FPGA-Based CNN Inference Accelerator
Synthesized from Multi-Threaded C Software

Jin Hee Kim, Brett Grady, Ruolong Lian, John Brothers', Jason H. Anderson
Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
TSamsung Semiconductor Inc., San Jose, CA, USA
Email: {kimjin14, bgrady, janders} @ece.utoronto.ca

Abstract—A deep-learning inference accelerator is synthe-
sized from a C-language software program parallelized with
Pthreads. The software implementation uses the well-known
producer/consumer model with parallel threads interconnected
by FIFO queues. The LegUp high-level synthesis (HLS) [1] tool
synthesizes threads into parallel FPGA hardware, translating
software parallelism into spatial parallelism. A complete system is
generated where convolution, pooling and padding are realized
in the synthesized accelerator, with remaining tasks executing
on an embedded ARM processor. The accelerator incorporates
reduced precision, and a novel approach for zero-weight-skipping
in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak
performance on VGG-16 is 138 effective GOPS.

I. INTRODUCTION

State-of-the-art accuracy results in image recognition, lan-
guage translation, image-caption generation, and many other
tasks are being achieved with deep convolutional neural net-
works (CNNs) (e.g. [2], [3], [4]). CNN training is very com-
pute intensive, requiring hours, days or weeks of time using
state-of-the-art graphics processing units (GPUs). Applying
a trained CNN to a recognition task, inference, can involve
billions of operations. Hardware acceleration is particularly
desirable for inference, as training is typically done once
offline, whereas inference with a trained network is applied
repeatedly. Moreover, there is increased emphasis on per-
forming CNN inference in an embedded-computing context
(e.g. mobile handsets, self-driving cars), where low-power and
low latency are important metrics. In this paper, we focus on
acceleration of CNN inference.

CNN inference has been accelerated with GPUs, custom
ASICs, and recently, field-programmable gate arrays (FPGAs).
At present, it is unclear which IC media will ultimately prevail
as best for CNN inference acceleration. However, the speed at
which CNN research is evolving, as well as recent research
on low-precision CNNs [5] bodes well for FPGA technology.
With FPGAs, the accelerator architecture and its datapath
widths can be precisely tailored to the target CNN, whereas an
ASIC or GPU are necessarily over-engineered with fixed-sized
datapaths to handle a broad set of precisions. Moreover, the
reconfigurability of FPGAs permits an accelerator design to be
adapted to incorporate new research findings as they arise, for
example, the ability to achieve high recognition accuracy with
2-bit precision [6]. Lastly, high-level synthesis (HLS) is a rel-
atively mature design methodology for FPGAs [7], permitting
a software specification of the accelerator to be synthesized
into hardware. HLS lowers NRE costs by allowing design
and debugging to proceed at a higher level of abstraction
vs. manual RTL design.

We apply HLS and use an FPGA to realize a CNN
inference accelerator. The accelerator is described in C and

synthesized with the LegUp HLS framework [1]. A unique as-
pect of LegUp is its ability to synthesize software parallelized
with the Pthreads standard into parallel hardware [8]. We
leverage the Pthreads synthesis to exploit spatial parallelism on
the FPGA. Specifically, we specify the accelerator in software
using the producer/consumer parallelization idiom, well known
to software engineers. 20 parallel software threads are syn-
thesized by LegUp HLS into streaming hardware comprising
compute kernels interconnected by FIFO queues.

The inference accelerator performs key compute-intensive
operations: convolution, subsampling (pooling), and padding.
Software executing on an embedded on-die ARM processor
performs remaining operations to provide a complete end-to-
end embedded solution. The accelerator architecture incorpo-
rates novel features for tiling, data-reuse, and zero-weight-
skipping, as many CNNSs can be pruned without significant loss
of accuracy [9]. The accelerator’s computations are realized in
reduced precision, specifically 8-bit magnitude + sign format.
We demonstrate our accelerator on the VGG-16 CNN for
image recognition (ImageNet database). Our contributions are
as follows:

e An FPGA-based CNN accelerator synthesized from
multi-threaded (Pthreads) C software. The software
behavior closely resembles the synthesized hardware,
easing design and debugging by allowing it to proceed
in software.

e Generation and exploration of accelerator architectural
variants via software/constraint changes alone.

e Analysis of the efficiency of the HLS implementation,
in terms of cycles spent, compared to the theoretical
minimum for the architecture.

e A novel architecture for zero-skipping; use of reduced-
precision arithmetic.

e A complete end-to-end solution for CNN inference,
integrated with Caffe for network training.

e 138 GOPS peak effective performance implementing
the VGG-16 CNN for image recognition on a mid-
sized Arria 10 SoC SX660 20nm FPGA.

