
14

The Effect of Compiler Optimizations on High-Level
Synthesis-Generated Hardware

QIJING HUANG, RUOLONG LIAN, ANDREW CANIS, JONGSOK CHOI, RYAN XI,
NAZANIN CALAGAR, STEPHEN BROWN, and JASON ANDERSON, Department of
Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

We consider the impact of compiler optimizations on the quality of high-level synthesis (HLS)-generated
field-programmable gate array (FPGA) hardware. Using an HLS tool implemented within the state-of-the-
art LLVM compiler, we study the effect of compiler optimizations on the hardware metrics of circuit area,
execution cycles, FMax, and wall-clock time. We evaluate 56 different compiler optimizations implemented
within LLVM and show that some optimizations significantly affect hardware quality. Moreover, we show
that hardware quality is also affected by some optimization parameter values, as well as the order in which
optimizations are applied. We then present a new HLS-directed approach to compiler optimizations, wherein
we execute partial HLS and profiling at intermittent points in the optimization process and use the results
to judiciously undo the impact of optimization passes predicted to be damaging to the generated hardware
quality. Results show that our approach produces circuits with 16% better speed performance, on average,
versus using the standard -O3 optimization level.

Categories and Subject Descriptors: B.7 [Integrated Circuits]: Design Aids

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: High-level synthesis, FPGAs, performance, optimization

ACM Reference Format:
Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Nazanin Calagar, Stephen Brown, and
Jason Anderson. 2015. The effect of compiler optimizations on high-level synthesis-generated hardware.
ACM Trans. Reconfig. Technol. Syst. 8, 3, Article 14 (May 2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2629547

1. INTRODUCTION

High-level synthesis (HLS) raises the level of abstraction for hardware design by al-
lowing software programs written in a standard language to be automatically compiled
to hardware. First proposed in the 1980s, HLS has received renewed interest in recent
years, notably as a design methodology for field-programmable gate arrays (FPGAs).
Although FPGA circuit design historically has been the realm of hardware engineers,
HLS offers a path toward making FPGA technology accessible to software engineers,
where the focus is on using FPGAs to implement accelerators that perform compu-
tations with higher throughput and energy efficiency relative to standard processors.

This work is supported by the National Sciences and Engineering Research Council of Canada, the University
of Toronto, and Altera Corporation.
Authors’ addresses: Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, N. Calagar, S. Brown, and J. Anderson,
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, Ontario M5S 3G4, Canada; emails: qijing.huang@utoronto.ca, lanny.lian@mail.utoronto.ca, acanis@
eecg.toronto.edu, jongsok.choi@mail.utoronto.ca, ryan.xi@utoronto.ca, nazanin.calagar@gmail.com, {brown,
janders}@ece.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1936-7406/2015/05-ART14 $15.00
DOI: http://dx.doi.org/10.1145/2629547

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

http://dx.doi.org/10.1145/2629547
http://dx.doi.org/10.1145/2629547

14:2 Q. Huang et al.

We believe, in fact, that FPGAs (rather than ASICs) will be the vehicle through which
HLS enters the mainstream of IC design, owing to their reconfigurable nature. With
custom ASICs, the silicon area gap between human-designed and HLS-generated RTL
leads directly to (potentially) unacceptably higher IC manufacturing costs, whereas
with FPGAs, this is not the case, as long as the generated hardware fits within the
available target device.

Modern HLS tools are implemented within software compiler frameworks. For ex-
ample, Altera’s OpenCL compiler for FPGAs [Altera 2012b], Xilinx’s Vivado HLS tool
[Xilinx 2013], ROCCC HLS from the University of California at Riverside [Villarreal
et al. 2010], and LegUp from the University of Toronto [Canis et al. 2013] are im-
plemented within the LLVM framework [LLVM 2010a]. Similarly, GAUT [Coussy
et al. 2010] from the Université de Bretange Sud is implemented within GCC. Com-
pilers perform their optimizations in passes, where each pass is responsible for a
specific code transformation. Examples of passes include dead-code elimination, con-
stant propagation, loop unrolling, and loop rotation. LLVM contains 56 such opti-
mization (transform) passes that may alter the program, as well as many other
passes that analyze the code to provide decision-making data for transform passes
(see http://llvm.org/docs/Passes.html). The familiar command-line optimization levels
(e.g., -O3) correspond to a particular set and sequence of compiler passes. The com-
piler passes within LLVM were intended to optimize software programs that run on a
microprocessor. Their impact on HLS-generated hardware is not well studied, nor is
the manner in which they should be applied to best optimize hardware quality. These
issues are explored in this article.

We study the impact of compiler passes using the open-source LegUp HLS tool.
We target the Altera Cyclone II FPGA [Altera 2012a] and assess hardware quality
using several metrics: area, FMax, execution cycles, and wall-clock time. We conduct
a wide range of experiments to explore (1) the impact of each LLVM pass in isolation,
(2) the interdependency between different passes, (3) the impact of pass parameters,
and (4) the impact of pass ordering. We present a detailed analysis for several passes
demonstrated to have a significant hardware impact. We show that the particular set
of passes applied can have a significant impact on hardware quality—variance in the
range of greater than ±10% is common. We also show that a given pass may improve
some circuits and not others; likewise, a pass may improve hardware along one axis
(e.g., area) while at the same time degrade hardware along a second axis (e.g., speed).

