
CGRA-ME: A Unified Framework for
CGRA Modelling and Exploration

S. Alexander Chin∗, Noriaki Sakamoto†, Allan Rui∗, Jim Zhao∗, Jin Hee Kim∗,
Yuko Hara-Azumi† and Jason Anderson∗

∗Dept. of Electrical and Computer Engineering, University of Toronto
{xan,kimjin14,janders}@ece.utoronto.ca

†Dept. of Information and Communications Engineering, Tokyo Institute of Technology

Abstract—Coarse-grained reconfigurable arrays (CGRAs) are
a style of programmable logic device situated between FPGAs and
custom ASICs on the spectrum of programmability, performance,
power and cost. CGRAs have been proposed by both academia
and industry; however, prior works have been mainly self-
contained without broad architectural exploration and com-
parisons with competing CGRAs. We present CGRA-ME – a
unified CGRA framework that encompasses generic architecture
description, architecture modelling, application mapping, and
physical implementation. Within this framework, we discuss our
architecture description language CGRA-ADL, a generic LLVM-
based simulated annealing mapper, and a standard cell flow
for physical implementation. An architecture exploration case
study is presented, highlighting the capabilities of CGRA-ME by
exploring a variety of architectures with varying functionality,
interconnect, array size, and execution contexts through the
mapping of application benchmarks and the production of
standard cell designs.

I. INTRODUCTION

Coarse-grained reconfigurable arrays (CGRAs) are a style of
programmable logic device with two differing attributes from
fine-grained field-programmable gate arrays (FPGAs): 1) the
logic blocks in CGRAs are larger, possessing many inputs
and outputs, and generally implementing ALU-like function-
ality, and 2) the interconnection fabric is datapath-oriented:
busses of signals are routed together in tandem. The value
proposition of CGRAs is improved speed, area-efficiency
and power relative to FPGAs, owing to less overhead for
programmability. Such benefits arise for applications whose
computational requirements align closely with the available
CGRA logic and interconnect. One can think of a CGRA as
being midway between an FPGA and an ASIC, providing some
of the programmability of an FPGA, while delivering supe-
rior power, performance, and cost characteristics for aligned
applications. CGRAs are especially attractive when tailored
to specific domains, where computational requirements are
known, yet programmability is desired to accommodate an
evolving technical specification.

CGRAs have been studied in academia for over a decade,
and a variety of different architectures have been proposed [1].
Commercially, recent years have seen two CGRAs in the
market, the Samsung Reconfigurable Processor [2] and the
STP Reconfigurable Processor from Renesas Electronics [3].
To date, however, all prior works on CGRAs have been
confined to their respective frameworks, wherein a research
group or company proposes a single style of CGRA design
and demonstrates its utility for a set of applications. The
design space for CGRAs is very large with many architectural

decisions for each component and this large design space
is tightly coupled with CAD and compiler techniques for
mapping applications to the CGRA. While there exist soft-
ware tools that allow the modelling and evaluation of fine-
grained FPGA architectures [4], to our knowledge, there is no
analogous framework that permits the scientific exploration
of CGRAs.There is a need, then, for a tool that permits
an architect to model hypothetical CGRA architectures and
implement CAD algorithms, to evaluate the area, speed, and
power of such designs over a set of applications in a domain
of interest. We describe such a CGRA architecture exploration
framework, called CGRA-ME.

CGRA-ME allows an architect to specify a CGRA archi-
tecture in an XML-based language, and provides a flexible
scheduling, mapping, placement and routing tool, built within
the popular LLVM compiler framework [5], that maps an
optimized C-language benchmark onto the specified CGRA.
Automatically generated Verilog RTL for the CGRA device
permits simulation with ModelSim for functional verification,
and also allows synthesis of the CGRA into standard cells
using an ASIC flow to assess area, performance and power.We
demonstrate the capabilities of CGRA-ME by modelling a
variety of candidate CGRA architectures, mapping benchmark
applications to the architectures, and producing standard cell
designs.

