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Goals for Today

• High-level synthesis:
– What is it?
– Main steps of HLS
– Overview of underlying HLS algorithms
– Limitations of HLS

• Ways to improve auto-generated HW:
– Constraints to the HLS tool
– Change your input program



Lab Portion

• Use HLS to implement convolution in hardware, as in a 
convolutional neural network (CNN)

• Use HLS constraints + code changes to achieve nearly 
5X performance improvement vs. baseline



Introduction – Who Am I?

• Professor in the Computer Engineering 
section of the ECE department of the 
University of Toronto.

• Joined the university in 2008 after working 
about 10 years in the computer chip 
(semiconductor) industry…

• In my career, I went back and forth 
between the university and industry…
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Spawn of LegUp Computing Inc.
• Three key student contributors interested 

in commercialization

• Incorporated in 2015
• Seed funding from Intel in 2018 15

Andrew Canis, 

Ph.D, CEO

Ruolong Lian, 

M.A.Sc, COO

Prof. Jason Anderson

Chief Scientific Advisor

Jongsok Choi,

Ph.D, CTO
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Write software
• Easy
• Flexibility à lower performance

Design Custom Circuits
• Efficient, low power
• Need specialized knowledge

Design Methodology



FPGA Hardware’s Potential



Hardware Design is Difficult

• FPGA “success stories” are pervasive, yet the 
technology remains inaccessible to software 
engineers
• Requires use of hardware description languages: 

Verilog and VHDL

• Hardware design skills are rare:
– 10 software engineers for every hardware 

engineer* 
*US Bureau of Labor Statistics
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Hardware Design is Difficult

• FPGA “success stories” are pervasive, yet the 
technology remains inaccessible to software 
engineers
• Requires use of hardware description languages: 

Verilog and VHDL

• Hardware design skills are rare:
– 10 software engineers for every hardware engineer* 

• What is needed:
1. Make hardware design easier for hardware engineers
2. Allow software engineers to design hardware and reap its 

energy/performance benefits
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A Solution

Flexibility/
Ease of Use

High-performance/
Energy-efficiency
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HLS Software 
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Can be updated 
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Can be done by both 
SW/HW designers

by HW designer
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Productivity
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Benefits of HLS

• Shorter time-to-market (lower NRE)

• Easier modifiability/maintainability

– Design spec is in SW

– Important for some appls where spec isn’t firm or 

changes frequently, e.g. finance models

• Rapid exploration of HW solution space

• Make FPGA HW accessible to SW engineers 

– Bring the energy and speed benefits of HW to 

those with SW skills
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LegUp HLS for FPGAs

• HLS framework that takes a C program as 
input, and compiles to either: 
– 1) hardware alone
– 2) a hybrid processor/accelerator system

• Under development since 2009
• 5000+ downloads since first release in 2011
– License for non-commercial research purposes

http://legup.eecg.toronto.edu
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LegUp Processor/Accelerator Flow

Program code

C Compiler
Processor

(MIPS/ARM)

Self-Profiling
Processor

Profiling Data:

Execution Cycles
Power

Cache Misses

High-level
synthesis Suggested

program
segments to 

target to 
HW

FPGA fabric

µP Hardened
program
segments

Altered SW binary (calls HW accelerators)

int FIR(int ntaps, int sum) {
int i;
for (i=0; i < ntaps; i++)

sum += h[i] * z[i];
return (sum);

}
....
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LegUp Pure HW Flow

Program code

C Compiler

High-level
synthesis

FPGA fabric

int FIR(int ntaps, int sum) {
int i;
for (i=0; i < ntaps; i++)

sum += h[i] * z[i];
return (sum);

}
....
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High-Level Synthesis Framework
• Leverage LLVM compiler infrastructure:
– Language support: C
– Standard compiler optimizations

• We support a large subset of ANSI C: 

Supported Unsupported
Functions Dynamic Memory (FPL’19)
Arrays, Structs Recursion
Global Variables
Pointer Arithmetic
Floating Point



How Does High-Level Synthesis Work?



