High-Level Synthesis of Software-Customizable
Floating-Point Cores

Samridhi Bansal, Hsuan Hsiao, Tomasz CzajkowskiT, Jason H. Anderson
Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
TIntel Corp., Toronto, ON Canada
{samridhi.bansal, julie.hsiao} @mail.utoronto.ca, janders@ece.utoronto.ca

Abstract—Parameterized cores with fixed capabilities are typi-
cally used for floating-point (FP) operations on FPGAs. However,
such standard cores can be overprovisioned or lack specific
specializations as required by applications. We consider FP
cores described in the C language, synthesized to hardware
using the LegUp high-level synthesis (HLS) tool [1]. Their
software specification permits straightforward customization to
non-compliant variants having superior area and performance
characteristics, such as reduced-precision floating point, or cores
without full IEEE 754 exceptions support. We create and evaluate
the IEEE 754 FP standard cores for the key operations of
addition, subtraction, division and multiplication, targeted to an
FPGA and compare with widely used optimized RTL FP cores
from Altera [7] and FloPoCo [3]. The software-specified HLS-
generated cores are surprisingly close to the optimized RTL cores
in terms of area/performance, and superior in certain cases, such
as FP division.

I. INTRODUCTION

Floating-point (FP) computations, when implemented on
FPGAs, have typically been realized using intellectual prop-
erty (IP) cores provided by either the FPGA vendor (e.g. Xil-
inx or Altera/Intel), or a third-party vendor or project, such
as FloPoCo [3]. The usual design methodology is for the
user to specify their FP-core performance requirements (de-
sired F'max or cycle latency) to a core-generator tool, and
the tool will produce an optimized RTL module that meets
the performance requirements, while minimizing circuit area.
The user then instantiates the generated RTL module within
their design. In this paper, we evaluate an alternative to the
traditional approach for FPGA FP computing: namely, we use
high-level synthesis (HLS) to automatically generate FP cores
from software.

Synthesizing FP cores from software offers a number of
advantages vs. the use of IP cores specified in RTL. First, the
cores are considerably easier to modify, as desired alterations
can be made in software, as opposed to a user attempting to
make changes in Verilog or VHDL. For example, one may
wish to modify the core to use non-standard bitwidths to
tailor precision to specific application needs, saving area and
improving performance. Or likewise, for certain applications,
full compliance to the IEEE 754 floating-point standard may
be unnecessary, and the user may wish to remove handling
for certain scenarios that they know will never arise for their
particular application (e.g. detecting —co).

Another key advantage is that HLS-generated FP cores may
be synthesized concurrently with the surrounding circuit in

which they reside. With RTL IP instantiated cores, the user
must know the cycle latency and initiation interval of the core
they are instantiating into their design. They must then design
the surrounding circuit to inject inputs and expect outputs at
the correct times, consistent with the core’s operation. With the
HLS approach, the FP core is scheduled along with the rest of
the circuit, relieving the user from such concerns, improving
ease of use. The use of HLS also offers the potential for
co-optimization across the boundaries between the FP core
and the surrounding design, with possible area/speed benefits
relative to the instantiation of a “black box™ RTL core, which
may be left intact by downstream RTL synthesis tools.

In this work, we specify IEEE 754-compliant single-
precision FP cores in C software for the key operations of
addition, subtraction, multiplication and division. The cores
are synthesized to hardware using the LegUp HLS tool
from the University of Toronto [1]. The synthesized cores
are pipelined and can accept new inputs every clock cycle.
Through the adjustment of clock-period constraints provided
to the HLS tool, cores with different area/performance trade-
offs are generated. In an experimental study, we target the
Altera Cyclone V 28nm FPGA and compare the HLS-
generated cores with Altera commercial FP cores, as well
as open-source FP cores from FloPoCo. Results show that
in the case of addition/subtraction, the HLS-generated cores
are relatively close in area/performance to the RTL cores. In
the case of division, the HLS-generated cores are superior to
FloPoCo RTL cores. We also evaluate the area/performance
characteristics of a reduced-precision non-754-compliant FP
core variant we believe would be valuable to end-users.