CGRA-ME aims to amalgamate aspects of prior CGRA
work within a larger, and more complete CGRA architecture
evaluation framework that encompasses architecture descrip-
tion, architecture modelling, application mapping, system sim-
ulation, and physical implementation. The framework is open-
source and freely available to the research community [6].
We believe the framework will open up a wide variety of
research opportunities for CGRA architecture, algorithms and
applications.

II. RELATED WORK

Space limitations preclude a detailed review of prior ar-
chitectures and the interested reader is referred to excellent
survey articles [7], [8], [9], [10], [11]. However, it is worth
highlighting a few ways that CGRAs differ from one another.
A first defining attribute relates to the logic functionality
– the types of computations each CGRA block is able to
perform. Many CGRAs in the literature contain blocks that
can perform ALU-like computations, e.g. n-bit multiplication,
or n-bit logical operations. CGRA blocks may be homoge-
neous or heterogeneous. A second defining attribute is the
CGRA interconnect architecture, which may range from a

linear unidirectional style, to a two-dimensional mesh with
nearest-neighbour connectivity between blocks. A third at-
tribute concerns memory and whether it is contained within the
CGRA, is external, or hybrid internal/external. A final attribute
pertains to dynamic reconfigurability, reflecting whether or
not the CGRA function units and interconnect have a static
configuration, or whether functionality and routing can change
on a cycle-by-cycle basis, allowing for multi-context CGRA
operation.

Considerable prior work has considered how applications
can be mapped onto CGRAs (e.g. [12], [13], [8]). In most
CGRA mapping tools, the input benchmark is represented
as a data-flow graph (DFG). The CGRA target architecture,
including blocks and their connectivity, is also represented as
a graph. The problem is to embed the data-flow graph onto the
device graph. The key CAD tasks are scheduling, placement
and routing. Scheduling involves determining the timestep for
each operation; placement locates the operations from the data-
flow graph onto specific locations within the device; routing
selects the signal paths between placed operations. For CGRAs
that support dynamic reconfigurability, the device model graph
is usually replicated multiple times, where each replicant will
represent the block functionality and routing in each execution
context.

Several recent articles are related to sub-pieces of the
CGRA-ME framework. Our mapping work bears similarity to
the SPR tool from the University of Washington [12], which
provides a generic mapper for CGRAs, able to adapt to a user-
provided architecture specification. Other works [14], [15]
describe simulators for CGRAs; however, these are discon-
nected from physical CGRA implementation and modelling.
Another work [16] describes a CGRA architecture description
language, but is disconnected from mapping of benchmarks.

III. CGRA-ME FRAMEWORK OVERVIEW

Fig. 1 shows the overall CGRA-ME framework. Shaded
portions represent implemented functionality described in this
paper; unshaded portions represent planned future functional-
ity. The pieces of the framework are numbered in the sequence
of typical usage. Box 1 represents the CGRA architecture
description, specified by an architect in our custom XML-
based language CGRA-ADL.At 2 , the architecture description
is parsed and used to construct a software-level architecture
model of the CGRA. From this architecture model, a Device
Model at 3 can be generated. This model represents the
physical logic and interconnect resources of the CGRA and
is used by the scheduling, placement and routing tool at box
4 , which maps a benchmark data-flow graph 5 into the

modelled CGRA. Prior to the mapping, the benchmark is
subjected to standard compiler optimizations in LLVM at 6 .
Note that the input to the mapper is both a benchmark and an
architecture description – the mapper is not tied to a specific
CGRA device architecture. The output of the mapping step is
a configuration bitstream for the CGRA, defining its logic and
interconnect behaviour across clock cycles.

Synthesizable Verilog RTL can also be generated from the
architecture model of the CGRA 8 and with this, and the
configuration bitstream for the benchmark, the user is able

to simulate the configured CGRA with ModelSim to verify
correct logic functionality 7 . The RTL can also be input to a
standard cell ASIC flow 9 to permit a silicon implementation.