II. BACKGROUND
A. LegUp High-Level Synthesis

The Pthreads synthesis flow of LegUp HLS is used
to synthesize parallel software threads into parallel hard-
ware. The multi-threaded software is written using the pro-
ducer/consumer paradigm, where threads represent compu-
tational kernels and communicate with one another through
FIFO queues [8]. Producer threads deposit computed partial
results into output queues, which are then retrieved by con-
currently running consumer threads, which perform further
processing. Note that a given thread can be both a producer and

a consumer, receiving inputs from FIFO queues, computing on
those inputs, and depositing results to output FIFO queues.
The support in LegUp HLS for hardware synthesis of the
producer/consumer parallel model is well-aligned with the
computational and communication requirements of deep CNN
inference.

FIFO queues that interconnect kernels are realized with
a LegUp HLS-provided LEGUP_PTHREAD_FIFO structure
and APIL, and can be created with user-provided lengths
and bitwidths. To illustrate the coding style (used heavily
throughout our implementation), the example below shows a
function with one input queue, inQ, and one output queue,
outQ. The function body contains an infinite while loop
that reads an input, inputData from inQ, performs compu-
tation to produce output outData, and deposits into outQ.
pthread_fifo_read and pthread_fifo_write are
API functions to read-from and write-to queues, respectively.
The while loop is pipelined in hardware by LegUp to realize
a streaming kernel that accepts new input each clock cycle.

void prodCons (LEGUP_PTHREAD_FIFO %inQ,
LEGUP_PTHREAD_FIFO xoutQ) {

while (1) {
inputData = pthread_fifo_read(inQ);
outputData = compute (inputData);
pthread_fifo_write (outQ, outputbData);

}

B. VGG-16 CNN

The VGG-16 CNN [3] is used as the test vehicle for our
accelerator. The input to the CNN is a 224x224 RGB image
drawn from the 1000-category ImageNet database. The image
is first passed through 13 convolution layers interspersed with
occasional max-pooling layers, ending with 3 fully connected
layers. All convolutional filters are 3 x 3 pixels in dimension.
Before each convolutional layer, the input feature maps are
padded with Os around the perimeter. Max-pooling is done for
2 x 2 regions with a stride of 2. ReLU activation is applied in
all cases (y = max(0,), where x is the neuron output). The
VGG-16 network has over 130M parameters and the reader is
referred to [3] for complete details.

III. ARCHITECTURE

Fig. 1 depicts the system-on-chip (SoC) architecture, con-
sisting of a Cortex A9 hard processor system (HPS), accel-
erator, DMA controller, and SRAM banks within the Arria
10 FPGA fabric. The on-FPGA banks are backed by off-
chip DDR4 RAM. The components are connected to one
another using Avalon, Intel’s on-chip memory mapped bus
interface (discussed below). Bus masters are designated with
M in the figure; slaves are designated with S. The processor
issues instructions to the DMA and accelerator by writing
to the memory mapped address (connected through the L3
interconnect). DMA transfers between the off-chip DRAM and
FPGA are realized by a direct connection from the DMA unit
to the SDRAM controller.