A frequently raised concern regarding HLS pertains to the
circuit quality “gap” between hand-designed RTL hardware
and HLS-generated hardware. While HLS has shown itself
to be a competitive design methodology for certain applica-
tion domains, such as streaming/dataflow [2], to the authors’
knowledge, this is the first work to demonstrate the potential
for HLS in FP computing.

The four FP cores (including additional non-compliant
variants) were developed by one engineer over a period of 16
weeks with no prior knowledge of IEEE 754 floating point,
underscoring the enormous productivity boost afforded by the
HLS design methodology. Upon publication, the C source
code for the FP core implementations will be made publicly
accessible to the research community.

II. BACKGROUND AND RELATED WORK
A. IEEE 754 Standard

IEEE defines a standard for the representation of floating-
point numbers and computations thereupon. In this paper, we
are concerned primarily with single precision 32-bit floating
point; however, the results and work presented are extensible
to the double-precision case (64-bit representation). In single-
precision FP, the 32-bits are partitioned as follows: 1-bit sign
(s), 8-bit exponent (e7_g) and 23-bit mantissa (mos_g). The
interpretation of the bits for a floating point number z is as
follows:

z=(—1)% x 267071202 1 myy_g (1)

Observe that the exponent is stored in a biased form and ranges
from O to 255. To remove the bias, 127 is subtracted from the
specified exponent.

In the “normal” floating point, as above, there is an implicit
1. in the significand (see the right term in above equation).
In such a representation, it may not be possible to represent
numbers very close to 0, which are smaller in absolute value
than 1.0 x 27126|. To handle the representation of such
numbers — the subnormal numbers — the 754 standard specifies
special handling to eliminate the leading 1. in the significand.
Typically, FPGA hardware implementations of floating point
clamp the subnormal numbers to 0 [3], [7]; we likewise do not
consider subnormal numbers in our FP core implementations.

B. High-Level Synthesis

High-level synthesis (HLS) refers to the synthesis of a
behavioral (untimed) functional specification in software into
a hardware circuit, typically specified in RTL with VHDL
or Verilog. A key step in HLS is scheduling, which assigns
computations in the software into time steps, which then
form states in a finite-state machine. The binding step assigns
computations of a given type (e.g. multiply or add) from the
input specification to specific hardware units.

With respect to floating point, the primary factors affecting
HLS include: 1) the latency and injection-rate (initiation
interval) of floating-point units, and 2) the permitted number
of floating-point units of a given type. The former factor affects
scheduling: the scheduler must be aware of the number of
clock cycles each operation takes to complete, and the rate
at which new operands may be injected. The latter factor,
unit count, affects scheduling and binding. The scheduler must
limit the number of floating-point operations that occur in a
given cycle based on the number of available units. Binding
then decides which operations, from the input source code, are
to be executed on each specific hardware unit.

C. Floating Point in HLS

The approach normally taken in research/open-source HLS
tools is to make use of third-party FP libraries. Floating
point operations in the software being synthesized are rec-
ognized during compilation, and the appropriate third-party
core is then instantiated by the HLS tool. The BAMBU HLS
framework [11], from Polytecnico di Milano, instantiates cores

from FloPoCo [3]. FloPoCo offers cores for all fundamental
FP operations (+, -, /, *), as well as some transcendental
functions. The FloPoCo core generator accepts a clock-period
constraint as input, and generates a core in VHDL appropri-
ately pipelined for the target constraint.

DWARYV HLS [10], from the Technical University of Delft,
targets Xilinx FPGAs and instantiates FP cores that are pre-
generated by Xilinx’s CoreGen tool. The LegUp HLS tool [1]
instantiates Altera FP cores when targeting Altera devices,
but also has support for the use of FloPoCo cores, when
targeting FPGAs from other vendors. The manner in which
commercial HLS tools handle FP computations is proprietary
and not publicly disclosed.

III. SOFTWARE-SPECIFIED FP CORES

In this section, we delve into the details of the software FP
core specification destined for HLS. Floating-point addition
is outlined in the next section, as it is used to illustrate
some of the coding examples involved. It is well known that
coding style and HLS constraints have a significant role in the
quality of circuit generated by an HLS tool. For example, [8]
demonstrated orders-of-magnitude improvements in circuit
performance through code changes and HLS constraints. Thus,
we highlight key approaches in two categories that we applied
to raise the hardware area efficiency and performance: code
transformations and HLS constraints.

