lienig, J., Markov, I.L.,
Hu, J. VLSI Physical Design: From
Graph Partitioning to Timing Closure,
Springer, 2011, 312.

	13.	K ennings, A.A., Vorwerk, K.
Force-directed methods for generic
placement. IEEE TCAD 25, 10 (2006),
2076–2087.

	14.	K leinhans, J.J., et al. GORDIAN: VLSI
placement by quadratic programming
and slicing optimization. IEEE TCAD

10, 3 (1991), 356–365.
	15.	 Nam, G.J., Cong, J. Modern Circuit

Placement: Best Practices and
Results, Springer, 2007.

	16.	 Pan, M., Viswanathan, N., Chu, C. An
efficient & effective detailed placement
algorithm. ICCAD (2005), 48–55.

	17.	 Raman, S.K., Pentkovski, V., Keshava, J.
Implementing streaming SIMD
extensions on the Pentium III
processor. IEEE Micro 20, 4 (2000),
47–57.

	18.	 Roy, J.A., et al. Capo: Robust and
scalable open-source min-cut
floorplacer. ISPD (2005), 224–226.

	19.	 Saad, Y. Iterative methods for sparse
linear systems. SIAM (2003).

	20.	 Spindler, P., Schlichtmann, U.,
Johannes, F.M. Kraftwerk2 – A fast
force-directed quadratic placement
approach using an accurate net
model. IEEE TCAD 27, 8 (2008),
1398–1411.

	21.	T refethen, L.N., Bau, D. Numerical
linear algebra. SIAM (1997), 296–298.

	22.	V iswanathan, N., Pan, M., Chu, C.
FastPlace 3.0: A fast multilevel
quadratic placement algorithm
with placement congestion control.
ASPDAC (2007), 135–140.

	23.	V iswanathan, N., et al. RQL: Global
placement via relaxed quadratic
spreading and linearization. DAC
(2007), 453–458.

Myung-Chul Kim, Dong-Jin Lee,
and Igor L. Markov ({mckima, ejdjsy,

markov}@eecs.umich.edu), Department of
EECS, University of Michigan, Ann Arbor.

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

