
From Software to Accelerators with LegUp High-Level Synthesis

Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar, Marcel Gort,

Jia Jun Qin, Mark Aldham, Tomasz Czajkowski, Stephen Brown, Jason Anderson

ECE Department, University of Toronto, Toronto, ON, Canada

legup@eecg.toronto.edu

Abstract

Embedded system designers can achieve energy and performance
benefits by using dedicated hardware accelerators. However, im-
plementing custom hardware accelerators for an application can
be difficult and time intensive. LegUp is an open-source high-
level synthesis framework that simplifies the hardware accelera-
tor design process [8]. With LegUp, a designer can start from
an embedded application running on a processor and incremen-
tally migrate portions of the program to hardware accelerators im-
plemented on an FPGA. The final application then executes on
an automatically-generated software/hardware coprocessor system.
This paper presents on overview of the LegUp design methodol-
ogy and system architecture, and discusses ongoing work on pro-
filing, hardware/software partitioning, hardware accelerator quality
improvements, Pthreads/OpenMP support, visualization tools, and
debugging support.

Categories and Subject Descriptors B.7 [Integrated Circuits]:
Design Aids

Keywords High-Level Synthesis, Hardware Accelerators, FPGA

1. Introduction

Field-programmable gate arrays (FPGAs) are integrated circuits
that can be programmed by the end user to implement any dig-
ital circuit. Since the dawn of the FPGA era in the 1980s, their
size and complexity has tracked with Moore’s Law, growing expo-
nentially with each process generation. Today’s largest FPGAs in-
corporate billions of transistors and can implement large complex
systems. However, the growing complexity of such systems has
made them increasingly difficult to design. One root of this problem
is that most engineers are accustomed to software development—
typically using C, which is considerably simpler than the circuit
design and verification required for FPGA design.

Implementing a design on an FPGA can offer orders of mag-
nitude improvement over a processor in terms of energy efficiency
and performance for some applications [12, 25]. However, to ac-
cess such benefits, an FPGA designer faces many challenges that
do not exist in software development, such as choosing a suitable
datapath architecture, implementing control logic, verifying the cir-
cuit functionality with a cycle-accurate simulator, and finally, using
a static timing analysis tool to ensure timing constraints are met.
The speed and energy efficiency of computing could be improved
tremendously if this programmability hurdle could be lowered, es-
pecially considering that software developers outnumber hardware
designers 10 to 1 [32].

One approach to ease the FPGA design burden is to use high-
level synthesis (HLS), which automatically generates a cycle-
accurate RTL circuit description from a high-level untimed C soft-
ware specification. Recently, high-level synthesis has gained sig-

nificant traction in industry as evidenced by many new commercial
offerings: eXCite from Y Explorations [34], Calypto Catapult [16],
Forte Cynthesizer [19], Xilinx Vivado [21], and Altera’s OpenCL
Compiler [17]. The advantage of high-level synthesis is that a cir-
cuit designer can work more productively at a higher level of ab-
straction, and achieve faster time-to-market than using manually
designed RTL.

We have implemented an open-source high-level synthesis re-
search framework called LegUp [8]. An overarching goal of LegUp
is to offer a programming paradigm for FPGAs that simplifies
the design process for software engineers who are not familiar
with hardware design. Using LegUp, the designer first implements
their algorithm on a processor, then incrementally offloads por-
tions of the program into hardware accelerators that execute in tan-
dem with the processor, thereby achieving improved speed and en-
ergy consumption. The tool encourages the exploration of the soft-
ware/hardware design space, for example, by running only critical
or highly parallelizable portions of the application in hardware, and
running the remainder on a processor. Being one of the few robust
open-source HLS frameworks, LegUp is a powerful platform that
enables research in a variety of areas including HLS algorithms,
hardware/software co-design, and embedded systems. LegUp 3.0
was released in January 2013 and is available for download at:
http://legup.eecg.toronto.edu.

In this paper, we provide an overview of the LegUp project and
discuss our recent research directions. The remainder of this paper
is organized as follows: Section 2 provides an overview of LegUp’s
design methodology and target architecture. Section 3 presents a
method of automating the hardware/software partitioning when re-
targeting an algorithm from a software implementation to an FPGA
processor/accelerator system. Section 4 discusses quality improve-
ments that we have made to LegUp’s high-level synthesis algo-
rithms. Section 5 presents LegUp’s support for parallel programs
described with Pthreads and OpenMP, which can use multiple hard-
ware accelerators running concurrently. Section 6 discusses work-
in-progress on a debugging platform and also describes our hard-
ware visualization tool. Conclusions are given in Section 7.

2. LegUp Flow Overview

Fig. 1 illustrates the steps of the LegUp design methodology. Re-
ferring to the labels in the figure, at step À, the designer imple-
ments their application in software using C, targeting a soft-core
MIPS processor running on the FPGA [33]. As the application ex-
ecutes in step Á, a built-in hardware profiler [2] identifies critical
sections of the code that would benefit from a hardware implemen-
tation. Using this profiling information in step Â, the user marks
functions in the program to be synthesized into hardware acceler-
ators. The application is re-compiled by LegUp in step Ã, which
automatically converts the marked sections into hardware acceler-

978-1-4799-1400-5/13/$31.00 ©2013 IEEE

Program code

C Compiler
Processor

(MIPS)

Self-Profiling

MIPS Processor

Profiling Data:

Execution Cycles

Power

Cache Misses

High-level

synthesis Suggested

program

segments to

target to

HW

FPGA fabric

µP Hardened

program

segments

Altered SW binary (calls HW accelerators)

....

y[n] = 0;

for (i = 0; i < 8; i++) {

y[n] += coeff[i] * x[n-i];

}

....