A. Floating Point Addition

Floating point addition is analogous to performing addition
in scientific notation. Assume we wish to add X = 12.25 and
Y = 3.75 together. In single-precision floating point, the two
numbers are represented as

X = 0(10000010)10001000000000000000000
Y = 0(10000000)11100000000000000000000

where the sign bit is on the left, the exponent appears in
parentheses, and the mantissa is on the right. The main steps
for floating-point addition are as follows:

1) Extract the sign, exponent and mantissa bits from the
operands and explicitly represent the hidden ‘1.’ in their
mantissas.

X = (~1)" x 1.1000100000.. x 2°
Y = (—1)% x 1.1110000000.. x 2

2) Equalize the operand exponents by shifting the dec-
imal point of the mantissa of the smaller operand
to the left by the difference in exponent values.
Exponent difference = 3 — 1 = 2, therefore:

Y = (~1)° x 0.011110000000.. x 23

3) Add the adjusted mantissas and set the result exponent
as the exponent of the larger operand.

Result mantissa = 1.10001.. + 0.01111.. = 10.00..

Result exponent = 3

4) Normalize and round the resulting mantissa to bring it
back to standard form (with a leading 1.) by adjusting
the result exponent.

Before normalizing = (—1)° x 10.0000000.. x 23
After normalizing = (—1)° x 1.000000000.. x 2*

5) Remove the implicit 1. from the mantissa and recon-
struct the result into floating point format.

While performing floating-point addition, there exists the
potential loss of bits when shifting the smaller operand’s
mantissa (as done in the example above). To combat this, three
extra bits are used: a guard, a rounding and a sticky bit at the
least-significant end of the mantissa. These bits are used to
check for any loss and to obtain the correctly rounded result,
and the interested reader is referred to [9] for complete details.

IV. FP CORES IMPLEMENTATION IN HLS-STYLE C

Our C implementations of the FP cores first extract the sub-
fields of input FP operands (sign, exponent and mantissa) into
unsigned values. Then, all necessary computational work is
performed in fixed-point arithmetic. Finally, the sub-fields of
the computed result are assembled into a 32-bit FP output
value. The following code snippet illustrates masking/shifting
to extract the sub-fields of operand a:

unsigned int FPAdder (unsigned int a, ...) {

unsigned char a_sign = a >> 31;
unsigned short a_exp = (a & 0x7£800000) >> 23;
unsigned int a_mantissa = a & OxO007fffff;

We began with the FP adder and implemented a func-
tionally correct 754-compliant version in standard C with
typical software use of if-else conditional constructs. Com-
pilers such as LLVM typically translate if-else statements to
branch instructions, resulting in multiple basic blocks in the
program. Fig. 1(a) shows the control-flow graph (CFG) of the
initial version we created, comprising many basic blocks and
complex control. Clearly, the control flow was too complex,
making it impossible for the HLS tool to apply pipelining
and generate a streaming FP core capable of having multiple
operands “in flight” at various stages of the pipeline.

In contrast to if-else, ternary operators (<cond> ?
<vall> <valZ2>) are typically implemented using select
instructions, which do not introduce control flow. We removed
all control flow through extensive use of the ternary operator,
ultimately realizing the entire FP core in a single basic block
— straight-line code with no control flow (Fig. 1(b)). Such
branch-free code can be transformed into a pipelined circuit
by HLS. To illustrate, the following snippet shows how the
sign bit of the result is computed using the exponents exp
and mantissas mantissa of operands a and b.

result_sign = ((a_exp > b_exp) |
((a_exp == b_exp) &
(a_mantissa >= b_mantissa))) ?
a_sign : b_sign;

O

(b) final CFG

(a) before

Fig. 1: CFG of FP adder before and after code restructuring.

Note the use of bitwise operators (|, &) rather than logical
operators (| |, &&) in the above. We observed that the com-
piler sometimes inserted control flow when logical operators
were used.