Given that the impact of a particular pass or set of passes is program dependent, we
propose an HLS-directed approach to the application of compiler optimization passes.
At a high level, our approach works as follows. We iteratively apply one or more passes
and then “score” the result by invoking partial HLS coupled with rapid profiling (in
software). Transformations made by passes deemed to positively impact hardware are
accepted. Conversely, we undo the transformations of passes that we predict to be dam-
aging to hardware quality. Results show that our optimization strategy consistently
outperforms the standard -O3 level in terms of hardware speed performance.

A preliminary version of this work appeared in Huang et al. [2013]. In this extended
journal version, we investigate not only which passes impact HLS results but also study
the effect of parameters used by certain passes, namely inlining and loop unrolling.
The specific parameter values chosen and the interdependency between passes are
demonstrated to significantly impact generated hardware circuits. Furthermore, we
assess the effect on circuit quality of sequences of passes generated by our proposed
HLS-directed approach, which we refer to as pass recipes. We show that many passes
do not provide any benefit for generated circuits and therefore should not be included in
the recipes. Finally, we examine whether HLS-oriented pass recipes are also beneficial
for optimizing software intended to run on a standard processor (an x86 processor).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:3

In other words, we attempt to answer the following question: for a given pass recipe
shown to improve a generated hardware circuit using HLS, does that same recipe also
provide better results for software running on a processor?

The rest of this article is organized as follows. Section 2 provides relevant background
and describes related work. Section 3 presents results that illustrate the impact of
LLVM optimization passes on generated hardware quality. In Section 4, we introduce
our HLS-directed compiler optimization approach. Experimental results are presented
and discussed in Section 5. Section 6 offers conclusions and suggests future work.

2. BACKGROUND

Compilers such as LLVM and GCC provide standard optimization levels that can be
selected by the user. Higher optimization levels typically cause the compiler to per-
form more passes in an attempt to better optimize the generated result. The level is
normally set by a compiler parameter, as in -O1, -O2, and -O3. The particular optimiza-
tions applied at each level are chosen to benefit the average results for a collection of
benchmark programs. However, it is not guaranteed that a higher optimization level
will give a better result for a specific program. This has led the (software) compiler
community to consider selecting a particular set of compiler optimization passes on
a per-program (or even per code segment) basis. Such “adaptive” compiler optimiza-
tion has been the subject of active research in recent years, with a few examples of
highly cited works being Triantafyllis et al. [2003], Almagor et al. [2004], and Pan and
Eigenmann [2006]. Broadly speaking, research in the area involves devising heuristic
methods to prune the large optimization space of selecting passes, thereby reducing the
number of different passes that need to be applied/attempted. Milepost [Fursin et al.
2011] is a GCC-based optimization approach that uses machine learning to determine
the set of passes to apply to a given program, based on a static analysis of its features.
It achieved 11% execution time improvement, on average, for the ARC reconfigurable
processor on the MiBench program suite.1

Our work is related to such efforts in the software domain and represents a step
toward adaptive compiler optimization in the HLS hardware domain. A very recent
related work [Cong et al. 2012], done concurrently with our own, considered source-
code transformations and their impact on HLS, as well as a limited number of LLVM
compiler passes. Our work, on the other hand, considers a broader set of passes and
more hardware metrics (such as circuit wall-clock time), as well as proposes strategies
to determine recipes of passes that work well for HLS.

2.1. The LegUp HLS and the LLVM Framework

The LegUp open-source HLS tool is implemented within the LLVM compiler frame-
work, which is used in both industry and academia. LLVM’s front-end, clang, parses the
input C source and translates it into LLVM’s intermediate representation (IR). The IR
is essentially machine-independent assembly code in static-single assignment (SSA)
form, composed of simple computational instructions (e.g., add, shift, multiply) and
control-flow instructions (e.g., branch). LLVM’s opt tool performs a sequence of com-
piler optimization passes on the program’s IR—each such pass directly manipulates
the IR, accepting an IR as input and producing a new/optimized IR as output.

A high-level diagram of the LegUp flow is shown in Figure 1. The LegUp HLS
tool is implemented as back-end passes of LLVM that are invoked after the standard
compiler passes. LegUp accepts a program’s optimized IR as input and goes through
the four stages shown in Figure 1 (➀ Allocation, ➁ Scheduling, ➂ Binding, and ➃ RTL
generation) to produce a circuit in the form of synthesizable Verilog HDL code.

1http://www.eecs.umich.edu/mibench.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

http://www.eecs.umich.edu/mibench.

14:4 Q. Huang et al.

Fig. 1. LegUp flow.

The allocation stage allows the user to provide constraints to the HLS algorithms, as
well as data that characterizes the target hardware. Examples of constraints are limits
on the number of hardware units of a given type that may be used, the target circuit
critical path delay, and directives pertaining to loop pipelining and resource sharing.
The hardware characterization data specifies the speed (critical path delay) and area
estimates (number of FPGA logic elements) for each hardware operator (e.g., adder,
multiplier) for each supported bitwidth (typically 8, 16, 32, and 64 bit). The charac-
terization data is collected only once for each FPGA target family using automated
scripts. The scripts synthesize each operation in isolation for the target FPGA family
to determine their speed and area.

