
FPGA IGNITE 2023 SUMMER
COURSE
HLS Lab Portion

Brief Recap of CNNs
• CNNs are producing state-of-the-art image recognition

accuracies
• Acceleration of CNN inference is important

• Training can be done once offline
• Increased emphasis on performing CNN inference in

an embedded computing context
• CNNs are evolving fast

• FPGAs are flexible enough to take advantage of
recent research such as low-precision CNNs

2

Deep Neural Networks
• Deep neural networks

• A multi-layer structure
• Can model more complex problems

3

Output Layer

Hidden Layer

Input Layer • • •

• • •

A Neuron
• The basic element in neural networks

4

z∑

w
1w
2w
3
w
n

+
1

. . .

i
1
i
2
i
3

i
n b

o

! "

= ! " = ! %
&'(

)
(+&, -&) + 0

Chapter 2. Background 5

z! o

w1
w2
w3

wn

+1

!"!"!

i1

i2

i3

in
b

Figure 2.1: A neuron in artificial neural net-
works, o = f(z) = f(

∑n
k=1(wk · ik) + b).

!"""""!"""""!

!""!""!

Output Layer

Hidden Layer

Input Layer

Figure 2.2: A simple deep neural network.

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

y

(a) Sigmoid function, y = 1

1+e
−x

−10 −5 0 5 10
−4

−2

0

2

4

6

8

10

x

y

(b) ReLU function, y = (x > 0) ? x : 0

Figure 2.3: Example activation functions.

2.1.2 Neural Network Training and Inference

Training of a neural network is the process of finding a set of parameters (weights and bias) that minimize

the model’s approximation error on the training dataset. The approximation error can be calculated

by a loss function, which is typically determined based on the task. For example, the Euclidean loss

function is a popular choice for real-valued regression tasks. It computes the sum of squares of differences

between each model output o and desired output t as follows:

E =
1

2N
·

N
∑

i=1

(oi − ti)
2 (2.1)

where N is the total number of samples in the training dataset.

The combination of gradient descent and back-propagation [29] is the most commonly used technique

to train a neural network. Gradient descent aims to minimize the error, E. In gradient descent, the

synaptic weight w, is updated by a value that is proportional to the derivative of total error with respect

to w, i.e.,

w = w − α · ∂E/∂w (2.2)

where the term α is known as the learning rate.

The back-propagation algorithm can be divided into two phases, the forward pass and the backward

pass. Using the neuron model in Figure 2.1 as an example, the forward pass computes the neuron output

Chapter 2. Background 5

z! o

w1
w2
w3

wn

+1

!"!"!

i1

i2

i3

in
b

Figure 2.1: A neuron in artificial neural net-
works, o = f(z) = f(

∑n
k=1(wk · ik) + b).

!"""""!"""""!

!""!""!

Output Layer

Hidden Layer

Input Layer

Figure 2.2: A simple deep neural network.

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

y

(a) Sigmoid function, y = 1

1+e
−x

−10 −5 0 5 10
−4

−2

0

2

4

6

8

10

x

y

(b) ReLU function, y = (x > 0) ? x : 0

Figure 2.3: Example activation functions.

2.1.2 Neural Network Training and Inference

Training of a neural network is the process of finding a set of parameters (weights and bias) that minimize

the model’s approximation error on the training dataset. The approximation error can be calculated

by a loss function, which is typically determined based on the task. For example, the Euclidean loss

function is a popular choice for real-valued regression tasks. It computes the sum of squares of differences

between each model output o and desired output t as follows:

E =
1

2N
·

N
∑

i=1

(oi − ti)
2 (2.1)

where N is the total number of samples in the training dataset.

The combination of gradient descent and back-propagation [29] is the most commonly used technique

to train a neural network. Gradient descent aims to minimize the error, E. In gradient descent, the

synaptic weight w, is updated by a value that is proportional to the derivative of total error with respect

to w, i.e.,

w = w − α · ∂E/∂w (2.2)

where the term α is known as the learning rate.

The back-propagation algorithm can be divided into two phases, the forward pass and the backward

pass. Using the neuron model in Figure 2.1 as an example, the forward pass computes the neuron output

neuron

Key computation is MAC (multiply-accumulate)

Convolutional Layers
• Neurons are organized as a set of

feature maps
• Filters are used to extract new features

from input feature maps
• Applied on a local region
(a.k.a. receptive field)

5

!","" !",$" !",%" !",&"

!$,""

!%,""

!$,$"

!&,""

!","% !",$%

!$,"% !","$!",$$

!$,"$

z

y

x

K

'","% '",$%

'$,"% '","$ '",$$

'$,"$ '","" '",$"

'$,"" '$,$"

K

Output Feature Maps

K

Convolutional Layers

6

Input Feature Maps

3-D Filters

K

Lab Part
• You will synthesize the computations for a CNN’s

convolution layer from C to hardware
• Basic HW synthesis

• From a “vanilla” C implementation
• Loop unrolling and pipelining
• Memory partitioning
• Spatial parallelism with Pthreads

• Observe successively better performance with each step

Convolution Layer in Lab

• 16 input feature maps
• 8 filters ➔ 8 output feature maps
• Filter dim: 3x3 (K = 3)
• Input feature map dim: 30x30
• Output feature map dim: 28x28

LegUp HLS Demo for Part 1 of Lab

Part 2 of Lab
• Apply loop unrolling and pipelining to optimize CNN circuit

performance

• Loop unrolling concept to expose parallelism:
for (im = 0; im < NUM_INPUT_MAPS; im+=1) {

output_fm_value += weights[om][i][j][im] * input_fms[row+i][col+j][im];
}

for (im = 0; im < NUM_INPUT_MAPS; im+=2) {
// two MACs per loop iteration
output_fm_value += weights[om][i][j][im] * input_fms[row+i][col+j][im];
output_fm_value += weights[om][i][j][im+1] * input_fms[row+i][col+j][im+1];

}

Parts 3 and 4 of Lab
• Memory partitioning & spatial parallelism improve speed

• Pthreads flow in LegUp HLS

• Memory partitioning: why?
• Each array in program implemented in a RAM in FPGA
• FPGA RAMs are dual port
• At most two memory accesses/clock cycle

• Can limit hardware performance and loop piplining II

• Memory partitioning idea:
• Partition original array in to multiple arrays
• Each array partition in separate RAM ➔ can be accessed in parallel

• Part 3: partition filter weights array, input feature map array
into two arrays each

11