Then, having created a pipelined hardware implementation
through HLS, we proceeded to make code changes to optimize
circuit area. We manually identified common subexpressions
and factored these out, eliminating the possibility of duplicate
computational work. We also used the narrowest datatypes
possible for each piece of computational work. For example,
the unsigned char type is wide enough to hold the expo-
nent in single-precision FP. By explicitly identifying variables
of narrow widths, HLS specific compiler analysis can more
effectively reduce the width of circuit datapaths.

One of the more interesting area-reducing code transfor-
mations we applied was in the leading-zero count, which is
necessary for the normalization step, discussed above. This
step finds the number of leading zeros in the result mantissa,
so that it can be brought into standard form with the leading
1., adjusting the result exponent accordingly. We use logical
operations and successively smaller types, yielding lower
circuit area. The snippet below counts the number of leading
zeros in 32-bit-type X and puts the count into n. Line 2 set
condition cond to true (1) if X has 16 leading zeros. Line
3 sets a bit (corresponding to 16) in n if cond is true. Line
4 declares a variable X1 with a narrower 16-bit type, into
which the remaining portion of X to be examined is placed. In
line 7, an yet narrower 8-bit C type is used for the remaining
computational work.

1: unsigned int X = .
2: bool cond = ! (X & OxFFFF0000);

3: n |= (cond << 4);

4: unsigned short X1 = (cond) ? X : X >> 16;
5: cond = ! (X1 & OxFFO00);

6: n |= (cond << 3);

7: unsigned char X2 = (cond) ? X1 X1 >> 8;

Although we have focused on the adder here, similar coding
style and transformations were applied for all FP core types.

The divider unit is worthy of some elaboration, as several
division algorithms are commonly used [9], each with its own
strengths and weaknesses:

1) Digit-recurrence algorithm: produces one digit in each
iteration, roughly as follows:

a) Determine the next quotient digit.

b) Multiply it with the divisor.

c) Subtract it from the current partial remainder to
obtain the remainder for the next iteration.

2) Functional iteration: uses Newton’s method to find the
value of 1/x. It requires fewer iterations than the previous
algorithm making it faster, but it generally requires more
circuit area.

3) Polynomial approximation: like to functional iteration,
yet using polynomial approximation to evaluate I/x,
saving area.

For the divider unit, we employ a restoring iterative algorithm
which falls under the first category.

All cores were functionally verified in software using mil-
lions of randomly generated operands. The cores were also
verified after HLS via ModelSim simulation.

A. Ease of Modifiability

As all cores are specified in software, making changes to
the cores is a straightforward matter of changing the C and re-
synthesizing. In the next section, in addition to 754-compliant
cores, we evaluate a core variant that lacks the functionality
to detect and handle the FP special cases of 00, & NaN (not
a number), and 0.0, thereby saving circuit area. We believe
such a core would be useful in application scenarios where a
user knew in advance that exceptions would not arise. Creating
the variant was a simple matter of commenting out the relevant
lines of the software.

We also evaluate an adder core variant that uses non-754-
standard bitwidth, namely, 4 bits for the exponent and 10 bits
for the mantissa, permitting higher performance and lower area
than a 754-compliant core, at the cost of reduced precision. We
believe the ease with which such cores can be generated will
be particularly useful in approximate-computing applications,
such as machine learning [6], where full precision has been
shown as unnecessary in many cases.

B. HLS Constraints

Apart from the code transformations above, we also ap-
ply HLS constraints. Loop pipelining is applied to each of
the FP cores synthesized, so the resulting hardware core
is able to accept new inputs every clock cycle (initiation
interval (II)=1). We also applied LegUp’s constraint for
if-conversion [4], which invokes a compiler pass to
remove control flow from the CFG, where possible. A key
HLS constraint we applied for area reduction was LegUp’s
static bitwidth analysis and minimization [5]. The optimiza-
tion reduces datapath widths by propagating constants for-
ward/backward in the program’s dataflow graph. We found it to
be very effective in providing area reductions that arise from
non-standard widths, e.g. 23-bit mantissa. For example, the

optimization “sees” the shifts/masks in our code to extract the
23-bit mantissa, and from this, it “realizes” that computations
involving the mantissa need not be full 32-bit width. The cores
were compiled with —O3 optimization.

In the experimental study, we apply various clock-period
constraints to LegUp to synthesize a range of FP cores having
different area/performance trade-offs (resulting from varying
the degree of pipelining). For each core, we experimented with
clock-period constraints ranging from 1-50ns.