A. Accelerator Architecture

We first introduce the data representation, as it is necessary
to understand the zero-skipping approach. Feature maps are
organized into tiles of 4 x 4 values, as shown on the left
side of Fig. 2. The center of the figure shows a 16 x 16
feature map, comprising 4 x 4 tiles. These tiles are stored

»m O
On-FPGA SRAM Banks
———>E DMA
0]
FPGA
HPS —iT
ARM Cortex-A9 MPCore
CPUO I CPU1
L1 Caches | L1 Caches
ACP | SCU
L3 !
Interconnect
L2 Cache
SDRAM
Controller
Arria 10 SoC 20nm FPGA t
Off-chip
DDR4

SDRAM

Fig. 1. System architecture.
stripe
Xy Xy Xp X3
Xy X5 Xg X7
XC XD XE XF
Row-major tile memory layout
Tile of 4x4 values

Feature map

Fig. 2. Tile concept, feature map, stripe, data layout.

in memory in row-major order, depicted on the right, where
colors of tiles correspond to those in the center image. Fig. 2
also introduces the notion of a stripe, which is a region of tiles
spanning the entire width of a feature map. Striping is used
to subdivide large convolutional layers into smaller ones that
can be accommodated in on-chip memory.

A block diagram of the accelerator is shown in Fig. 3. Four
banks of on-FPGA SRAM are shown in orange. An entire tile
of data (16 values) can be read from an SRAM bank in a
single cycle. The on-FPGA SRAM banks are dual-port: reads
are from port A; writes are to port B. The primary computing

FPGA SRAM FPGA SRAM
(Bank2) (Bank3)

| PooiPag |—>{ wittezvem | [wrto2mem |« Pooiad
Data Stag |Aa /
~>| Staging / T ging

‘ Convolution |";I Accum2 | ,| Accum3 | (“{ Convolution
‘ Convolution |>—)| Accum0 | | Accum1 | (—‘{ Convolution
Data
>/ Staging/ l
Control
[PootPag | writezvtem | | wite2mem |« Poolad
FPGASRAM FPGA SRAM
(Bank 0) (Bank 1)

Main
controller

Fig. 3. Accelerator block diagram (each blue module is synthesized from a
software thread to hardware).

units are shown in blue — each is a software thread in the
software implementation. Observe that there are 4 instances of
5 different compute units: 20 units (threads) in total. Edges in
the figure represent multiple FIFO queues for communication
of data/control between the units; queues are not shown for
clarity.

The high-level behavior is as follows: The data-
staging/control units receive an instruction from the ARM
processor to perform convolution, padding, or max-pooling.
We do not focus on fully connected layers, since it is essen-
tially matrix multiplication and most CNN computational work
comprises convolution. Although the padding and subsampling
operations can be performed by a processor fairly efficiently,
in most CNNs, they are tightly interleaved with convolution
operations. Supporting them in hardware minimizes memory
traffic between the FPGA and HPS.

For a convolution instruction, four tiles from different
output feature maps (OFMs) are computed simultaneously.
The four concurrently computed OFM tiles are at the same
x/y location. Each data-staging/control unit loads a subset of
input feature maps (IFMs) from an on-FPGA SRAM bank,
as well as corresponding filter weight data from four filters.
On each clock cycle weights and IFM data are injected into
the comvolution units. Each convolution unit performs 64
multiply operations each clock cycle, thus the entire accelerator
performs 256 multiplication operations per cycle. Products
from the convolution units are sent to the accumulator units
(center of the figure). Each accumulator unit is responsible for
maintaining the values of one tile (16 values) in an OFM.
In the figure, for clarity, some edges between convolution
units and accumulator units are omitted. When an OFM tile is
completed, it is sent to the write-to-memory unit and written
to an on-FPGA SRAM bank.

For a padding or max-pooling instruction, the data-
staging/control units send IFM data and instructions to
the pool/pad units, capable of performing any style of
padding/max-pooling, described below. Pooled/padded tiles are
then forwarded to the write-to-memory units and written to
SRAM banks. Padding/pooling of four OFM tiles is done
concurrently.

B. Convolution and Zero-Weight Skipping

OFMs are computed on a tile-by-tile basis to completion
without any intermediate swap-out to off-chip memory in an
output-stationary manner. This style allows us to keep a fixed
datapath width and not compromise accuracy by rounding
partial sums. The convolution unit contains a computational
sub-module that multiplies one weight per clock cycle to 16
IFM values and accumulates the resulting 16 products to the
corresponding 16 OFM values in an OFM tile being computed.