High-Level Synthesis Flow

C Compiler 
(LLVM)C Program

Allocation

Scheduling

Binding

Target H/W 
Characterization

RTL 
Generation

User Constraints
• Timing
• Resource

Synthesizable Verilog

Optimized LLVM IR



LLVM Compiler



LLVM Compiler

• Open-source compiler framework
– http://llvm.org

• Used by Apple, NVIDIA, AMD, Xilinx, others

• Competitive quality with gcc

• LegUp HLS is a “back-end” of LLVM

• LLVM: low-level virtual machine



LLVM Compiler

• LLVM will compile C code into a 
control flow graph (CFG)

• LLVM will perform standard optimizations
– 50+ different optimizations in LLVM

C Program
int FIR(int ntaps, int sum) {

int i;
for (i=0; i < ntaps; i++)

sum += h[i] * z[i];
return sum;

}
....

LLVM

Compiler

CFG

BB0

BB1

BB2



Control Flow Graph

• Control flow graph is composed of basic blocks
• basic block: is a sequence of instructions 

terminated with exactly one branch
– Can be represented by an acyclic data flow graph:

CFG
BB0

BB1

BB2

load load

+

load

+

store



LLVM Details

• Instructions in basic blocks are primitive  
computational operations:
– shift, add, divide, xor, and, etc.

• Or are control-flow operations:
– branch, call, etc.

• The CDFG is represented in LLVM’s 
intermediate representation (IR)
– LLVM IR is machine-independent assembly code



High-Level Synthesis: Scheduling



Scheduling: Key Aspect of HLS
• How to assign the computations of a program 

into the hardware time steps?
– Defines the HW’s finite state machine
C language snippet:

z = a+b;
x = c+d;
q = z+x;
q = q-2;
r = q*2;

Programs do not contain the notion
of “time steps”.
Here, we have:

3 add operations
1 subtract operation
1 multiplication operation



Scheduling

Questions:
• Which operations can be scheduled 

in the same time step?
• Which operations are dependent 

on others?
• If addition takes 5ns, subtraction 

takes 5ns and multiplication takes 
10ns, how to schedule?
– Target clock step length is 10ns

C language 
snippet:

z = a+b;
x = c+d;
q = z+x;
q = q-2;
r = q*2;
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LegUp Uses “SDC Scheduling”

• SDC « System of Difference Constraints
– Cong, Zhang, “An efficient and versatile scheduling algorithm based on SDC 

formulation”. DAC 2006: 433-438.

• Basic idea: formulate scheduling as a 
mathematical optimization problem
– Linear objective function + linear constraints 

(==, <=, >=)

• The problem is a linear program (LP)
– Solvable in polynomial time with 

standard solvers



Define Variables
• For each operation i to 

schedule, create a variable xi
• The xi’s will hold the cycle # in 

which each op is scheduled
• Here we have:

– xadd, xshift, xsub

+ <<

-

Data flow graph (DFG): 
already accessible in LLVM



Dependency Constraints

• In this example, the subtract 
can only happen after the 
add and shift

• Xsub – Xadd >= 0
• Xsub – Xshift >= 0

• Hence the name 
difference constraints

+ <<

-



Handling Clock Period Constraints

• Target period: P (e.g., 10 ns)
• For each chain of dependant 

operations in DFG, find the 
path delay D
– E.g.: D from mod -> or = 23 ns.