Future planned functionality includes the development of
power, performance and cost models for the CGRA, derived
from standard-cell ASIC implementation. We also envision
that the architecture interpreter 2 could generate a cycle-
accurate SystemC model of the CGRA, which, when con-
figured for a particular benchmark, would provide faster
simulation and verification than ModelSim RTL simulation.
The SystemC simulation results would be combined with the
power, performance, and cost models, to provide estimates of
overall CGRA performance.

IV. ARCHITECTURE MODEL AND ARCHITECTURE
DESCRIPTION LANGUAGE

The CGRA-ME framework is able to model a wide range of
CGRA architectures via an XML-based architectural language,
CGRA-ADL. The language permits an architect to describe a
CGRA in detail, permitting an in-memory device model of the
complete CGRA to be constructed. The device model contains
primitive components, such as routing multiplexers, registers,
register files, and function units, the connectivity between
them, and configuration cells to program the array. An example
of a module with primitive components is shown in Fig. 2.
Each primitive within this module has its own parameters
such as bit-width, or number of inputs. The in-memory device
model is used to map applications onto the CGRA, and
to generate synthesizeable Verilog RTL. The language also
permits custom user-defined blocks to be integrated within
architectures, as long as the user-defined block has its own
predefined in-memory device model.

The CGRA description language is inspired by the XML-
based language used in the VTR FPGA architecture evaluation
framework [4]. We highlight key aspects here; the complete
language specification can be found online [6]. The overall
structure of an architecture description is shown in Figure 3.
The <cgra> tag on Line 1 opens the architecture description.
Following this, the architect may make one or more definitions
(Line 2), which are similar to #define macros in C. Next,
the architect describes the one or more CGRA blocks that
will comprise the architecture, including intra-block logic and
routing (Lines 3–7). The later Lines 8–12 compose the overall
array architecture by instantiating a pattern of the defined
blocks and specifying the inter-block connectivity.

An example CGRA block along with its CGRA-ADL de-
scription is shown in Fig. 4. Lines 2–4 declare the module
ports and their directions. Line 5 declares a wire. Line 6 instan-
tiates a functional unit inside the CGRA block. FuncUnit is
a primitive type in the language for a two-input single-output
functional unit (elaborated on below). Lines 7–10 form the
connections between the ports, wire and the functional unit.
Fig. 5 shows interconnection structures available for modelling
intra-CGRA block connectivity. Four structures may be used,
shown from top to the bottom in the figure, referred to as
direct, distributive, multiplexer and crossbar. The multiplexer
and crossbar interconnection on Lines 3 and 4, respectively,

Device Model

Fig. 1: Framework vision and development status. Shaded portions represent
implemented functionality described in this paper; unshaded portions represent
planned future functionality.

Func.

Unit

Register
3
2

3
2

3
2

3
2

3
2

Fig. 2: Example CGRA processing
block made from primitive compo-
nents: three multiplexers, a function
unit and a register. Configuration cells
(not shown) for the function unit and
routing multiplexers are automatically
inferred within the framework.

1 : <cgra>
2 : <definition .../>
3 : <module name="block1">
4 : <input name="in"/>
5 : <inst module="fu"/>
6 : <connection .../> ...
7 : </module>
8 : <architecture row="4" col="4">
9 : <pattern>
10: <block module="block1"/>
11: </pattern> ...
12: </architecture>
13: </cgra>

Fig. 3: CGRA-ADL architecture description example.

1: <module name="module1">
2: <input name="in1"/>
3: <input name="in2"/>
4: <output name="out"/>
5: <wire name="w"/>
6: <inst name="fu" module="FuncUnit"/>
7: <connection from="this.in1" to="w"/>
8: <connection from="w" to="fu.in1"/>
9: <connection from="this.in2" to="fu.in2"/>
10: <connection from="fu.out" to="this.out"/>
11: </module>

Fig. 4: Using CGRA-ADL to describe a module (named
module1) that contains a single function unit and also to
describe module1’s internal connections to the function unit’s
input and output ports. An internal wire w is also modelled.