Fig. 4(a) shows an OFM tile (lower right), a weight tile
(upper right), and four contiguous IFM tiles. For this example,
assume that the upper-left IFM tile is z/y aligned with the
OFM tile being computed and that the filter dimensions are
smaller than 4 x 4 (the tile size). In a given clock cycle,
a weight in the weight tile is selected and multiplied by 16
IFM values. The example illustrates, with a dotted rectangle,
the region of 16 IFM values with which the weight Wj is
multiplied. Observe that the intra-tile 2 /y offset of W5 defines
the region of IFM values which with it is multiplied. This
produces 16 products: Wy - As, Wy - Ag ... W5 - Dgy. The
products are accumulated to the corresponding OFM values:
Oy, O4, ..., Op, respectively.

IFM tiles Weight tile

Ag A; Ay A3 |By B; By Bs Wo W; Wy Ws

Ay {AS Ag Ry By Bs Bg By Wy, Ws We Wy

AgiRg Ap Ag [BgiBg By Bs Wy Wo Wa Wy

AciAp Ap Ap [BciBp B Bp We Wp Wy We
CoiC; C, C3|DoiD; D, Ds
C, Cs5 Cg C7}{Ds Ds Dg Dy

0, 0; 0, Os

Cg Cy Ca Cg|[Dg Do Da Dg 0. 6 0 0

CC CD CE CF DC DD DE DF 4 5 é 7

1 Og Og Oa Og

IFM values associatedwith | Oc Op Og Or

application of W OFM tile

a) IFM, weight and OFM tiles for convolution

Oo

W;offset in tile
b) Data-steering and multiply-accumulate HW

Fig. 4. Data and architecture for convolution and zero-weight skipping.

Fig. 4(b) shows steering and multiply-accumulate hardware
for value Oy — the top-left value in an OFM tile being
computed. Registers are omitted for clarity. When a weight
W; is selected from the weight tile, the specific IFM value
with which the weight W; is multiplied depends on W;’s offset
within the weight tile. For the OFM value O, this may be any
of the IFM values Ay, A1, ..., Ar, shown on the data inputs
of the multiplexer, while the select inputs receive the weight’s
offset within the weight tile.

With the proposed tiling and convolution approach, zero-
weight skipping is straightforward. For a given neural network
model, the non-zero weights and their intra-tile offsets are
“packed” offline in advance in software. The packing pro-
cedure only needs to be done once for a given CNN model
such as VGG-16. During inference, the accelerator receives the
weight values and their intra-tile offsets in a packed format that
is read directly into scratchpad memory. One non-zero weight
is applied per clock cycle; no cycles are spent on weights
having a value of 0.

1) Scaling Out Convolution: Each of the four data-
staging/control units in Fig. 3 manages one quarter of the
IFMs and corresponding weights. Every clock cycle, a data-
staging/control unit injects IFM data and four weights (from
four different filters) and their respective weight offsets into a
convolution unit. Each of the four weights is multiplied by 16
IFM values, as described above. Thus, each convolution unit
performs 4 X 16 = 64 multiplications/cycle. While the weights
from a tile are being applied to (i.e. multiplied with) IFM
data, the next required tiles of IFM data are simultaneously
preloaded from the on-FPGA SRAM banks. Fig. 4 shows
that four IFM tiles are needed to apply a weight tile and
hence, since one tile/cycle can be loaded from an SRAM
bank, at least four clock cycles must be spent processing
a weight tile. This restriction implies that the upper-bound
cycle-count reduction from zero-skipping is (16 — 4)/16 =
75% in our implementation. Moreover, note that OFMs being
computed simultaneously may have different numbers of non-
zero weights in their filters, causing pipeline bubbles and
reduced efficiency. The completion of all four OFM tiles at a

Max,Sel OoSel

A — Maxo—|
Max.
Al 1
! Max. Max; 0o
: 0 Max;

XY -

—1
Ay A, A, A A 0y 0; 0, O
B, As Bg A, : 04 Os O Og
Ag Ay A, A Og O O O
Ac Ap Ag Ap As?| Oc Op Og Op

A -
IFM tile Maxs Ossel OFM tile

= Maxo—|
Max;.

| Max,.

