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Brief Recap of CNNs

- CNNs are producing state-of-the-art image recognition
accuracies

 Acceleration of CNN inference is important
- Training can be done once offline
- Increased emphasis on performing CNN inference in
an embedded computing context
« CNNs are evolving fast

- FPGAs are flexible enough to take advantage of
recent research such as low-precision CNNs
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Deep Neural Networks

- Deep neural networks
- A multi-layer structure
- Can model more complex problems

Output Layer

Hidden Layer
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A Neuron

- The basic element in neural networks
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ReLU function, y=(x >0)?x : 0

Key computation is MAC (multiply-accumulate)
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Convolutional Layers

- Neurons are organized as a set of - Filters are used to extract new features
feature maps from input feature maps

- Applied on a local region
(a.k.a. receptive field)
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Convolutional Layers

3-D Filters
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Input Feature Maps
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Lab Part

- You will synthesize the computations for a CNN'’s
convolution layer from C to hardware

- Basic HW synthesis
- From a “vanilla” C implementation

- Loop unrolling and pipelining
- Memory partitioning
- Spatial parallelism with Pthreads

- Observe successively better performance with each step
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Convolution Layer in Lab

3-D Filters
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Output Feature Maps

16 input feature maps

8 filters = 8 output feature maps
Filter dim: 3x3 (K = 3)

Input feature map dim: 30x30
Output feature map dim: 28x28
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LegUp HLS Demo for Part 1 of Lab
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Part 2 of Lab

- Apply loop unrolling and pipelining to optimize CNN circuit
performance

- Loop unrolling concept to expose parallelism:

for (im = 0; im < NUM_INPUT MAPS; im+=1) {
output fm value += weights[om][1i][j][im] * input fms[row+i][col+j][im];

} —

for (im = 0; im < NUM INPUT MAPS; im+=2) {

// two MACs per loop iteration
output fm value += weights[om][i][]J][im] * input fms[row+i][col+j][im];

output fm value += weights[om][i][]j][im+1] * input fms[row+i][col+j][im+1];
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Parts 3 and 4 of Lab

- Memory partitioning & spatial parallelism improve speed
- Pthreads flow in LegUp HLS
- Memory partitioning: why?
- Each array in program implemented in a RAM in FPGA
- FPGA RAMs are dual port
- At most two memory accesses/clock cycle
- Can limit hardware performance and loop piplining |l
- Memory partitioning idea:
- Partition original array in to multiple arrays
- Each array partition in separate RAM = can be accessed in parallel

- Part 3: partition filter weights array, input feature map array
into two arrays each
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