1: <connection from="a b c" to="x y z"/>
2: <connection from="a" distribute-to="x y z"/>
3: <connection select-from="a b c" to="x"/>
4: <connection select-from="a b c" to="x y"/>

Fig. 5: CGRA-ADL interconnect structures. Line 1 models
direct connections; line 2 models distributive connections; line
3 models multiplexers, and line 4 models crossbars.

!"#$%&%'%(#!)*+,-.*-/).# 0"#$%&%'%(#1#2,!345!67#!)*+,-.*-/).#

Fig. 6: CGRA interconnection architectures for which ‘syn-
tactic sugar’ is provided in CGRA-ADL.

imply the presence of SRAM configuration cells on the select
inputs of the multiplexer(s).

Additionally, we also provide a “syntactic sugar” shortcut
for two interconnect patterns we believe to be the most widely
used in CGRA architecture research, depicted in Fig. 6. The
first (Fig. 6(a)) is an architecture with North, South, East,
West connectivity; the second (Fig. 6(b)) adds the diagonal
connections.

V. LLVM FRONT-END

LLVM is used to implement the front-end compiler support
for the framework. Benchmarks written in C are parsed,
optimized and translated into data-flow graphs (DFGs) [5].
The nodes in the DFG represent instructions from the LLVM
intermediate representation (IR). The IR is based on a re-
duced/simple instruction set of basic logical and arithmetic
operations, such as multiply, add, subtract, exclusive-OR,
etc. LLVM’s IR can be viewed as a machine-independent
assembly code representation of an input program. These
DFGs are written out into a dot graph format [17] that includes
metadata, such as labeling inputs, outputs, operations, and
operands within the operations. Each operation within the DFG
corresponds to one LLVM instruction and the computational
capabilities of a CGRA block are specified in terms of the
types of LLVM instructions they are capable of supporting. In
this way, the compiler’s (i.e. LLVM’s) representation of the
computations and computational capabilities of the modelled
CGRA architecture are aligned with each other.

VI. MAPPER

Mapping applications to CGRA architectures involves as-
sociating each operation in the application’s DFG with a
physical functional unit, while finding and ensuring a route
between inputs and outputs of each operation, with the cor-
rect latency and schedule. Here, we use the term Mapper
to refer to Fig. 1 component 4 . To model the physical
routes and functional units within the architecture, a Modulo
Routing Resource Graph (MRRG) [13] is constructed from
the Device Model of the CGRA (Fig. 1 component 3).
This graph, elaborated on in Section VI-A, represents routes
and resources that can be used by the application DFG. The
mapping problem then reduces to associating a DFG with
an MRRG. This process of associating each operation in the
DFG with a functional unit in the MRRG, while establishing
a route between inputs and outputs of each operation, is quite
difficult. In the current mapper, we take a simulated annealing
approach for associating DFG operations to MRRG functional
units [18]. Subsequently, a PathFinder-like [19] approach is
used for routing connections between functional units. Since
we map the DFG onto the MRRG, which already accounts
for resource usage on a cycle-by-cycle basis, the scheduling
of operations is implicit in the placement and routing. Similar
approaches to this mapping problem have also been proposed
previously in literature [12], [13].