1

2

3

LegUp

6

5

4

Figure 1. Design flow with LegUp.

ators using LegUp’s high-level synthesis engine. Next, in step Ä,
the original software is re-compiled with the accelerated functions
replaced with code to start the corresponding hardware accelerators
and pass any required function parameters to the hardware. Finally,
the hybrid processor/accelerator system executes on the FPGA in
step Å. In this self-accelerating adaptive system, the designer can
harness the performance and energy benefits of an FPGA using
an incremental methodology, while limiting time spent on hard-
ware design. The LegUp programming flow bears some similar-
ity to GPGPU programming (using languages like CUDA [26] and
OpenCL [1]) in the sense that we allow the programmer to itera-
tively and incrementally work to raise performance, with the whole
program working correctly at all times.

2.1 LegUp System Architecture

LegUp can target two Altera FPGAs: the Cyclone II on the Altera
DE2 board [5], and the Stratix IV on the Altera DE4 board [6]. The
target system architecture is shown in Fig. 2. The system comprises
the MIPS soft processor, hardware accelerators, on-chip cache, as
well as off-chip memory (8MB SDRAM on the DE2 board or 2GB
DDR2-SDRAM on the DE4 board). An accelerator may have lo-
cal memories for storing data that is not shared with the proces-
sor or other accelerators. These local memories are implemented
in on-chip block RAMs, instantiated within a hardware accelera-
tor. Data shared between the processor and hardware accelerators
is stored in off-chip memory, which can be accessed using the on-
chip cache. The components of the system communicate via the
Avalon Interconnect, Altera’s on-chip interface, which is generated
automatically by Altera’s SOPC Builder tool [7]. Avalon is a point-
to-point network, which allows multiple independent transfers to
occur simultaneously via memory-mapped addresses. When multi-
ple components are connected to a single component, such as the
on-chip data cache, a round-robin arbiter is generated to arbitrate
among simultaneous accesses.

2.2 Multi-ported caches

When many accelerators are operating in parallel, memory band-
width can easily become a performance bottleneck. The on-chip
RAMs on current commercial FPGAs have two ports, meaning that
for a given memory block, there can only be up to two memory ac-
cesses at a time. However, for systems with many accelerators that
need to access memory concurrently, two ports may not be ade-
quate and cache accesses may limit performance. A typical way

Figure 2. Default LegUp system architecture.

to increase memory bandwidth is to use multiple coherent mem-
ory blocks, with extra circuitry to manage memory coherency be-
tween the memory blocks. However, by implementing memory co-
herency we add area and latency overhead. Thus, we take an alter-
nate approach, where we implement multi-ported memories (that
have more than 2 ports) using existing dual-ported memory blocks.
We can then use these multi-ported memories to implement multi-
ported caches suitable for many-accelerator systems.

We have investigated two types of multi-ported caches, called
the LVT cache and theMP cache [10], both of which allow multiple
concurrent accesses to all regions of the cache in every clock cycle.
The LVT cache is based on memory replication, whereas the MP
cache uses memory multi-pumping (operating the memory at a
higher clock rate than the surrounding system). The main advantage
of both cache architectures is that they offer higher on-chip memory
bandwidth than what is typically available on the FPGA fabric,
while providing a shared memory space which acts as a single piece
of memory. These caches also require no cache coherency scheme,
avoiding the area and latency costs for synchronization.

3. Hardware/Software Partitioning

With the LegUp design methodology, the program is partitioned
into both a hardware portion and a software portion. The chosen
partitioning depends on the designer’s objective, which is often to
reduce overall execution time. Towards this goal, the MIPS soft
processor contains a hardware profiler to determine which sections
of the original program are taking the most execution time. LegUp
can also estimate the speedup associated with migrating a particular
program segment into hardware versus leaving it in software.

3.1 Hardware Profiling

The hardware profiler in the MIPS soft processor is called LEAP,
which stands for Low-overhead and Extensible Architecture for
Profiling [2]. For each function in a program, the profiler can be
used to quickly and accurately obtain the exact number of clock cy-
cles spent executing the function. In software-based profiling, the
program being profiled must be modified with instrumentation to
gather profiling data during its execution. In contrast, our hardware-
based approach allows the program to execute in its original un-
modified form at full speed on the processor. The MIPS processor
is augmented with additional circuitry that automatically gathers
profiling data as the program executes. Such hardware profiling is
superior in speed and accuracy when compared to software profil-
ing.

Instr, PC

yes

Store/Update Data

Counter

Reset Data Counter

Pop function number

off stack

Is return?

Store/Update Data

Counter

Push

function

number to

stack

yes

Reset Data Counter

Is call?

yes

Data

Counter++

PC

Change?

Hash to

function

number

Figure 3. High-level flow chart for instruction-count profiling.

The high-level operation of LEAP is shown in Fig. 3. LEAP
profiles the execution of the program by monitoring the proces-
sor’s program counter and instruction bus. During execution, LEAP
maintains a counter, called a Data Counter, that tracks the number
of times an event has occurred. Two modes are available: the pro-
filer can count dynamic instructions, or clock cycles.

LEAP organizes the collected data on a per-function basis by al-
locating a storage counter for each software function. LEAP iden-
tifies function boundaries by decoding (in hardware) the executing
instruction to determine if it is a function call or return. If a call is
detected, the Data Counter is added to any previously stored values
associated with the function containing the call instruction (from
previous invocations of the function). The Data Counter is then re-
set to 0 to begin counting the events in the called function. If a
function return is detected, the Data Counter value is added to the
counter associated with the current function, and once again the
Data Counter is reset.