• Compute:  R = ceiling(D/P) - 1
– E.g.: R = 2

• Add the difference constraint:
– Xor - Xmod >= 2

mod

xor

shr

or



Resource Constraints

• Restriction on # of operations of a given type 
that can execute in a cycle

• Why we need it?
– Want to use dual-port RAMs in FPGA
• Allow up to 2 load/store operations in a cycle

– Floating point
• Do not want to instantiate many FP cores of a given 

type, probably just one
• Scheduling must honour # of FP cores available



Resource Constraints in SDC

• Res-constrained scheduling is NP-hard
• Implemented approach in [Cong & Zhang DAC2006]

+ +

+

+

+ +

+
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Add SDC Constraints
• Generate a topological ordering of the resource-

constrained operations

• We have K (=2) adders in the HW, 
start at position i (initially K) and create constraint between 
op i and op i-K:

XC – XA >= 1
• Bump up i and repeat:

XE-XB >= 1

A   B   C   E   F   D   G   H 

Resulting schedule will have at most
K adders in a cycle



ASAP Objective Function

• Minimize the sum of the variables: 

• Operations will be scheduled as early as 
possible, subject to the constraints

• LP program solvable in polynomial time

å
Î

=
Ops
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)  minimize(f



High-Level Synthesis: Binding



High-Level Synthesis: Binding

• Weighted bipartite matching-based binding
– Huang, Chen, Lin, Hsu, “Data path allocation based on bipartite weighted 

matching”. DAC 1990: 499-504.

• Finds the minimum weighted matching of a 
bipartite graph at each step 
– Solve using the Hungarian Method (polynomial)

operations

hardware functional units

edge costs



Binding

• Bind the following scheduled program

State 0

State 1

State 2

State 3



Binding

• Resource Sharing: requires 3 multipliers

State 0

State 1

State 2

State 3



State 0

State 1

State 2

State 3

Binding

• Bind the first cycle Functional Units

1

1

1



State 0

State 1

State 2

State 3

Binding

• Bind the second cycle Functional Units
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State 0

State 1

State 2

State 3

Binding

• Bind the third cycle Functional Units
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State 0

State 1

State 2

State 3

Binding

• Bind the fourth cycle Functional Units

3

2

2



Binding

• Required Multiplexing: Functional Units

3

2

2



Exploiting Parallelism



Generating Parallel Hardware

• Easy to extract instruction level parallelism using 
dependencies within a basic block

• But C code is inherently sequential and it is 
difficult to extract higher level parallelism

• LegUp provides two ways to generate parallel 
hardware
– Loop pipelining
– Pthreads/OpenMP



Loop Pipelining –
Loop-Level Parallelism



Loop Pipelining Example

for (int i = 0; i < N; i++) 
sum[i] = a + b + c + d
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Loop Pipelining Example

for (int i = 0; i < N; i++) 

sum[i] = a + b + c + d

1. Sequential Execution
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Loop Pipelining Example

for (int i = 0; i < N; i++) 

sum[i] = a + b + c + d

1. Sequential Execution

+

1 2 3 4 5 6

+ +

+ + +

+ + +

7 8 9

i = 0

i = 1

i = 2

• 3 Cycles/Iteration

• Total Cycles: 3N

• Adders: 3

• Adder Utilization: 33%

Cycles: … 

Not efficient!

. . . 



Loop Pipelining Example

for (int i = 0; i < N; i++) 
sum[i] = a + b + c + d

2. Parallel Execution : Loop unrolling
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Loop Pipelining Example

for (int i = 0; i < N; i++) 
sum[i] = a + b + c + d

2. Parallel Execution : Loop unrolling

• 3 Cycles/Iteration
• Total Cycles: 3
• Adders: 3N
• Adder Utilization: 33%

Not efficient!
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Loop Pipelining Example

for (int i = 0; i < N; i++) 
sum[i] = a + b + c + d

3. Parallel Execution : Loop pipelining

i = 0

i = 1

i = 2
. . . 

+

1 2 3 4 5
+ +

+ + +

+ + +

… 

Steady-state

Cycles:

… 



Loop Pipelining Example

for (int i = 0; i < N; i++) 
sum[i] = a + b + c + d

3. Parallel Execution : Loop pipelining

• 1 Cycles/Iteration 
(steady-state)

• Total Cycles: N+2

• Adders: 3

• Adder Utilization: 100%

Efficient!

i = 0

i = 1

i = 2

. . . 