A. Modulo Routing Resource Graph
The Modulo Routing Resource Graph (MRRG) is an

abstract representation of the physical architecture of a
CGRA [13]. This representation formulates the constraints of
the modulo scheduling problem, operator placement, and value
routing, within graph itself and many recent architectures and
tools rely on some form of this representation [20], [21], [12],
[22], [23]. The graph contains, as vertices, all resources of the
CGRA: the routes within the physical architecture, the storage
elements, and the functional units that execute operations.
The MRRG representation is especially useful for multiple-
context architectures where routes and functional units can be

shared to perform different operations on subsequent cycles
in a repeating pattern. To model such multicontext architec-
tures, the MRRG is composed of the CGRA device model
instantiated multiple times – once for each cycle of dynamic
context. A register in the underlying CGRA architecture,
which stores a value across clock cycles, is translated into an
edge between nodes in two subsequent device model instances.
The mapping of DFG operations and edges to the MRRG
reflects the computations each functional unit is performing
in each dynamic context, and also the routing connectivity.

B. Simulated Annealing Mapper
The simulated-annealing mapper implemented within our

framework allows for flexibility to map data-flow graphs
to many architectures modelled in the CGRA-ADL XML
language. Specifically, it handles a variety of inter-connectivity
and varied functional units, further demonstrated in Sec-
tion VIII. Mapping is considered complete as soon as a legal
placement and routing is found.

We begin with initial placement. Every operation node in
the DFG is placed onto a function unit that is able to perform
the operation specified by the operation node. For example,
a multiply operation will never be placed on a function unit
that can only do additions. However, temporary overuse of
functional units is permitted – multiple operation nodes may
be placed on a single function unit. Likewise, routes between
operation nodes are allowed to be temporarily overused in
a PathFinder-like fashion [19]. Overuse of resources and
interconnect is penalized through costing during the annealing
process and gradually removed.

The cost of a mapping is the summation of all used routing
nodes and all used functional unit nodes within the MRRG.
Along with this base cost, an additional penalty is applied
for each routing or function unit node that is overused. After
initial placement, we enter the main simulated annealing loop
and perform random operation swaps and routing. Swaps
are assessed using the cost function and accepted if cost
decreases or probabilistically based on the current temperature.
Temperature is decreased and the overuse penalty is increased
periodically after a certain number of swaps.

VII. PHYSICAL IMPLEMENTATION

The framework is able to generate Verilog RTL for modelled
CGRA architectures. The Verilog RTL can be simulated for
functional verification. It can also be synthesized so that
physical implementations of the CGRA can be produced
and evaluated. Such physical implementationscan inform area,
performance and power models in an architecture evaluation
context. An ASIC implementation can be produced by using
a standard-cell toolchain or alternately, an FPGA overlay can
be realized.

Our standard-cell synthesis flow uses Synopsys Design
Compiler for technology mapping to the cell library, Cadence
Encounter for placement and routing (with automatically gen-
erated floorplanning constraints), and Synopsys PrimeTime
for timing analysis. It is worth mentioning that CGRAs with
different area, performance, power trade-offs can be produced
by simply changing the constraints supplied to the ASIC tools.

VIII. ARCHITECTURE EXPLORATION CASE STUDY

The goal of this study is to demonstrate the viability of the
CGRA-ME framework. The study accomplishes this through:
1) demonstrating CGRA-ME’s capability to model a variety of
realistic CGRA architectures; 2) demonstrating the ability of
the mapper to map applications onto a CGRA; that is, we aim
to show the mapping algorithms are capable of recognising
and adapting to the modelled CGRA architecture, including
its size, interconnect patterns, function unit capabilities, and
number of execution contexts; 3) demonstrating the frame-
work’s ability to produce Verilog RTL for a modelled CGRA,
as evidenced by a standard-cell implementation of the CGRA.

A variety of CGRA architectures are considered in this
study, chosen to be representative of CGRAs proposed in the
literature and different enough from one another to exhibit
varying levels of mapping difficulty. Each architecture com-
prises an array of CGRA blocks with 32-bit-wide bus-based
interconnect. The sample CGRA block we use is the same
as in Fig. 2 with a few differences to the input multiplexers
and function unit capabilities. We consider two function block
architectures and two interconnect architectures with varying
array sizes. The architecture sizes range from 4× 4 to 6× 6.
Additionally, we model these architectures with 1, 2 and 4
execution contexts. In the single execution context case, the
CGRA configuration is held constant across clock cycles;
whereas, with 2 and 4 contexts, functional unit and routing
configuration can change on each cycle.