In order to determine the counter associated with a particular
function, other hardware profilers, such as SnoopP [30] (a hard-
ware profiler for FPGA-based processors), use a large number of
comparators to associate program counter address ranges with in-
dividual counters. A novel aspect of LEAP is the use of perfect
hashing hardware to associate function addresses with counters. A
set of hashing parameters are generated during the software compi-
lation stage (step À in Fig. 1) and used to configure the profiler
on the FPGA. No modifications of the hardware profiler circuit
(e.g. resynthesis or reprogramming) are needed to profile a new
program. The use of hashing leads to significantly less hardware
overhead when compared to other hardware profilers. Specifically,
relative to SnoopP, our design requires up to 18× less area [2].

3.2 Accelerator Speedup Prediction

By using the LEAP profiler, the user can identify time-consuming
program segments. However, these compute-intensive functions

may not be suitable for hardware acceleration, perhaps because
they contain a sequential algorithm with minimal instruction level
parallelism or they are too memory intensive. Ideally, we would
know exactly how much execution time would be saved by synthe-
sizing a segment of software code into a hardware accelerator.

One way we could gauge the speedup achieved by hardware ac-
celeration is to actually convert the segments into hardware circuits
and then run the program on the board to measure the results. But
this approach is too time consuming if there are many alternatives
to investigate, as it requires running FPGA synthesis and place-
and-route tools for each alternative. Alternately, one could run an
RTL simulation to measure the execution time, in cycles, of the fi-
nal hybrid system. However, this method is also time-consuming
and becomes infeasible in real applications.

To aid in the task of software/hardware partitioning, LegUp
provides an estimate of the total number of clock cycles consumed
by a function if it is accelerated in hardware, which can then
be compared to the LEAP profiling results described above. This
approach uses profiling (in software) to estimate the execution flow
of the processor/accelerator hybrid system and then uses early high-
level synthesis scheduling information to predict the number of
cycles required by portions of the program after being synthesized
to hardware.

When synthesizing a software program into a hybrid system,
LegUp replaces the accelerating functions with wrapper functions
to enable communication between the processor and accelerators.
The call to a wrapper function starts the accelerator’s execution
and the return from the wrapper function indicates the accelera-
tor finished its execution. Our estimation approach considers the
hardware cycles spent on three operations: 1) the execution of the
hardware accelerator, 2) the accelerator’s initialization performed
by the software wrapper function, and 3) reads and writes to the
shared memory space.

We estimate the cycles taken during the accelerator’s execution
in two steps. First, we perform HLS scheduling for the accelerated
function to determine the number of clock cycles required for
each basic block in the function. A basic block is a contiguous
set of instructions with a single entry (at its beginning) and exit
point (at its end). Next, we execute the program in software using
representative inputs to estimate the number of times each basic
block is executed. Finally, we estimate the total cycle count of the
accelerated function by multiplying the estimated number of times
each basic block is executed by the number of clock cycles required
by the corresponding basic block in its schedule.

To estimate the time taken by the software wrapper function
running on the processor, we count the number of instructions
required by the wrapper. The instruction count is sufficient for
wrapper function estimation, as the wrapper function is small and
only contains simple operations to communicate with hardware
accelerators, and we have found empirically that the instructions-
per-cycle of the MIPS processor is close to one.

We estimate the cycles spent accessing shared memory in three
steps. First, we run the program with a representative set of inputs
using a MIPS emulator to determine the address sequence accessed
by the software program (without hardware accelerators). Next,
we predict the address sequence accessed by the hybrid proces-
sor/accelerator system by eliminating any addresses that are stored
in local memory of the hardware accelerators. Then, we use a cache
simulator to determine the number of cache hits and misses. Finally,
we can use the estimated cost of a cache hit or miss (in cycles) to
predict the total cycles spent on shared memory accesses.

Experimental results show that our approach has an average
error rate of about 7% compared to the results obtained from RTL
simulation, but with 184× less run-time on average.

3.3 Partitioning Example

An example of hardware/software partitioning is provided in Ta-
ble 1 for four functions of the jpeg benchmark in the CHStone
benchmark suite [15]. In the “Profiling” column, the table presents
the number of cycles required by the function when running on the
MIPS soft processor (profiled using LEAP). In the “Estimation”
column an estimate of the execution cycles are given when the
function is migrated to a hardware accelerator. The “Simulation”
column gives the actual number of execution cycles measured us-
ing cycle-accurate simulation of the generated hybrid system. As
shown in the table, if we select the function with the most soft-
ware cycles (on the MIPS determined using LEAP) for accelera-
tion, function buf getb will be synthesized to hardware, resulting
in 63,337 cycles of actual reduction versus a pure-software imple-
mentation. However, by choosing the function that has the highest
estimated cycle reduction, function YuvToRgb will be synthesized
to hardware, leading to an execution time reduction of 327,308 cy-
cles.

Currently, based on the profiling and estimation results, users
can choose which function to accelerate based on the estimated
speedups. In the long run, we would like LegUp to act as a self-
accelerating adaptive processor, that will profile running applica-
tions and automatically synthesize code segments into hardware,
improving performance without user intervention.