Maxz

A

By,

@0
©

O
M

5]
X,

3

4 MAX units 16 4-to-1 MUXes for select

Fig. 5. Hardware architecture of padding/pooling unit.

given x/y tile position is synchronized using a Pthreads barrier.

C. Padding and Pooling

Fig. 5 shows the padding/max-pooling unit. The
controller/data-staging unit injects an IFM tile (shown
on the left), as well as an instruction that specifies the desired
padding/max-pooling behavior. There are four MAX units
that, based on the instruction, select the maximum of any
of the 16 IFM values in the input tile. The MAX units feed
16 multiplexers: one for each value of the OFM tile being
computed. Based on the instruction, each value in the OFM
tile may be updated with one of the MAX unit outputs, or
alternately, may retain its old value.

To implement padding, which does not involve taking the
maximum of multiple IFM values, the MAX units return a
single value from the IFM (i.e. find the maximum among a
single value). The specific number of MAX units (four in this
case), is inspired by the needs of VGG-16, which requires
2 x 2 max-pooling regions with a stride of 2. However, with
just a few instructions, the padding/max-pooling unit is capable
of realizing any padding/max-pooling layer (e.g. a variety of
max-pooling region sizes or strides). Moreover, since all units
are described in software, it is straightforward to increase the
number of MAX functional units within the padding/max-
pooling unit.

IV. IMPLEMENTATION
A. High-Level Synthesis

Use of the LegUp HLS Pthreads flow permitted accelerator
design, development and debugging to proceed in software.
Debug and test were simplified, as the parallel software exe-
cution aligns closely with the target hardware architecture.

The primary HLS constraints applied were loop pipelin-
ing, if-conversion, automated bitwidth minimization [10], and
clock-period constraints. To achieve optimized loop pipelines
(initiation interval [II] = 1), it was necessary to remove control
flow from the C code to the extent possible by making use
of the ternary operator (<cond> ? <vall> <val2>)
to implement MUX’ing instead of using conditionals. The C
specification of the accelerator is ~5,600 LOC. The Verilog
RTL automatically produced by LegUp was modified (using
a script) in three ways: 1) pragmas were added to direct the
Intel synthesis tools to implement the FIFO queues using LUT
RAM instead of block RAM (saving precious block-RAM
resources); 2) the on-FPGA SRAM banks were brought to the
top-level of the hierarchy, making them accessible to the DMA

unit for writing/reading; and 3) the port assignment for the on-
FPGA RAM banks was altered so that reads and writes have
exclusive ports, reducing contention/arbitration. Our design
goal was skewed towards maximizing performance; however,
it is possible to apply directives in LegUp that lower resource
utilization at the expense of some performance.

A challenge with HLS is the disconnect between the
software source code and the generated hardware — it can
be difficult for one to know how to change the source code
to effect desired changes in the hardware. In this work, this
issue arose in the context of the controller/data-staging unit,
which synthesized to a module with a large number of FSM
states (hundreds), and consequent high-fanout signals (e.g. the
FSM stall logic). To mitigate this, we split the unit into
two C functions, one for convolution instructions and one for
padding/max-pooling instructions, each having a simpler FSM
than the original monolithic controller.

With reference to Fig. 3, the pool/pad, convolution, write-
to-memory, and accumulator units are all streaming kernels
generated by LegUp HLS that can accept new inputs every
clock cycle (I = 1). The data-staging/control unit is capable
of injecting data into the compute units every cycle. We
reinforce that the entire accelerator, including the compute
pipelines and the relatively complex control as described in
Section III-A, is synthesized to Verilog RTL from parallel C
software. Manual RTL design was used solely for the DMA
unit. While streaming audio/video applications are typically
emblematic as being “ideal” for the use of HLS, here, we show
that HLS can effectively be used to generate sophisticated
control and data-staging for streaming hardware.