The two function block architectures are called Homo-
geneous and Heterogeneous. In the former, all blocks can
perform ALU-like operations: shift, logical, add, subtract,
multiply. In the later, only half of the blocks can perform all
operations; the other half can do all but multiply. In all designs,
the output of every function unit is registered. The two inter-
connect styles are called Orthogonal and Diagonal, reflecting
the two routing architectures shown in Fig. 6, respectively. In
the diagonal case, the routing multiplexers shown in Fig. 2 are
widened to accommodate the additional diagonal connections.
In all architectures, I/O blocks are placed on the perimeter. A
single memory-access unit that can perform loads and stores
is dedicated to each row within all architecture variants. The
outputs of each block within a row is connected to the inputs
of the access unit (address and data-in) while the output of the
memory block (data-out) is connected to each of the blocks
in the row as an additional input.

A. Mapping & Architecture Evaluation

The benchmarks are data-flow graphs having varying num-
bers of operation nodes and edges to reflect varying difficulties
of mapping for the target architectures. Table I shows detailed
characteristics of each benchmark.

Table II shows the mapping results for four different ar-
chitectures, indicating whether the mapper was successful in
finding an implementation for each benchmark in the four
architectures. The table is divided into two sections; one
for single context architectures and one for dual context.
Within these divisions, there are the four architecture styles
and within those are three different array sizes. Each cell

Benchmark I/Os Operations Multiplier
add 10 10 10 0
add 14 14 14 0
add 16 16 16 0
2x2-p 1 5 5 1
2x2-f 2 6 6 1
cos 4 5 14 12
cosh 4 5 14 12
exponential 4 4 9 5
exponential 5 5 12 9
exponential 6 6 15 14
multiply 10 10 10 9
multiply 14 14 14 13
multiply 16 16 16 15
sinh 4 5 13 9
taylor series 4 5 10 6
weighted sum 16 16 8
mac 1 9 3

TABLE I: Benchmarks.

indicates whether a benchmark was mapped (M) or unmapped
(U). The architecture styles are arranged from least flexible
(heterogeneous function units with orthogonal routing) to most
flexible (homogeneous function units with diagonal routing).
Broadly speaking, looking at the success-count in each column
(last row), the results match with intuition: the largest array
with the most flexible architecture can accommodate most of
the benchmarks, whereas the smallest array with least flexible
architecture can only accommodate a few due to limited
compute ability and interconnect. Note that benchmarks using
more than 8 multipliers (cf. Table I) are impossible to map
within the single-context 4 × 4 heterogeneous architectures
(as it has only 8 functional units that can perform the multiply
operation).

The right side of Table II shows the mapping results for
dual context architectures, where there are two configurations
of the function units and interconnect that alternate on a
cycle-by-cycle basis. This effectively doubles the capacity of
array though now, the throughput of the array is halved. An
underlined cell in this half of the table indicates that the
same benchmark was not able to be mapped with one context,
but is now able to be mapped with two contexts. For these
architectures, mapping success is much higher owing to the
huge amount of flexibility granted by an additional execution
context. The results for four context architectures are similar
to the two context architectures but have been omitted due to
space limitations.

We underscore that our intent here is not to draw archi-
tectural conclusions; rather, to demonstrate that CGRA-ME
is capable of modelling and mapping to a variety of CGRA
architectures having different degrees of functional and inter-
connection restrictiveness.