Table 1. Software Cycles and Hybrid Cycles of JPEG Benchmark.
Profiling Estimation Simulation

Software Hybrid Reduced Hybrid Reduced

Functions Cycles Cycles Cycles Cycles Cycles

buf getb 713,102 582,386 130,716 649,765 63,337

ChenIDct 657,775 678,617 -20,842 681,366 -23,591

YuvToRgb 569,501 158,891 410,610 242,193 327,308

buf getv 564,650 222,027 342,623 241,306 323,344

4. Hardware Accelerator Quality

High-level synthesis has traditionally been divided into three
steps [13]: allocation, scheduling and binding. Allocation deter-
mines the properties of the target hardware: the number of func-
tional units available, the number of pipeline stages of each func-
tional unit, and the estimated functional unit delay. Scheduling
assigns each operation to a state, while satisfying data and control
dependencies, and constructs a finite state machine to control the
datapath. The LegUp HLS tool uses SDC scheduling [11], which
formulates the scheduling problem mathematically as a linear pro-
gram. Binding is performed after scheduling to assign the opera-
tions in the program to hardware functional units. When multiple
operators are assigned to the same hardware unit, multiplexers are
added to facilitate the sharing. LegUp uses a weighted bipartite
matching heuristic to solve the binding problem [22], which can be
optimally solved in polynomial time [24].

An ongoing challenge in high-level synthesis is to generate
circuits that can meet realistic FPGA design constraints that are
comparable to hand-designed digital circuits. Towards this goal,
we have improved the high-level synthesis algorithms of LegUp by
analyzing the impact of compiler passes, investigated the impact
of bitwidth minimization, added support for loop pipelining and
explored multi-pumping the FPGA DSP blocks.

4.1 Compiler Passes

Modern HLS tools are implemented within software compiler
frameworks, and consequently, the programs that are input to such
tools are subjected to standard compiler optimizations applied be-
fore HLS commences. Compilers perform their optimizations in
passes, where each pass is responsible for a specific code transfor-
mation, for example, dead-code elimination, constant propagation,

0.6

0.8

1

1.2

1.4

1.6

1.8

#
�o
f�
cl
o
ck
�c
y
cl
e
s�
(g
e
o
m
e
a
n
�r
a
ti
o
)

Figure 4. Impact of individual compiler passes on geomean clock
cycle latencies across 11 benchmarks.

loop unrolling, or loop rotation. The passes within these compiler
frameworks were intended to optimize software programs that run
on a microprocessor. We studied the impact of these passes for
HLS-generated hardware.

LegUp is implemented within the LLVM compiler frame-
work [20], which contains implementations for 56 optimization
(transform) passes that may alter the program. LLVM represents
the program being compiled using an intermediate presentation
(IR) that is essentially machine-independent assembly code. Com-
piler passes receive the IR as input, and produce an optimized IR as
output. The familiar command-line optimization levels (e.g. -O3)
correspond to a particular set and sequence of compiler passes.
While the standard compiler optimization levels offer a simple set
of choices for a developer, the particular optimizations applied at
each level are generally chosen to benefit the run-time of a basket of
programs. It is not guaranteed, for example, that for a specific pro-
gram the -O3 level produces superior results to the -O2 level. This
has led the (software) compiler community to consider selecting a
particular set of compiler optimization passes on a per-program (or
even per-code-segment) basis. Such “adaptive” compiler optimiza-
tion has been the subject of active research in recent years, with a
few examples of highly-cited works being [3, 27, 31].

Our research [23] in this area has focussed on two issues:
1) determining the impact of different compiler passes on HLS-
generated hardware and 2) creating an HLS-oriented approach to
the application of compiler optimization passes.

4.2 Analysis of Passes

To understand the effect of compiler passes on hardware, we con-
ducted a wide range of experiments to explore: 1) the impact of
each LLVM pass in isolation, and 2) the impact of pass ordering.

We begin by analyzing LLVM optimization passes in isolation
relative to -O0 (no optimization). Fig. 4 shows how a subset of
passes individually affect the number of hardware execution cy-
cles – the cycle latency. The horizontal axis lists the names of
each pass. The vertical axis represents the geometric mean ratio
(over 11 benchmarks) of cycle latency when a particular pass is
used, relative to the -O0 case. Values less than 1 represent reduc-
tions in cycle latency relative to the baseline case. Of the 56 dif-
ferent LLVM passes, only the 13 passes shown in the figure, im-
pacted the geomean cycle latency by more than 1% when applied
in isolation. Observe in the figure that passes, -loop-extract
and -loop-extract-single caused a large increase in the ge-
omean number of execution cycles. Both of these optimizations ex-

tract loops into separate functions. The LegUp HLS tool does not
optimize across function boundaries, and moreover, implements
each function as a separate Verilog module, with handshaking be-
tween modules occurring when one function calls another. Outlin-
ing loops as functions therefore naturally leads to higher numbers
of execution cycles. The -inline pass has precisely the opposite
effect: a large decrease in cycle latency is observed when callees
are collapsed (inlined) into callers.

Another observation obtained by analyzing passes in isolation,
was that the set of beneficial passes is highly benchmark dependant.
Therefore, we created custom “recipes” of passes tailored to each
benchmark. Only those passes that positively benefited the particu-
lar benchmark were selected and were ordered alphabetically. The
results of these recipes showed clock cycle latency improvements
over -O3 (the default optimization level for LegUp) for 10 of our
11 benchmarks.

We also considered the order in which passes are applied. We
selected 33 passes, comprised of all those passes that had an impact
in isolation (on top of -O0) and also those passes that had an
impact when removed from -O3. We considered all pairs of passes

(of which there were
(

33

2

)

= 528 pairs) from this group and
evaluated the pairs in both orders. Of the 528 pass pairs, 411 had
a difference in their impact depending on the ordering. The results
clearly demonstrate the importance of pass ordering on HLS quality
of results for the majority of pass pairs.