+

1 2 3 4 5
+ +

+ + +

+ + +

… 

Steady-state

Cycles:

… 



Loop Pipelining

• Overlap execution of adjacent loop iterations
• Can be combined with loop unrolling
• HLS tools typically use an algorithm called:
• Iterative Modulo Scheduling



Loop Pipelining Example

for (int i = 0; i < N; i++) {
a[i] = b[i] + c[i]

}
• Each iteration requires:
• 2 loads from memory
• 1 store

• No dependencies between iterations



Loop Pipelining Example

for (int i = 0; i < N; i++) {
a[i] = b[i] + c[i]

}
• Cycle latency of operations:
• Load: 2 cycles
• Store: 1 cycle
• Add: 1 cycle

• Single memory port



LLVM Instructions
for (int i = 0; i < N; i++) {

a[i] = b[i] + c[i]

}

%i.04 = phi i32 [ 0, %bb.nph ], 
[ %3, %bb ]

%scevgep5 = getelementptr
%b, %i.04

%0 = load %scevgep5
%scevgep6 = getelementptr

%c, %i.04
%1 = load %scevgep6
%2 = add nsw i32 %1, %0
%scevgep = getelementptr

%a, %i.04
store %2, %scevgep
%3 = add %i.04, 1
%exitcond = eq %3, 100
br %exitcond, %bb2, %bb
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Scheduling LLVM Instructions

for (int i = 0; i < N; i++) {

a[i] = b[i] + c[i]

}

• Each iteration requires:
• 2 loads from memory

• 1 store

• There are no dependencies between iterations

Cycle:



Scheduling LLVM Instructions

for (int i = 0; i < N; i++) {

a[i] = b[i] + c[i]

}

• Each iteration requires:
• 2 loads from memory

• 1 store

• There are no dependencies between iterations

Memory Port Conflict

Cycle:



Loop Pipelining Example

for (int i = 0; i < N; i++) {
a[i] = b[i] + c[i]

}
• Initiation Interval (II)
• Constant time interval between starting 

successive iterations of the loop

• The loop requires 6 cycles per iteration (II=6)
• Can we do better?



Minimum Initiation Interval

• Resource minimum II:
– Due to functional units
– ResMII =      Uses of functional unit

# of functional units
• Recurrence minimum II:
– Due to loop carried dependencies

• Minimum II = max(ResMII, RecMII)



Resource Constraints
• Assume unlimited functional units (adders, …)
• Only constraint: single ported memory controller
• Reservation table:

• The resource minimum initiation interval is 3



Iterative Modulo Scheduling

• There are no loop carried dependencies so 
Minimum II = ResMII = 3

• Iterative: Not always possible to schedule the 
loop for minimum II

II = minII

Attempt to modulo 
schedule loop with II II = II + 1

Fail
Success



Iterative Modulo Scheduling

• Operations in the loop that execute in cycle:
i

• Must also execute in cycles:
i + k*II k = 0 to N-1

• Therefore to detect resource conflicts look in 
the reservation table under cycle:

(i-1) mod II + 1
• Hence the name “modulo scheduling”



New Pipelined Schedule



Modulo Reservation Table
• Store couldn’t be scheduled in cycle 6 
• Slot = (6-1) mod 3 + 1 = 3 
• Already taken by an earlier load



Iterative Modulo Scheduling

• Now we have a valid schedule for II=3
• We need to construct the loop kernel, 

prologue, and epilogue
• The loop kernel is what is executed when the 

pipeline is in steady state
– The kernel is executed every II cycles

• First we divide the schedule into stages of II 
cycles each



Pipeline Stages

00

Stage: 1 2 3



Pipelined Loop Iterations

i=0 i=1Stage 1

3 Cycles

i=0

i=2 i=3

i=4

i=3

i=1 i=2

i=0 i=1 i=4

i=4

i=3

i=2

Stage 2

Stage 3

Prologue Kernel 
(Steady State)

Epilogue



Loop Dependencies

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) 

a[j] = b[i] + a[j-1];  // s0

• Dependence distance: 1
• Induction variable: j

Depends on previous iteration



Recurrence Minimum II

for (i = 0; i < N; i++) {
a[i] = b[i] + a[i-1];

}
• How does this loop dependence affect the 

minimum initiation interval?