V. EXPERIMENTAL STUDY

We compare HLS-generated floating-point cores with heav-
ily optimized RTL cores from Altera and FloPoCo. Altera
cores are IEEE 754 compliant, yet without support for sub-
normal numbers. FloPoCo cores are not IEEE 754 compliant,
as they lack checks for floating-point exception cases, and
also lack support for subnormal numbers. We used LegUp
to generate two sets of floating-point cores. LegUp (1) corre-
sponds to floating-point cores that are IEEE 754 compliant,
without subnormal support. These are functionally equivalent
and therefore comparable to the Altera RTL cores. LegUp (2)
corresponds to floating-point cores without exception check-
ing, making them equivalent to the FloPoCo cores.

All cores evaluated were targeted to the Altera Cyclone
V 28nm FPGA using Altera’s Quartus II CAD software
v15.0. Aside from these two LegUp-generated cores, we also
consider a core with non-standard reduced precision, as such
cores are straightforward to specify by tweaking the software
specification. Note that all cores considered, including Altera
and FloPoCo, are pipelined having initiation interval of 1: new
inputs can be injected every clock cycle. Cores with different
area/delay trade-offs were created by specifying a target clock
period constraint as input and allowing Altera, Flopoco and
LegUp to select an appropriate pipeline depth for the circuit
according to the target. When mapping to the Cyclone V
FPGA, the same RTL synthesis constraints were applied in
all cases, using the default Quartus settings.

We gauge speed performance using two metrics: 1) clock
frequency (F'max), and 2) pipeline depth. Silicon area eval-
uation is slightly more complicated. The Cyclone V FPGA
contains adaptive logic modules (ALMs), DSP blocks, and
block RAMs. ALMs in Cyclone V comprise a dual-output
look-up-table with two flip-flops, capable to implement two
independent 4-input logic functions, one six-input function,
and other combinations. The DSP blocks can realize two
18x 19 multiplies, three 9x9 multiplies, and other combina-
tions. RAM blocks are 10Kb, distributed through the array,
with configurable aspect ratio.

Fig. 2 shows results for floating-point adder cores. The
horizontal axis reflects area (ALMs); the vertical axis reflects
core speed (MHz). The pipeline depths of the fastest and
smallest core in each category are shown numerically beside
the relevant datapoint. Qualitatively, we observe that the speed
performance of the LegUp cores (diamond and triangle points)
falls within the same range of values as many of the RTL
cores (x and square points), though the LegUp cores generally

400

35
350 @)

300

250

Fmax (MHz)
~
8

150

DAltera

100
< LegUp(1)

FloPoCo
AlegUp(2)
0 200 400 600 800 1000 1200
Adaptive Logic Modules (ALMs)
Fig. 2: Adder results; # pipeline stages shown for implemen-
tations with the best area/performance.

consume more circuit area. Comparing LegUp (1) to Altera,
we observe that the fastest Altera core operates at 349MHz,
whereas the fastest LegUp (1) operates at 284MHz — about
19% slower. The fastest FloPoCo core operates at 288MHz,
and the fastest LegUp (2) core operates at 282MHz — about
2% slower.

On the area front, the smallest Altera core consumes 300
ALMs, and the smallest LegUp (1) core consumes 345 ALMs
(15% more). The smallest FloPoCo core consumes 221 ALMs
and the smallest LegUp (2) core consumes 294 ALMs (33%
more). Similar trends are observed for the case of subtraction
(Fig. 3): the maximum speed of LegUp (1) cores are within
25% of Altera best-performing cores; the speed of LegUp (2)
cores are within 5% of FloPoCo cores.

Overall, we find the results for addition/subtraction cores
encouraging and surprisingly close to the established cores.
Altera and FloPoCo cores are specified in RTL and heavily
optimized for performance and area. In particular, we expect
that the Altera cores are developed by expert IP design teams,
specifically to leverage features of Altera FPGA architectures.
Given the ease of core specification and customization in
software, as well as the ability to fuse FP core function-
ality with other surrounding logic in HLS, we believe the
performance/area gap between the HLS-generated and RTL
adder/subtractor cores may be an acceptable trade-off for many
users.