4.3 HLS-Directed Compiler Optimizations

Given our experience with customized recipes and the observation
that the compiler passes beneficial to each benchmark are both
benchmark dependent and order dependent, we felt it would be
difficult to devise a single recipe of passes that would benefit
all circuits. We therefore proposed a HLS-directed approach to
the application of compiler optimization passes. At a high level,
our approach works as follows: we iteratively apply one or more
passes and then “score” the result by invoking partial HLS coupled
with rapid profiling (in software). Transformations made by passes
deemed to positively impact hardware are accepted. Conversely, we
undo the transformations of passes that we predict to be damaging
to hardware quality.

We implemented and evaluated three variants of our HLS-
directed approach to the application of passes, which we refer to
as the iteration method, the insertion method, and the insertion-
3 method. The first two variants differ from one another in their
implementation of how a chosen pass p are applied to the best IR
found so far. In the iteration method, we traverse all passes in an or-
der based on the pairs analysis results (as described in Section 4.2)
so that the pairwise pass ordering favors reductions in clock cycle
latency. We apply the passes in order, in particular, we apply the
selected pass, p, at the end of the pass recipe that produces the best
IR so far.

In the insertion method, we consider all possible insertion po-
sitions for p in the recipe that produced the best IR so far, and
keep the recipe and IR corresponding to the insertion position that
produced the IR with the lowest number of clock cycles. Our last
variant, insertion-3, extends the insertion method by storing the
top 3 IRs and recipes, instead of storing the single best IR and
recipe. In insertion-3, the chosen pass p is applied to all 3 of the
top IRs/recipes.

Table 2 shows the geomean and ratio of speed-performance
results over 11 benchmark circuits optimized using five differ-
ent compiler optimization flows: no optimization (-O0), standard
-O3 optimization, the iteration method, insertion method, and the
insertion-3 method. First, observe that -O3 provides a clear ad-
vantage over -O0: clock cycle latencies without any optimization
are 12% higher, on average, vs. with -O3. All of the flows pro-

Table 2. Compiler passes performance results (IT: Iteration
Method, IN: Insertion Method, IN3: Insertion-3 Method).

Clock Cycles Wall Time (µs)
Flows Geomean Ratio Geomean Ratio

-O0 18,404 1.12 300 1.16

-O3 16,381 1.00 260 1.00

IT 14,717 0.90 231 0.89

IN 14,572 0.89 229 0.88

IN3 13,641 0.83 217 0.84

Figure 5. Time sequence of a loop pipeline with II=3 and five loop
iterations.

duce significantly better results than -O3, on average. The iteration
method provides 10% improvement; the insertion method offers
11% improvement; and, the insertion-3 method provides 17% im-
provement in cycle latency. These results tracked very well with the
improvement in wall clock time, as shown in right-side of the table.

We believe the automated approaches to selecting compiler op-
timizations on a per-program basis are practical, and will be of keen
interest to FPGA users seeking high design performance. Such
approaches also appear to be a useful mechanism for narrowing
the gap between HLS-generated hardware and manually-designed
RTL.

4.4 Loop Pipelining

In many applications, the majority of time is spent executing criti-
cal loops. Loop pipelining is a way of extracting parallelism auto-
matically from a program by analyzing loops and generating hard-
ware pipelines to exploit the inherent parallelism across loop it-
erations. Loop pipelining is based on a compiler technique tra-
ditionally aimed at VLIW processors called software pipelining.
A popular software pipelining technique is called iterative mod-
ulo scheduling [28], which has been adapted for loop pipelining in
high-level synthesis by C-to-Verilog [18], PICO [29], and also by
LegUp.

Iterative modulo scheduling combines list-scheduling, back-
tracking, and a resource reservation table to reorder instructions
from multiple loop iterations into a set of stages comprising the
loop kernel. The kernel of a loop pipeline starts a new loop itera-
tion every II cycles, where II is the initiation interval, which is also
the number of cycles between successive inputs to the pipeline.
The kernel consists of one or more pipeline stages that all execute
in parallel.

Fig. 5 shows the time sequence of a loop pipeline with an initia-
tion interval of three cycles and a kernel consisting of three pipeline
stages executing in parallel. At any time step in the steady-state
operation of the pipeline, we are executing operations from three
consecutive iterations of the loop, one in each pipeline stage. For
instance, when the pipeline initially reaches steady state, loop iter-
ations: i = 0, i = 1, and i = 2 are all executing, and iteration
i = 0 is finishing. In Fig. 5, the prologue is the time period when
the pipeline is filling up, while the epilogue is the time period when
the pipeline is flushing (loop execution is concluding). Compared
to sequential execution, loop pipelining increases parallelism by

overlapping the execution of loop iterations, which decreases the
time required to complete the loop while increasing hardware uti-
lization.

LegUp supports loop pipelining of simple loops which consist
of a single basic block and where the loop bounds are not modi-
fied during loop execution. The loop body can contain multi-cycle
operations such as floating point and memory operations. Simple
cross-iteration dependencies are supported with conservative alias
analysis. The current implementation assumes that whenever the
loop body contains a read and write to the same array that a depen-
dency exists between the current and previous loop iteration. Fu-
ture releases of LegUp will include more advanced cross-iteration
dependency analysis.

4.5 Multi-Pumping

For applications that involve many multiplication operations,
LegUp uses a new approach to resource sharing that allows multi-
ple operations to be performed by a single multiply functional unit
in one clock cycle [9]. Our approach is based on multi-pumping,
which operates functional units at a higher frequency than the sur-
rounding system logic, typically 2×, allowing multiple computa-
tions to complete in a single system cycle. This method is partic-
ularly effective for the DSP blocks on modern FPGAs. The hard-
ened DSP blocks in modern FPGAs can operate a speeds exceeding
500 MHz, whereas typical system speeds are less than 300 MHz.
We have found that multi-pumping is a viable approach to achieve
the area reductions of resource sharing, with considerably less neg-
ative impact to circuit performance. For a given constraint on the
number of DSPs, multi-pumping can deliver considerably higher
performance than resource sharing. Empirical results over digital
signal processing benchmarks show that multi-pumping achieves
the same DSP reduction as resource sharing, but with a lower im-
pact to circuit performance: decreasing circuit speed by only 5%
instead of 80%.