B. VGG-16 Reduced Precision and Pruning

Beginning with the pre-trained VGG-16 model [3], we
increased the sparsity by pruning and reduced the precision to
8-bit magnitude-plus-sign representation by scaling. Pruning
and precision reduction were done using Caffe, in a manner
similar to [9]. We consider two VGG-16 models: 1) with
reduced precision and 2) with reduced precision and pruning.
With variant #2, inference accuracy in validation was within
2% of the original unpruned floating point, which can be
improved further through training.

C. Software

Software executing on the on-chip ARM processor handles
the loading and pre-processing of network weights, biases and
test images. Pre-processing includes the reordering of data
into tiled format for our accelerator. The framework sends the
instruction and calls the hardware driver for inference.

D. System Integration, Accelerator Scale-Out

The accelerator core, DMA controller, and host processor
communicate via an interconnect network synthesized using
Intel’s Osys System Integration tool. Two separate systems are
instantiated: System I is a high bandwidth 256-bit bus that
performs DMA to and from system DRAM to the accelerator
banks. System II is a set of Avalon Memory-Mapped (AMM)
interfaces between the host ARM processor and control and
status registers on the accelerator core and DMA unit. The
accelerator and DMA unit are controlled using System II by
the host ARM processor.

We target a mid-range-sized Intel Arria 10 SX660 FPGA,
whose size permits us to instantiate two instances of the

1%

14%
20%
16%
5%

1% "DMA

® Accumulator Unit

= Convolution Unit
Pad/Pool Unit
Write-To-Memory Unit

® Data-Staging/Control Unit

® Banks

" FIFO

32% 1%

Fig. 6. ALM usage by each unit in the accelerator.

accelerator shown in Fig. 3, where each instance operates
concurrently on separate stripes of FMs (see Fig. 2). The
overall multi-accelerator system is capable of 512 MACs/cycle.

V. EXPERIMENTAL STUDY

A unique advantage of HLS is that one can synthesize
multiple architecture variants from software and constraint
changes alone. We analyze area, power and performance for
four architecture variants running the two VGG-16 CNN
models mentioned above: reduced precision without and with
pruning (higher fraction of zero weights). The four architecture
variants considered are as follows (labels in brackets):

1) A non-optimized simplified accelerator variant with a
single convolution sub-module capable of performing
at most 16 MACs/cycle (16-unopt).

2) A non-performance-optimized variant with one in-
stance of the accelerator in Fig. 3 capable of per-
forming at most 256 MACs/cycle (256-unopt).

3) A performance-optimized variant of Fig. 3 (256-opt).

4) A variant with two instances of the accelerator in
Fig. 3 capable of performing at most 512 MACs/cycle
(512-opt).

The 16-unopt architecture computes a single OFM tile at
a time, and consequently requires no synchronization among
multiple control/data-staging units. Analysis of the 16-unopt
architectures gives insight into the HLS hardware quality
in the absence of synchronization overhead. Both the 16-
unopt and the 256-unopt architectures were not performance-
optimized and as such, they consume minimal area and, to
verify functional correctness, were clocked at 55MHz. To
produce higher-performance variants, we tightened the clock-
period constraint supplied to the LegUp HLS tool, and also
invoked performance optimizations in the Intel RTL-synthesis
tool: retiming, physical synthesis, higher place/route effort.
The 256-opt and 512-opt architectures were clocked at 150
MHz and 120 MHz, respectively. Routing of the 512-opt
architecture failed at higher performance targets due to high
congestion.

Intel FPGAs have 3 main types of resources: Adaptive
Logic Modules (ALMs — lookup-table-based logic), DSP and
RAM blocks. Our 256-opt accelerator uses 44% of the ALM
logic, 25% of the DSP and 49% of the RAM blocks. Fig. 6
shows the breakdown of ALM usage for each module. The
convolution, accumulator and data-staging/control modules
take up most of the area, due to the heavy MUX’ing required in
these units. Most of the DSP blocks are used in the convolution
and accumulator modules. We adjust the RAM block usage to
maximize our bank size given the number of available RAMs.