Cycles in Dependence Graph

Dependence 
Cycle

b[i] address a[i-1] addressa[i] address

Load b[i]

Load a[i-1]

cycle

1

2

3

4

5

+

Store a[i]



Recurrence Minimum II

for (j = 0; j < N; j++) {
a[j] = b[i] + a[j-1];

}
• Dependence cycle has a length of 4
• Dependence distance is 1
• RecMII = Length of cycle in dependency graph 

Loop dependence distance
• RecMII = 4/1 = 4



Loop Pipelining Summary

• Crucial concept in HLS to produce high-speed 
hardware

• Want II to be as low as possible.  Why?
– Total cycles spend in loop is approx.: N*II

• Ability to minimize II limited by:
– Resource constraints 
– Cross-iterations dependencies

• Results impacted by way in which input 
program is structured



Spatial Parallelism



Motivation
• Speed benefits of HW arise from spatial 

parallelism
• Extracting parallelism from a sequential 

program is difficult
• Auto-parallelizing compilers do not work well!

• Easier to start from parallel code
• Pthreads/OpenMP can help!



Programming Models
• LegUp has support for two standard parallel 

programming methodologies:
– Pthreads and OpenMP

114

Programming Models

Sequential
C/C++

Massively Parallel
CUDA/OpenCL

Pthreads/OpenMP
C Standard



Pthreads/OpenMP

115

• Allows software engineer to express parallelism
• Multiple hardware accelerators running in parallel
• Each thread = one hardware accelerator
• Support for thread synchronization: mutexes and barriers 

A[0]
…
A[10]
…
A[20]
…
A[30]
…

B[0]
…
B[10]
…
B[20]
…
B[30]
…

+ = sum

Thread 1

Thread 2

Thread 3

Thread 4

sum+



Pthreads Example

int main() {
…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}

116
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Pthreads Example

int main() {
…
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 
pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 
pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads Example
int main() {

…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {
sum = A[i] + B[i];

}
…

}
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Pthreads Example

int main() {
…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

}
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Pthreads
Wrapper 
Functions

Pthreads in LegUp

int main() {
…
for (i=0; i<4; i++) { 

pthread_create(&threads[i],    
NULL, add, &data[i]);

}

for (i=0; i<4; i++) {
pthread_join(threads[i],   
(void**)&result[i]);

}    
…

}

void *add(void *threadarg) {
...
for (i=startIdx; i<endidx; i++) {

sum = A[i] + B[i];
}
…

} HLS

s4 HW Accelerators

127

add add addadd



Pthreads vs OpenMP
• OpenMP provides an easy/implicit way for 

parallelizing a section of code (e.g. loops)
• Pthreads require explicit thread forks/joins
• Pthreads can be more work but gives more 

control to programmer
• Pthreads can execute different functions in 

parallel



OpenMP/Pthreads Support in LegUp

• Allow Pthreads and OpenMP to be used to 
specify parallel hardware.

• Automatically infer parallel-operating 
accelerators for the parallel-operating threads.

• Permits a easy exploration of a broad 
parallelization landscape.
– Incl. support for nested parallelism.