4.6 Bitwidth Minimization

Software programs today use standard datatypes that are 8, 16, 32,
or 64-bits in length. As such, programs are over engineered in the
sense that variables are frequently represented using more bits than
are actually required, e.g. a 32-bit int datatype may be used for a
loop index that is known to have a range from 0 to 100. Because
processor datapaths are of fixed widths, there is little to be gained in
term’s a software program’s performance by optimizing bitwidths.
However, in HLS, hardware quality (area, speed and power) is
impacted considerably by the bit-level representation of program
variables.

LegUp uses two strategies to statically (i.e. at compile time)
or dynamically (i.e. using run-time profiling) determine minimized
representations of variables: 1) range analysis and 2) bitmask anal-
ysis. Range analysis seeks to determine the maximum and mini-
mum values that variables take on in a program’s execution and in
so doing, bound the number of bits required to represent the vari-
able. Variable ranges can be deduced from constants in the source
code, and then propagated through a program’s control-dataflow
graph to infer ranges for other variables. Bitmask analysis, on the
other hand, seeks to characterize the individual bits in a variable.
For example, assume that A and B are unknown 16-bit values and
consider the C-language statement: Z = A & (B << 2). In this
case, the two right-most bits of Z are guaranteed to be logic-0 and
this property can be applied to minimize the size of hardware that
uses Z as an operand (e.g. ifZ feeds into a multiplier, the two right-
most bits of the product are guaranteed to be logic-0). Note that
while bitmask analysis guarantees that Z’s two LSBs are 0, range
analysis can infer nothing regarding Z’s min and max values. The
two forms of analysis thus offer complementary information.

Table 3 shows the results of applying bitwidth minimization
techniques for the set of CHStone [15] benchmarks, targeted to the
Altera Cyclone II 90nm commercial FPGA [4]. Based on static
analysis alone that analyzes both ranges and bitmasks, circuit area
can be reduced by 9%, on average, compared with Altera’s Quar-
tus II RTL synthesis tool, which itself significantly prunes the cir-
cuit based on constants in the RTL code. With additional dynamic
profile-driven analysis, area reductions increase to 34%, on aver-
age, with the caveat that results are only guaranteed to be correct
if the values of variables remain within the ranges that were ob-
served during profile-driven analysis. Full details of our bitwidth
minimization approach can be found in [14].

5. Pthreads and OpenMP

One source of the quality gap between HLS-generated hardware
and human-designed hardware is the inability of HLS to fully
exploit the parallelism available in the target FPGA fabric for a
given application. Current HLS tools can typically employ instruc-
tion level parallelism and loop pipelining to execute multiple op-
erations in parallel. This fine-grained parallelism, however, is of-
ten not enough to meet the performance requirements of a high-
performance system. Coarse-grained parallelism is often realized
by using an HLS tool to synthesize a single hardware core, and then
manually instantiating multiple instances of the core in structural
HDL. Some commercial HLS tools, such as Vivado [21], allow this
to be done through vendor-specific pragmas. Although the use of
vendor-specific pragmas can ease the process of instantiating multi-
ple hardware cores, it nevertheless requires knowledge of hardware
design – a barrier for software engineers. We addresses this chal-
lenge by providing a mechanism through which an engineer may
use software techniques to specify parallelism to the LegUp HLS
tool, with the tool then implementing the specified parallelism in a
hardware circuit.

LegUp provides support for two standard parallel programming
methodologies which software engineers are likely familiar with –
Pthreads and OpenMP. Parallelism described in the software code
is automatically synthesized into parallel hardware accelerators that
perform the corresponding computations concurrently. Parallel pro-
gramming in software often requires the use of synchronization
constructs that, for example, manage which threads may execute
a given code segment at any given moment. Recognizing this, we
also provide HLS support for two key thread synchronization con-
structs in the Pthreads/OpenMP library: mutexes and barriers. The
approach we take is to automatically instantiate parallel hardware
for parallel threads. That is, each software thread is mapped auto-
matically into a hardware accelerator. The remaining (sequential)
portions of the program are executed in software on the MIPS soft
processor.

Table 4 shows a list of Pthreads and OpenMP library func-
tions which are currently supported by LegUp. In addition to those
listed in the table, OpenMP clauses to set the number of threads
(num threads), the scopes of variables (e.g. public, private)
and the division of work among threads (static scheduling of any
chunk size) are also supported. Note that all of the OpenMP/Pthreads
functions in Table 4 are automatically compiled in our framework,
requiring no manual code changes by the user. Meaning that, the
input C program with calls to the Pthreads/OpenMP API can be
compiled to a hybrid processor/accelerator system as is. The com-
plete system, including theMIPS processor, on-chip cache, off-chip
memory controller, as well as parallel accelerators, can be created
with a single make target.