The results for multiplication cores are given in Fig. 4. Note
that the Altera cores require 1 DSP unit; FloPoCo cores require
2 DSP units; and, LegUp cores require 3 DSP units, making
it less straightforward to compare the area among the various
cores. Certainly, the smallest LegUp cores offer a significant
advantage in pipeline depth — 1 stages — as compared with
Altera and FloPoCo at 2 and 5 stages respectively. In terms
of F'max, the RTL cores are clearly superior to the HLS-
generated cores. The fastest LegUp (1) core is about 41%
slower than the fastest Altera core. The fastest LegUp (2)
core is about 47% slower than the fastest FloPoCo core.
The HLS-generated cores contain wide combinational multiply
operations that would need to be automatically split into

400

350

300

250

Fmax (MHz)
8
3

-
o]
S

DO Altera

o
o
3

< LegUp(1)

FloPoCo

@
S

AlegUp(2)

o

0 200 400 600 800 1000 1200
Adaptive Logic Modules (ALMs)

Fig. 3: Subtractor results; # pipeline stages shown for imple-
mentations with the best area/performance.

400

18
350 ®
2
200 ® B =]
5@
250 u
|

86

Fmax (MHz)
~
S
8

st

-
&
3

5]) % .
e

DAltera

=
1)
3

©LegUp(1)

FloPoCo

@
S

AlegUp(2)

o

0 50 100 150 200 250 300 350 400 450
Adaptive Logic Modules (ALMs)
Fig. 4: Multiplier results; # pipeline stages shown for imple-
mentations with the best area/performance. Note: Altera cores
use 1 DSP block; FloPoCo cores use 2 DSP blocks; LegUp
cores use 3 DSP blocks.

narrower multiplies and pipelined to achieve higher Fmaz.

The divider cores from Altera and FloPoCo require various
combinations of ALMs, block RAMs and DSP units, and
therefore, we present the area/performance results in tabular
form in Fig. 5. The LegUp-generated cores require no DSP
blocks or block RAMs, whereas the Altera cores use block
RAMs and DSPs in all cases. The use of heterogeneous
resources makes it difficult to directly compare the Altera
and LegUp (1) cores for division. FloPoCo cores only use
block RAMs in one case; many of the FloPoCo cores require
no block RAMs or DSPs, making it possible to compare
with LegUp (2) cores. The fastest FloPoCo core operates
at 166MHz, as compared with the fastest LegUp (2) core,
operable at 244MHz — 47% faster than FloPoCo. The smallest
FloPoCo core that does not require RAM blocks uses 973
ALMs, compared with the smallest LegUp (2) core requiring
802 ALMs — 28% smaller than FloPoCo. Overall, division
appears to be the most favorable result for the HLS-generated
cores, superior in speed and area to FloPoCo.

Finally, Fig. 6 shows the results for the reduced-precision
adder with 10-bit mantissa, 4-bit exponent, as synthesized

ALMs | Fmax (MHz) | DSPs | RAM blocks | #pipeline stages
580 300.66 4 5 29
414 230.1 4 5 19
Altera | 319 188.57 4 5 13
280 150.15 4 5 1
272 124.86 4 5 10
959 152.21 0 12 33
1059 158.55 0 0 23
FloPoCo | 973 165.98 0 0 13
1141 81.73 0 0
1169 55.77 0 0 5
2753 230.57 0 0 85
1114 177.53 0 0 28
LegUp(1) | 1053 157.33 0 0 21
952 141.7 0 0 16
837 78.57 0 0 8
2158 243.61 0 0 82
1257 222.67 0 0 39
LegUp(2) | 876 184.81 0 0 26
919 149.54 0 0 18
802 91.73 0 0 8

Fig. 5: Divider results (fastest and smallest in each category
are shaded).

by LegUp, labelled as LegUp (3) Observe that speed and
area are considerably superior to both Altera and FloPoCo
cores. Tremendous speed and area advantages are appar-
ent for the reduced-precision core relative to all single-
precision cores. The fastest reduced-precision adder is oper-
able at 340MHz, compared with 349MHz (Altera), 288§MHz
(FloPoCo), 284MHz (LegUp (1)), and 282MHz (LegUp (2)).
The smallest reduced-precision core requires just 171 ALMs,
compared with 300 ALMs (Altera), 221 ALMs (FloPoCo),
345 ALMs (LegUp (1)), and 294 ALMs (LegUp (2)). We note
that with Altera, one can generate a limited set of reduced-
precision cores, subject to the constraint that the exponent
ranges from 5 to 11 and the mantissa ranges from 10 to 52.