B. Standard-Cell Implementation Results

We synthesized standard-cell implementations for four 4×4
single context architectures evaluated, using the flow described
in Section VII, targeting the TSMC 65 nm cell library. In
this initial study, we direct the ASIC tools to produce area-
optimized implementations without external memory or the
memory port connections. Fig. 7 shows the floorplan and full
metal layouts for two 4×4 CGRAs. The left two blocks show
the floorplan and layout of the CGRA with homogeneous
blocks and orthogonal connectivity between blocks; the right

Benchmark
Single Context Dual Context

Hetero. Orth. Hetero. Diag. Homo. Orth. Homo. Diag. Hetero. Orth. Hetero. Diag. Homo. Orth. Homo. Diag.
4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

add 10 M
add 14 U U M M M M U U M M M M M M M M M M M M M M M M
add 16 U U M U M M U U M U M M M M M M M M M M M M M M
2x2-f M
2x2-p M
cos 4 U U U U U U U U U U U M M M M M M M M M M M M M

cosh 4 U U U U U M U U U U M M U M M M M M M M M M M M
exponential 4 U U U M M M U U U M M M M M M M M M M M M M M M
exponential 5 U U U U U M U U U U M M M M M M M M M M M M M M
exponential 6 U U U U U U U U U U U U U U M M M M U M M M M M
multiply 10 U U M U M
multiply 14 U U U U U M U U M M M M M M M M M M M M M M M M
multiply 16 U U U U U M U U M U M M M M M M M M M M M M M M

sinh 4 U U U U U U U U U U U U U U M M M M U M M M M M
taylor series 4 U U U M M M U U U M M M M M M M M M M M M M M M
weighted sum U U M M M M U U M U M M M M M M M M M M M M M M

mac U U U U M M U M M M M M M M M M M M M M M M M M
mapped 3 3 7 7 10 14 4 5 10 9 14 15 14 15 17 17 17 17 15 17 17 17 17 17

TABLE II: Benchmark mapping results for single and dual context architectures, four array styles and three array sizes. A
Mapped benchmark is denoted by M and an Unmapped benchmark denoted by U. An M denotes a benchmark that was able
to be mapped in two contexts but not in one context.

Fig. 7: Floorplans/layouts of 4x4 homogeneous orthogonal
CGRA (left) and heterogeneous diagonal CGRA (right).

Homo.
Diagonal

Homo.
Orthogonal

Hetero.
Diagonal

Hetero.
Orthogonal

Area
(microns2) 181,243 154,909 128,953 104,649

Delay (ns) 5.11 4.80 5.31 4.76

TABLE III: Area/timing results; single-context 4×4 architec-
tures.

two blocks show the floorplan and layout of the heterogeneous
CGRA with diagonal and orthogonal connectivity.

The area and timing analysis results for all four architectures
evaluated are shown in Table III. The area results reflect the
intuition that the homogeneous fabric with richer connectivity
consumes the most area; the heterogeneous fabric with reduced
connectivity consumes the least area. The critical path delay
in all architectures is roughly the same, and reflects the delay
through the multiplier (∼ 200MHz for all architectures). The
results in the table demonstrate that, from the architecture
description in XML, CGRA-ME is able to generate a standard-
cell implementation, that, combined with mapping results, per-
mits the area/performance of hypothetical CGRA architectures
to be evaluated for a set of benchmark applications.

IX. CONCLUSION & FUTURE WORK

We have introduced CGRA-ME, a unifying CGRA frame-
work that currently encompasses architecture description,
architecture modelling, application mapping, and physical
implementation. Through our architecture exploration case
study, the CGRA-ADL language is demonstrated as a way
for architects to describe a variety of CGRA architectures
with varying components, sizes, and contexts. The generic
simulated-annealing style mapper in CGRA-ME was shown
to react to each architecture when mapping benchmarks – the

more flexible the fabric, the higher the mapping success rate.
Additionally, CGRA-ME was shown to generate Verilog RTL
for the 4× 4 arrays, from which we have generated a silicon
design using TSMC 65 nm standard cells with a turnkey
approach. The open-source CGRA-ME framework is freely
available for the academic research community, providing a
foundation for further CGRA research.