Table 3. Bitwidth minimization Cyclone II implementation results.
LUTs Registers FMax (MHz)

Benchmark Baseline Bitmask+ Dynamic+ Baseline Bitmask+ Dynamic+ Baseline Bitmask+ Dynamic+

Range Bitmask Range Bitmask Range Bitmask

dhrystone 5244 4120 3738 3575 3131 2438 117.94 114.09 115.96
fft 2046 2043 1880 1048 1028 746 92.89 91.3 91.3

adpcm 21695 18631 7036 11039 10020 4291 55.46 56.04 56.16
aes 19784 15792 8871 11470 9162 4066 49.38 49.82 46.47

blowfish 10621 10590 10296 7412 7353 7040 75.41 73.61 71.62
gsm 9787 9645 7807 6612 6487 5029 33.2 32.39 32.98
jpeg 33618 31083 22057 20688 19388 11885 18.02 17.53 19.15
mips 3384 3358 2116 1620 1590 999 98.8 95.56 110.22
motion 4054 4020 2946 2526 2526 1656 112.18 111.83 125.85
sha 10686 8243 7612 7779 5838 5371 99.42 106.68 109.42

Geomean: 8655 7838 5711 5230 4794 3217 65.7 65.2 67.3
Ratio: 1.00 0.91 0.66 1.00 0.92 0.62 1.00 0.99 1.02

(a) Schedule Gantt Chart (b) Control Flow Graph (c) Loop Pipeline Schedule

Figure 6. Screenshots of the LegUp visualization tool.

Table 4. Supported Pthreads functions/OpenMP pragmas.
Pthreads Functions Description

pthread create(..) Invoke thread
pthread join(..) Wait for thread to finish
pthread exit(..) Exit from thread, can be used to return data

pthread mutex lock(..) Lock mutex
pthread mutex unlock(..) Unlock mutex
pthread barrier init(..) Initialize barrier
pthread barrier wait(..) Synchronize on barrier object

OpenMP Pragmas Description

omp parallel Parallel section
omp parallel for Parallel for loop
omp master Parallel section executed by master thread only
omp critical Critical section
omp atomic Atomic section

reduction(operation: var) Reduce a var with operation

OpenMP Functions Description

omp get num threads() Get number of threads
omp get thread num() Get thread ID

6. Visualization and Debugging

LegUp provides visualization tools for analyzing the internal HLS
algorithms. For instance, we have a graphical viewer for the
scheduling report file produced by LegUp that shows a Gantt chart
of the scheduled instructions for the program and also can visu-
alize loop pipeline scheduling. Fig. 6 shows three screenshots of
the LegUp visualization tool for a matrix multiply kernel. Fig. 6a
shows a Gantt chart for LegUp’s high-level synthesis schedule. On
the left side, the “Explorer” panel lists each basic block for each

function, in this case the user has selected the basic block labeled
“BB 1”. In the “Schedule Chart” window pane the schedule viewer
gives a list of all LLVM instructions inside the selected basic block.
Each LLVM instruction corresponds to a hardware operation in the
synthesized circuit. The user can highlight any instruction to dis-
play the data dependencies between all predecessor and successor
instructions. Fig. 6b shows the control flow graph for the kernel,
where each node in the graph is a basic block. Fig. 6c shows the
loop pipeline schedule after the basic block has been pipelined. The
pipeline initiation interval is two, which means a new loop iteration
begins every two clock cycles. The area highlighted in black is the
steady-state operation of the pipeline; observe that three iterations
of the loop are executing in parallel.

In addition to visualization, we have been focusing recently
on adding debugging capabilities to LegUp. Debugging tools are
ubiquitous in the software development community because they
raise productivity by providing insight into the execution state as
a program executes. In contrast, most hardware designers are ac-
customed to using simulation waveforms to debug their digital cir-
cuits. With LegUp, we want to bridge this gap by offering users a
software-like debugging platform for the hybrid hardware/software
coprocessor system. LegUp’s debugging platform will help devel-
opers gain insight into problems with their applications at a higher
level of abstraction than traditional RTL simulation and waveform
analysis.

To implement the debugger, LegUp leverages the LLVM com-
piler debugging meta-data, which maps each C statement to a set
of one or more simple instructions in LLVM’s intermediate rep-
resentation (IR). Fig. 7 depicts this mapping. Next, we map the IR
instructions to LegUp-synthesized hardware elements. Each LLVM

Figure 7. Mapping from C statements to LLVM intermediate rep-
resentation instructions.

IR instruction is scheduled to run in one or more states of the finite
state machine. Also, each IR instruction can be synthesized into
several hardware units and signals. Some hardware signals, such
as the memory controller signals, can be shared between multiple
instructions, depending on the state.

Our goal is to have an integrated debugging system that is ca-
pable of capturing, and displaying to the user, hardware signals
while running the hybrid processor/accelerator system runs on the
board. Fig. 8 shows a screenshot of the LegUp debugging platform,
which is “work-in-progress”. Currently, the debugging platform is
for simulation only; that is, we communicate with the simulation
tool, ModelSim, to inspect signal values and control the simulation
cycle by cycle. By examining the state of the finite state machine,
we can detect the current state being executed and highlight the ac-
tive C statements associated with the current state. There may more
than one active C statement per state, due to the instruction-level
parallelism in hardware (see Fig. 8). By clicking on a C statement,
the corresponding synthesized Verilog code is highlighted. Single-
stepping is supported, which runs the circuit simulation until the
next C statement is reached. Note that C statements may take more
than one clock cycle to complete. Developers can also step over a
C statement to reach the next executing statement, or can step into
a C statement to see IR-level and hardware-level details related to
that statement on a cycle-by-cycle basis. Hardware signal names
and current values are displayed based on the circuit’s current state
so that developers can track signal value changes (right panel in the
figure).

The LegUp debugging platform is still under development. Sup-
porting break-points, enabling the debugging of hybrid proces-
sor/accelerator applications and on-chip hardware debugging are
all future work.