Nested Parallelism
Pthreads



Nested Parallelism
Pthreads

add sub mult



Nested Parallelism
Pthreads

add sub mult



Nested Parallelism
Pthreads

add sub mult

OMP OMP OMP



Nested Parallelism
Pthreads

add sub mult

OMP OMP OMP



Nested Parallelism

Processor

On-chip Cache

Off-chip Mem

Accel 1 Accel 2 Accel 3



Nested Parallelism

Processor

Multi-ported Cache

Off-chip Mem

Accel 1 Accel 2 Accel 3

1 2 3 2 3 1 2 3

On-chip Cache

Processor 1



Streaming (Dataflow)



Streaming (Dataflow) Benchmarks
• Interconnected computational “kernels” with optional 

intermediate FIFOs 
• A given kernel can accept new inputs every II cycles 

(II called initiation interval)
• Kernel may have multiple “tokens” in flight
• Streaming leveraged frequency in audio, video processing, 

machine learning
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Specifying a Streaming Function
• To generate a streaming interface you must specify 

the function in the LegUp tcl configuration file:

function_pipeline FIRFilterStreaming -ii 1

• The initiation interval (II) is the number of cycles 
between successive inputs to the streaming kernel

• The user can specify the initiation interval
• II=1 is best but may not be possible due to 

dependencies and resource usage
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Manual Transformations to C code
• Changes are likely needed to the original C 

code
• Streaming function should be passed a LegUp

FIFO datastructure instead of passing an array:
void gaussian_filter(FIFO *input_fifo, 

FIFO *output_fifo) {
int input = fifo_read(input_fifo);

• Reduce memory accesses using static arrays in 
function

• Restructure loops
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FIR Filter

int FIRFilterStreaming (int in);

out_valid
out_ready

out_data
in_valid
in_ready

in_data

FIRFilterStreaming

source sink source sink

• 16-tap FIR filter block diagram
• New input/output every clock cycle. First output after 16 cycles

32 32
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Streaming summary
• LegUp-generated block (ready/valid):

FIR Filter
in_ready out_ready

D0 D1

clk

in_valid

out_valid

in_data

in_data out_data

out_data

in_valid out_valid

D2 D3 D4 D5 D6

D0 D1 D2 D3 D4 D5 D6

in_ready = out_ready = 1
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Streaming Pixel Inputs
• New pixel arrives every cycle
• We would like to perform convolution as each pixel arrives

1
4
5



Required Pixel Memory
• Which pixels do we need to store in memory?
• Observe: we only need the previous two rows of pixels

1
4
6



Pixel Shift Register
• We store the previous two rows in a shift register
• Efficient hardware implementation
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Pixel Shift Register
• Now we shift in every new pixel and discard oldest pixel
• Perform dot product on 9 highlighted pixels
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Best Applications for HLS
• Video/image/audio stream processing (algorithmic-heavy) 

• Avoid using C code for describing:
– Unique hardware structure: FFT butterfly
– Cycle-accurate hardware: Bus controller

Image Filtering Audio Beamforming Image Recognition



HLS Research Challenges



Quality of the Hardware
• Performance of HLS-generated circuits not as 

good as human-designed circuits 

• However, HLS-generated circuits are already 
better than SW in many cases



FFT: Hard to Auto-Synthesize



Syntactic Variance / Constraints

for (i = 0; i < 100; i++) {
if (A[i] & 1)

sum += A[i];
else

sum -= A[i];
} 

for (i = 0; i < 100; i++) {
temp1 = sum + A[i];
temp2 = sum – A[i];
sum = (A[i] & 1) ? 

temp1 : temp2;
} 

• HLS tool QoR highly sensitive to style of input 
code + constraints 

• LegUp HLS example:

Cannot loop pipeline Can loop pipeline



Syntactic Variance / Constraints (2)

Fig. 5. Optimizations on the PathGains module including: (a) Loop merging,
(b) Expression balancing, (c) Loop unrolling).

be done offline. Loop merging, unrolling and loop flattening
saves clock cycles if used properly. AutoESL also provides
directives to merge/flatten loops automatically.