The open-source CGRA-ME framework is freely available
for the academic research community, providing a foundation
for further CGRA research.

REFERENCES

[1] H. Amano, “A survey on dynamically reconfigurable processors,” IEICE
Transactions, vol. 89-B, no. 12, pp. 3179–3187, 2006.

[2] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “ULP-
SRP: ultra low-power samsung reconfigurable processor for biomedical
applications,” ACM TRETS, vol. 7, no. 3, pp. 22:1–22:15, 2014.

[3] T. Toi et al., “Optimizing time and space multiplexed computation in a
dynamically reconfigurable processor,” in FPT, 2013, pp. 106–111.

[4] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for fpgas,” ACM TRETS, vol. 7, no. 2, pp. 6:1–6:30, 2014.

[5] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in IEEE / ACM Intl. Symp.
on Code Gen. and Opt., 2004, pp. 75–88.

[6] “CGRA-ME,” 2017. [Online]. Available: http://cgra-me.ece.utoronto.ca
[7] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing archi-

tectures,” Proc. of the IEEE, vol. 103, no. 3, pp. 332–354, 2015.
[8] B. De Sutter, P. Raghavan, and A. Lambrechts, Coarse-Grained Recon-

figurable Array Architectures. Springer New York, 2013, pp. 553–592.
[9] R. Hartenstein, “Coarse grain reconfigurable architectures,” in ASP-DAC,

2001, pp. 564–569.
[10] H. Amano, “A survey on dynamically reconfigurable processors,” IEICE

Transactions, vol. 89-B, no. 12, pp. 3179–3187, 2006.
[11] V. Tehre and R. Kshirsagar, “Survey on coarse grained reconfigurable

architectures,” Intl. Jrnl. of Comp. Appl., vol. 48, no. 16, pp. 1–7, 2012.
[12] S. Friedman et al., “SPR: An architecture-adaptive CGRA mapping

tool,” in ACM FPGA, 2009, pp. 191–200.
[13] B. Mei et al., “DRESC: A retargetable compiler for coarse-grained

reconfigurable architectures,” in IEEE FPT, 2002, pp. 166–173.
[14] K. Patel, S. McGettrick, and C. J. Bleakley, “Rapid functional modelling

and simulation of coarse grained reconfigurable array architectures,”
Journal of Systems Architecture, vol. 57, no. 4, pp. 383–391, 2011.

[15] A. Chattopadhyay and X. Chen, “A timing driven cycle-accurate simu-
lation for coarse-grained reconfigurable architectures,” in International
Symposium on Applied Reconfigurable Computing, 2015, pp. 293–300.

[16] J. O. Filho et al., “CGADL: An architecture description language for
coarse-grained reconfigurable arrays,” IEEE Trans. VLSI Syst., vol. 17,
no. 9, pp. 1247–1259, Sep. 2009.

[17] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: Practice and
Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[18] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by
Simmulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[19] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in FPGA, 1995, pp. 111–117.

[20] H. Park et al., “Modulo graph embedding: Mapping applications onto
coarse-grained reconfigurable architectures,” in Proc. of the Intl. Conf.
on Comp., Arch. and Synth. for Embed. Sys. ACM, 2006, pp. 136–146.

[21] ——, “Edge-centric modulo scheduling for coarse-grained reconfig-
urable architectures,” in Proc. of the Intl. Conf. on Parallel Architectures
and Compilation Techniques. ACM, 2008, pp. 166–176.

[22] L. Ma, W. Ge, and Z. Qi, “A graph-based spatial mapping algorithm
for a coarse grained reconfigurable architecture template,” Inf. in Ctrl.,
Auto. and Robo., pp. 669–678, 2012.

[23] L. Chen and T. Mitra, “Graph minor approach for application mapping
on cgras,” ACM Trans. Reconf. Technol. Syst., vol. 7, no. 3, pp. 21:1–
21:25, Sep. 2014.