The software-specified cores were developed and optimized
by a single junior engineer over a period of 16 weeks. The
engineer had no knowledge of IEEE 754 floating point at the
project onset, and we estimate that 8 of the 16 weeks was spent
learning the details of the standard. We believe the productiv-
ity advantages afforded by HLS are significant in terms of
reducing development costs and time-to-market. In summary,
the proposed software-specified HLS-generated floating-point
cores will be highly useful to achieve performance and area
reductions in application scenarios where customizability is
desired.

VI. CONCLUSIONS AND FUTURE WORK

We considered the HLS of pipelined floating-point cores
from a C software specification using the LegUp HLS tool.
The HLS-generated cores were compared with optimized RTL
cores from Altera and FloPoCo. In the case of addition and
subtraction, the F'max of the fastest LegUp-generated cores
fell within 25% and 5% of Altera and FloPoCo, respectively.
For multiplication, the LegUp cores had considerably lower
F'max than the RTL cores, however, the smallest LegUp-
generated multipliers had comparable area to the RTL cores,

400

350

300

&
250 o o 0o
=
I
2
< 200
&
£
s
150
D Altera
100 © LegUp(1)
% FloPoCo
50 A legUp(2)
O LegUp(3)
0
0 200 400 600 800 1000 1200

Adaptive Logic Modules (ALMs)

Fig. 6: Reduced-precision adder results; # pipeline stages
shown for selected implementations

yet offered better pipeline latency: 1 stage vs. 2 and 5 stages
in the RTL case. For division, the LegUp-generated cores
were superior to FloPoCo cores in terms of area and F'max.
With software specification, it is straightforward to create cores
customized to specific application scenarios, such as reduced
precision, or with varying levels of exception handling. In
the experimental study, a core with 10-bit mantissa and 4-
bit exponent was synthesized and shown to offer appreciably
better speed and area vs. the single-precision cores. Future
work will investigate the benefits of using HLS-generated
cores within larger applications, where portions of the core
may be fused into the surrounding circuit.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski. LegUp: High-level synthesis for FPGA-
based processor/accelerator systems. In ACM FPGA, pages 33-36, 2011.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for fpgas: From prototyping to deployment. /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 30(4):473-491, April 2011.

[3] F. de Dinechin and B. Pasca. Designing custom arithmetic data paths
with FloPoCo. IEEE Design & Test of Computers, 28(4):18-27, July
2011.

[4] B. Fort, A. Canis, J. Choi, N. Calagar, R. Lian, S. Hadjis, Y. T.
Chen, M. Hall, B. Syrowik, T. Czajkowski, S. Brown, and J. Anderson.
Automating the design of processor/accelerator embedded systems with
LegUp high-level synthesis. In IEEE EUC, pages 120-129, 2014.

[5] M. Gort and J. H. Anderson. Range and bitmask analysis for hardware
optimization in high-level synthesis. In IEEE/ACM ASP-DAC, pages
773-779, 2013.

[6] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep
learning with limited numerical precision. CoRR, abs/1502.02551, 2015.

[7] https://www.altera.com/documentation/eis1410764818924.html. Altera
Float-Point IP Cores Users Guide, 2017.

[8] J. Matai, P. Meng, L. Wu, B. Weals, and R. Kastner. Designing a
hardware in the loop wireless digital channel emulator for software
defined radio. In 2012 International Conference on Field-Programmable
Technology, pages 206-214, 2012.

[9] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefevre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

Floating-Point Arithmetic. Birkhduser Boston, 2010.

R. Nane, V. M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels.

Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler. In FPL, pages

619-622, 2012.

C. Pilato and F. Ferrandi. Bambu: A modular framework for the high

level synthesis of memory-intensive applications. In FPL, 2013.

[10]

[11]