As discussed in the previous section, we implemented some
of standard C functions in baseline stage. In the design, some
of those functions are used for a limited number of times. For
example, we are using pow function 11 times in PathDelays

module with constant input. Therefore, replaced these with a
constant.

We describe the code restructuring optimizations for each
of the modules in the following.

PathDelays: We optimized PathDelays in software using
loop merging and removing functions that can be calculated
offline. First, we removed two of the seven blocks because
they are doing initialization. Then we did loop merging to
reduce the number of blocks to three. Figure 3 shows the
final structured code of PathDelays. Each block uses data
from the previous block. Therefore, the optimal hardware will
implement this design in three clock cycles. We unrolled the
loops in each block as shown in Figure 3. Unrolled loops
decreased number of clock cycles, however, this is limited by
the access to the array. In AutoESL, arrays are implemented as
block ram. Code restructuring of PathDelays reduced BRAMs,
FF and LUT usage by 8 to 5(36%), 7581 to 4070 (46%)
and 10170 to 4631 (54%) respectively. The number of clock
cycles decreased from 12430 to 2000 due to loop merging and
removing some of the initialization step to offline. Decreased
number of clock cycles resulted in increase in throughput
drastically by 83%. The code size reduced from 300 lines
to 180 lines.

PathGains: The initial code had 17 blocks. Figure 4 shows
most but not all of these blocks. Each block is embedded
inside a loop. 4 of 17 blocks are responsible for 80% of
computation. These are blocks 1, 2, 3 and 8 in Figure 4. Block
1 initializes an N ⇥ 256⇥ 2 array with random values from a

linear feedback shift register. Blocks 2 and 3 perform shifting
and FIR filtering operations. Block 8 applies the Doppler effect
and calculates the gain for each path. We focused on these
blocks and performed loop merging, expression balancing,
and loop unrolling. In Figure 5, we presented some of the
optimizations. In Figure 5 (a), we merged two loops. This is
a snippet of code for FIR output calculation. This merging
reduced the number of clock cycles from 50215 to 41250, a
20% reduction. Then, we performed expression balancing and
loop unrolling as shown in Figure 5 (a) and (b). We applied
expression balancing to FIR calculation and gain calculation.
We unrolled the innermost loop of the FIR initialization and
FIR shifting as shown in Figure 5 (c). These two optimizations
reduced the number of clock cycles from 41250 to 29730,
and then from 29730 to 20785. The area before and after
restructuring code did not change significantly. The number
of BRAMs and DSP48 remained same, and number of FF
and LUT decreased slightly. All designs had the same clock
period. In general, optimizing the code in software resulted
in a 59%(20215 to 20785) reduction in the number of clock
cycles. Due to code restructuring, C code was reduced to 700
lines to 600 lines.

ChannelFunction: Once again this module did not require
much optimization since we coded this module with restruc-
tured way. This module uses 7 BRAM, 56 DSP, 4448 FF, and
4968 LUT.

D. Bit-Width Optimization

Bit-width optimization impacts both throughput and area.
We manually calculated the required bits for all major vari-
ables and arrays. We achieved this by calculating values of
variables and arrays using floating type. Then we find out
needed bit width for each variable by analyzing the max/min
range for each variable. Then using the AutoESL’s internal
arbitrary precision integer and fixed-point data types (ap int,
ap fixed), we defined new types. This step required more time
and effort than any other step.

PathDelays: We applied bit-width optimization on the re-
structured code. This reduced DSP48E, FF and LUT by 51%
(39 to 19), 89% (4070 to 424), 87% (4631 to 563) respectively
from the previous stage (Restructured). It also increased the
throughput by 90% due to decreased number of clock cycles
from 2000 to 191. The number of BRAMs remained same.