We consider the efficiency of the HLS-generated hard-
ware by comparing the experimentally observed throughput

180% —=-ldeal mBest

= Mean
160% Worst
S 140%
g 120%
S 100% -
&
o 80%
=
B 60%
g
W 40%
20%
0%
& & & & & & & 2
N R N R & R NA R
el & (,)fo' & Vv (9(0') &
K&t v & v 2
Vv
Fig. 7. Efficiency of each accelerator variant for VGG-16 inference.

 Average GOPS
M Peak GOPS

Effective GOPS
N A O @
o O O O
-
i
-
N
-
o
l'E
i
a
w
N
N
al
‘“
=]
“
w
N
o
[}
‘H
“
w

Fig. 8. Absolute GOPS/s across accelerator variants for VGG-16.
(ops/elapsedtime) with the theoretically minimum ideal
throughput numbers. Ideal throughput is defined as peak
throughput * total number of computations. We add an over-
head (~15% but varies by layer) for the increased number of
MAC operation due to limited on-FPGA SRAM bank size —
“striping”. Results in Fig. 7 illustrate the efficiency of various
architectures with the pruned and unpruned VGG-16 model.
Results obtained using a pruned network are labeled as “-pr”.
“Best” and “worst” refer to the highest and lowest throughput
for any single convolutional layer of VGG-16, respectively.
Mean refers to the average throughput across all VGG-16
layers. The ideal throughput value is indicated as a dotted line
on Fig. 7.

The underlying reason for differences between best, worst,
and mean is that, for deeper layers of VGG-16, the ratio of
weight data to FM data increases, imposing a higher overhead
for unpacking weights and offsets in our accelerator, reducing
effective throughput. Using the pruned network we see greater
than 100% efficiency, due to the zero-skipping avoiding some
multiply-accumulates altogether. For the non-pruned VGG-16,
we are not far from the ideal throughput — usually within
~10%. This analysis shows the HLS-generated hardware is
quite efficient; overhead from HLS is minimal from the cycle
latency perspective.

Secondly, we look at our results in terms of absolute
performance (GOPS). Fig. 8 shows that our 512-opt accelerator
achieved the highest average (peak) throughput of 39.5 GOPS
(61 GOPS), and with the pruned network, the effective average
(peak) performance increases to 53.3 GOPS (138 GOPS).
We can clearly see the effects of zero-skipping in these
results. By pruning the network, we were able to increase
our performance by ~1.3x, on average, and ~2.2X in the

TABLE 1. POWER CONSUMPTION

Accelerator Variant Peak Power (mW) GOPS/W GOPS/W (peak)
256-opt (FPGA) 2300 (500) 13.4 374
512-opt (FPGA) 3300 (800) 13.9 41.8
256-opt (Board) 9500 35 9.05
512-opt (Board) 10800 5.6 12.7

*dynamic power is parenthesized

peak case. The peak performance numbers are considerably
higher than the average in the pruned case, as peak throughput
requires uniformly sparse filters applied concurrently for even
workload balancing. Future work could include grouping filters
in advance according to similarity in non-zero-entry counts to
maximize available zero skipping and balance the work.

While the absolute performance numbers are relatively
modest and in line with prior work (cf. Section VI), the
results in Fig. 8 underscore a key advantage of HLS, namely,
a wide range of architectures with distinct performance/area
trade-offs can be produced by software and HLS constraint
changes alone. For example, in the opt vs. unopt variants,
the clock-period constraint applied in HLS impacts the degree
of pipelining in the compute units and control. It would be
expensive and time-consuming to produce hand-written RTL
for all architecture variants considered. Finally, we note that
on a larger Arria 10 FPGA family member (e.g. GT1150),
with nearly double the capacity, software changes alone would
allow us to scale out the design further.

Power consumption measurements are given in Table I.
All measurements are peak power measured while running the
accelerator on the worst-case VGG-16 layer. A board-level
power measurement is provided, alongside the power con-
sumption of the FPGA by itself. Power numbers in parentheses
are dynamic power; numbers outside parentheses are static +
dynamic power.