7. Conclusion

LegUp is a high-level synthesis (HLS) framework that allows soft-
ware methodologies to be used for the synthesis of a hybrid system
comprising an embedded processor, and one or more FPGA-based
accelerators. Since the original LegUp release in March 2011, it
has been downloaded over 600 times by researchers around the
world (at the time of writing). As described in this paper, the cur-
rent LegUp 3.0 release includes functionality to assist with hard-
ware/software partitioning, multi-ported caches to ease memory
bottlenecks, support for Pthreads and OpenMP, and improvements
to the core HLS algorithms, including loop pipelining, multipump-
ing, bitwidth optimization, and tools to select profitable compiler
optimization passes to improve hardware quality. One of the few
open-source frameworks of its kind, we hope the tool will be use-
ful to the embedded systems research community as a platform
to explore new design methodologies and synthesis strategies. The
LegUp project website, http://legup.eecg.toronto.edu, in-
cludes documentation, tutorials on how to use and modify the tool,
related publications, as well as links to download the source code.

8. Acknowledgements

The financial support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Altera Corporation is
gratefully acknowledged.

References

[1] The OpenCL specification version: 1.0 document revision: 48, 2009.

[2] M. Aldham, J. Anderson, S. Brown, and A. Canis. Low-cost hardware
profiling of run-time and energy in FPGA embedded processors. In
IEEE ASAP, pages 61–68, 2011.

[3] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Finding effective
compilation sequences. In ACM LCTES, pages 231–239, 2004.

[4] Cyclone-II Data Sheet. Altera, Corp., San Jose, CA, 2004.

[5] DE2 Development and Education Board. Altera, Corp., San Jose, CA,
2010.

[6] DE4 Development Board. Altera, Corp., San Jose, CA, 2010.

[7] SOPC Builder User Guide. Altera, Corp., San Jose, CA, 2010.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski. LegUp: high-level synthesis for FPGA-
based processor/accelerator systems. In ACM/SIGDA FPGA, pages
33–36, 2011.

[9] A. Canis, J. H. Anderson, and S. D. Brown. Multi-pumping for
resource reduction in FPGA high-level synthesis. In IEEE DATE,
pages 194–197, 2013.

[10] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski.
Impact of cache architecture and interface on performance and area of
FPGA-based processor/parallel-accelerator systems. In IEEE FCCM,
pages 17–24, 2012.

[11] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm
based on sdc formulation. In ACM DAC, volume 43, pages 433–438,
2006.

[12] J. Cong and Y. Zou. FPGA-based hardware acceleration of litho-
graphic aerial image simulation. ACM Transactions on Reconfigurable

Technology and Systems (TRETS), 2(3):1–29, 2009.

[13] P. Coussy, D. Gajski, M. Meredith, and A. Takach. An introduction
to high-level synthesis. IEEE Design Test of Computers, 26(4):8 – 17,
jul. 2009.

[14] M. Gort and J. H. Anderson. Range and bitmask analysis for hardware
optimization in high-level synthesis. In ASP DAC, pages 773–779,
2013.

[15] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and quan-
titative analysis of the CHStone benchmark program suite for practical
C-based high-level synthesis. Journal of Information Processing, 17:
242–254, 2009.

[16] Calypto Catapult. http://calypto.com/en/products/catapult/overview,
2013.

[17] OpenCL for Altera FPGAs. http://www.altera.com/products/software/
opencl/opencl-index.html, 2013.

[18] C-to-Verilog. http://www.c-to-verilog.com, 2013.

[19] Forte Design Systems The high level design company.
http://www.forteds.com/products/cynthesizer.asp, 2013.

[20] LLVM Compiler Infrastructure Project. http://www.llvm.org, 2010.

[21] Xilinx: Vivado Design Suite. http://www.xilinx.com/products/design
tools/vivado/vivado-webpack.htm, 2013.

[22] C. Huang, Y. Che, Y. Lin, and Y. Hsu. Data path allocation based
on bipartite weighted matching. In ACM/IEEE DAC, pages 499–504,
1990.

[23] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Ander-
son. The effect of compiler optimizations on high-level synthesis for
FPGAs. In IEEE FCCM, pages 89–96, 2013.

[24] H. Kuhn. The Hungarian method for the assignment problem. In
50 Years of Integer Programming 1958-2008, pages 29–47. Springer,
2010.

Figure 8. Screenshot of debugging platform.

[25] J. Luu, K. Redmond, W. Lo, P. Chow, L. Lilge, and J. Rose. FPGA-
based monte carlo computation of light absorption for photodynamic
cancer therapy. In IEEE FCCM, pages 157–164, 2009.

[26] CUDA: Compute Unified Device Architecture Programming Guide.
NVIDIA CORPORATION, 2007.

[27] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In IEEE CGO, pages
319–332, 2006.

[28] B. Ramakrishna Rau. Iterative modulo scheduling. The International
Journal of Parallel Processing, 24(1):3–65, Feb 1996.

[29] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cron-
quist, and M. Sivaraman. PICO-NPA: High-level synthesis of nonpro-
grammable hardware accelerators. Journal of VLSI signal processing

systems for signal, image and video technology, 31(2):127–142, 2002.

[30] L. Shannon and P. Chow. Using reconfigurability to achieve real-time
profiling for hardware/software codesign. In ACM FPGA, pages 190–
199, 2004.

[31] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August.
Compiler optimization-space exploration. In IEEE CGO, pages 204–
215, 2003.

[32] Occupational Outlook Handbook 2010-2011 Edition. United States
Bureau of Labor Statistics, 2010.

[33] The Tiger ”MIPS” processor. University of Cambridge,
http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html,
2010.

[34] eXCite C to RTL Behavioral Synthesis 4.1(a). Y Explorations (XYI),
San Jose, CA, 2010.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