PathGains: We performed bit-width optimization on top
of restructured code for the PathGains module. PathGains is
largest module, and bit-width optimization took a substantial
amount of time. This optimization increased throughput by
56%. Again the throughput increase is resulted from decrease
in number of clock cycles from 20785 to 7967. Bit-width
optimization reduced the number of BRAMs, DSP48E, FF
and LUT by 50% (84 to 42), 58% (112 to 47), 69% (67088
to 20399), and 65% (64176 to 22121) respectively.

ChannelFunction: Finally, we applied bit-width optimiza-
tion to ChannelFunction. It decreased number of clock cycles
from 902 to 529 which resulted in increased throughput by
40%. This step also reduced the number of DSP48E, FF and

Matai et al., “Designing a Hardware in the Loop Wireless Digital Channel Emulator for 
Software Defined Radio”, FPT 2012.

Fig. 8. Slice numbers for scaling number of paths

Fig. 9. Software versus hardware latency for Baseline, Restructured, Bit
width and PUP optimizations of PathDelays, PathGains and ChannelFunction.
Negative (-X) means slower by X than software(SW). Positive X means faster
by X than software.

tained by PUP optimization are compared to the software
performance. The hardware results are better by 46X, 6X and
42X over the equivalent software version. PathGains gave
the worst speedup. This is largely due to the fact that it
uses CORDIC which requires 79 cycles thus limiting the
initiation interval. The comparison of the baseline software
code with our final hardware implementation has significantly
better results; the hardware implementation of PathDelays

and PathGains is 200,000X and 2000X faster respectively. In
other words, restructuring the code gives significant software
performance benefits.

Table II presents the number of clock cycles, clock period
(frequency) and latency of each sub module. The integrated
emulator runs in 62 ns (16 Mhz). This is 41X times faster
than software emulator. The software emulator uses the same
optimized sub modules.

In the first row of Table III, we present area results for
manually integrated version of emulator. In the second row
of Table III, we present the area results for AutoESL based
integrated version of the emulator. The AutoESL based inte-
gration has 5X larger area than manual integrated one while
being 2X times slower than manually integrated emulator.

We spent a total of five weeks to design the emulator. Of
that, three weeks went towards understanding the application
and writing the restructured code. Two weeks was spent

Fig. 10. Performance of initial and optimized versions of software for
PathDelays and PathGains.

Fig. 11. Block diagram of the emulator.

performing bit-width optimization and PUP with the majority
of this time spent on bit-width optimization.

C. Discussion

Quality of Result: The ultimate way to compare the results
from AutoESL is to compare the final optimized design with
hand coded version. This is a difficult endeavor and one
that we would argue is not totally necessary. HLS tools
are reaching the point where if you code the input design
appropriately, then you will get a design close to if you
designed it from RTL. And the HLS tools allows you to
quickly to change the architecture to see its effects. This is not
to say that HLS tools are a panacea. In fact, we hope this article
relays the fact that HLS tools require a good understanding
of how the hardware and the synthesis process works. At this
point these tools are still far from giving great results on code
that was designed by a software programmer. The user of these
tools needs to understand how the tool will synthesize the final
architecture in order to get the best results.

Previous research [1], [2], [3] designed different models and
use different fading and use different parameters. To our best
knowledge, this is the first work that implements statistical



Debugging

• Invariably… things go wrong, e.g.:
– Integration of synthesized HW in system
– Silicon issues: timing, reliability (SEUs)

• Today’s HLS:



Visualization

• Today’s HLS:

HLS

“Black box”

(hundreds/tens) thousands
of lines of HDL code



Visualization (2)

“SW-engineer comprehensible” 
HW visualization capabilities are needed

that guide HW optimization



Common Benchmarking

• No accepted benchmark suite for HLS
– CHStone circuits don’t stress capabilities of 

modern tools
• No accepted benchmarking methodology:
– Push button?
– Constraints, pragmas?

• “Insecurity” among HLS commercial vendors
– Vendors do not permit results to be published



Questions?
http://janders.eecg.utoronto.ca

janders@ece.utoronto.ca
reveller

http://janders.eecg.utoronto.ca/
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