VI. RELATED WORK

Recent years have seen considerable research on custom
hardware accelerators for deep CNN inference designed in
manual RTL, realized in ASICs (e.g. [11], [12]) and FPGAs
(e.g. [13]). The works most comparable to ours use HLS and
target FPGAs. [14] applied Xilinx’s Vivado HLS to synthe-
size an accelerator for the convolution operation, achieving
61 GFLOPS peak performance. Suda et al. [15] synthesized a
CNN accelerator from OpenCL, achieving peak performance
of 136 GOPS for convolution. In [16], Intel synthesized a
CNN accelerator from OpenCL that incorporates the Winograd
transform, half-precision floating point, and achieves over
1 TFLOPS performance. In [17], Xilinx synthesized significant
parts of a binarized CNN accelerator with Vivado HLS. In
binarized CNNs, both weights and activations are represented
by 1-bit values. OpenCL along with Xilinx’s SDAccel OpenCL
HLS tool was also used in [18] to synthesize a single-precision
floating-point CNN accelerator incorporating Winograd and
achieving 50 GFLOPS performance. The latter work also
provides integration with the Caffe framework.

Generally, the OpenCL implementations above use PCle
connectivity with a host processor and are more suited for
data center applications; whereas, our system is intended for
embedded. To the best of the authors’ knowledge, our work
is the first to synthesize a CNN accelerator from parallelized
C-language software that incorporates a novel zero-skipping
approach and reduced precision, and illustrates how, beginning
with a software-parallelized C specification of the architecture,

constraints to the HLS and RTL synthesis tools can be applied
to generate a variety of accelerator architectures with different
performance/area trade-offs.

VII. CONCLUSIONS AND FUTURE WORK

An FPGA-based CNN inference accelerator was synthe-
sized from parallel C software using the LegUp HLS tool,
incorporating a zero-weight skipping architecture and reduced-
precision arithmetic. The end-to-end system contains a dual-
core ARM processor, the accelerator, on-FPGA memories
(backed by DDR4) and DMA. Software running on the ARM
issues instructions to the accelerator for convolution, padding
and pooling. Complex datapath and control logic was syn-
thesized entirely from C, and the use of HLS permitted a
range of architectures to be evaluated, through software and
constraint changes alone. Future work involves the use of
HLS to synthesize accelerators for other neural network styles,
including binarized, ternary and recurrent networks.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, , and J. H. anderson, “LegUp: An open source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Tranasactions on Embedded Computing Systems, 2013.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Neural Information
Processing Systems, 2012, pp. 1106-1114.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[4] C. Szegedy and et al., “Going deeper with convolutions,” in IEEE
CVPR, 2015, pp. 1-9.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in NIPS, 2016, pp. 4107-4115.

[6] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating
deep convolutional networks wusing low-precision and spar-
sity,” CoRR, vol. abs/1610.00324, 2016. [Online]. Available:

http://arxiv.org/abs/1610.00324

[71 J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers, and
Z. Zhang, “High-level synthesis for FPGAs: From prototyping to
deployment,” IEEE TCAD, vol. 30, no. 4, pp. 473-491, 2011.

[8] J. Choi, R. Lian, S. D. Brown, and J. H. Anderson, “A unified software
approach to specify pipeline and spatial parallelism in FPGA hardware,”
in IEEE ASAP, 2016, pp. 75-82.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015.

[10] M. Gort and J. H. Anderson, “Range and bitmask analysis for hardware
optimization in high-level synthesis,” in IEEE/ACM ASP-DAC, 2013,
pp. 773-779.

[11] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017.

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ACM ASPLOS, 2014, pp. 269-284.

[13] E. Nurvitadhi and et al., “Can FPGAs beat GPUs in accelerating next-
generation deep neural networks?” in ACM FPGA, 2017, pp. 5-14.

[14] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based accelerator design for deep convolutional neural
networks,” in ACM FPGA, 2015, pp. 161-170.

[15] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J.-s. Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks,” in ACM
FPGA, 2016.

[16] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCL Deep Learning Accelerator on Arria 10,” ArXiv e-prints,
Jan. 2017.

[17] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference,” ArXiv e-prints, 2016.

[18] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. W. Taylor, and
S. Areibi, “Caffeinated FPGAs: FPGA framework for convolutional
neural networks,” CoRR, vol. abs/1609.09671, 2016.