At the scheduling stage, each operation in the program (in the LLVM IR) is assigned
to a particular clock cycle (state) and an FSM is generated. The LegUp scheduler,
based on the SDC formulation [Cong and Zhang 2006], operates at the basic block
level, exploiting the available parallelism between instructions in a basic block. A
basic block is a sequence of instructions that has a single entry and exit point. The
scheduler performs operation chaining between dependent combinational operations
when the combined path delay does not exceed the clock period constraint—chaining
refers to the scheduling of dependent operations into a single clock cycle. Chaining can
reduce hardware latency (number of cycles for execution) and save registers without
impacting the final clock period.

The binding stage assigns operations in the program to specific hardware units.
When multiple operators are assigned to the same hardware unit, multiplexers are
generated to facilitate the sharing. Multiplexers require a significant amount of area
when implemented in an FPGA logic fabric. Consequently, there is no advantage to
sharing all but the largest functional units, namely multipliers, dividers, and recurring
patterns of smaller operators. Multiplexers also contribute to circuit delay, and thus
they are used judiciously by the HLS algorithms. LegUp also recognizes cases where
there are shared inputs between operations, which allows hardware units to be shared
without creating multiplexers. Last, if two operations with nonoverlapping lifetime
intervals are bound to the same functional unit, then a single output register is used
for both operations. This optimization saves a register as well as a multiplexer.

The RTL generation stage produces synthesizable Verilog HDL register transfer
level code. One Verilog module is generated for each function in the C source program.
Results show that LegUp produces solutions of comparable quality to a commercial
HLS tool [Y Explorations 2012], and the interested reader is referred to Canis et al.
[2013] for more details.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:5

Table I. CHStone Benchmark Characteristics

Benchmark Lines of C Basic Blocks IR Instructions Class
adpcm 550 28 991 Media
blowfish 1,255 30 722 Encryption
dfadd 441 22 361 Arithmetic
dfdiv 292 62 362 Arithmetic
dfmul 270 44 273 Arithmetic
dfsin 580 221 1,098 Arithmetic
gsm 388 133 955 Media
jpeg 1,073 281 1849 Media
mips 271 49 411 Processor
motion 602 35 214 Media
sha 1,969 37 318 Encryption
Geomean 565 58 550

3. IMPACT OF COMPILER OPTIMIZATIONS ON HLS

3.1. Methodology

In this section, we present an analysis of the impact of compiler optimization passes on
HLS-generated hardware. We use 11 C benchmarks from the CHStone HLS benchmark
suite [Hara et al. 2009]. The programs in this suite represent a variety of domains, in-
cluding multimedia, communications, and encryption. The size of each benchmark in
terms of the number of lines of code, basic blocks and LLVM instructions, and an in-
dication of the type of the benchmark are listed in Table I. Note that each CHStone
benchmark has built-in input stimuli and golden outputs, allowing us to execute the
benchmark’s hardware implementation and verify functional correctness. We synthe-
size the LegUp-generated Verilog code for implementation in an Altera Cyclone II
FPGA [Altera 2012b] using Altera Quartus II CAD system version 11.1SP2, config-
ured for timing optimization. We simulated each generated circuit by using ModelSim
to extract the number of cycles needed for the execution of the circuit (cycle latency)
with the built-in input stimuli. The maximum clock frequency of the circuit (FMax)
and area results were extracted from the Quartus II timing analysis report files. Total
execution (wall-clock) time is computed as the number of execution cycles divided by
postrouted FMax. The CHStone circuits are composed of compute kernels that are ex-
ecuted several times with different inputs; the wall-clock time is the total time needed
for each CHStone benchmark to complete its execution of all inputs. Area results are
reported in terms of the number of logic elements (LE)2 in the targeted FPGA chip. For
some experiments, we also report the number of hard multipliers3 and/or the number
of memory elements. All experiments were conducted on a cloud computing system
having tens of thousands of cores [Loken et al. 2010].

3.2. Analysis of Passes in Isolation

We begin by analyzing LLVM optimization passes in isolation relative to -O0 (no op-
timization). Figure 2 shows how 13 different passes affect the number of hardware
execution cycles. The horizontal axis lists the name of each pass. To assess the impact
of an individual pass on hardware execution cycles, we first calculate the geometric
mean of execution cycles across the 11 benchmarks when a particular pass is used;
we then compare this geomean with that achieved using -O0. The vertical axis shows

2Each LE contains a four-input look-up table (LUT) and a flip-flop.
3Multiplier blocks in Cyclone II FPGAs are 9- × 9-bit hardware multipliers that are implemented in columns
of the FPGA fabric, which can be combined together to realize wider multipliers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:6 Q. Huang et al.

Fig. 2. Impact of compiler passes on geomean clock cycle latencies across 11 CHStone benchmarks.

Table II. Summary of the Individual Impact of 56 LLVM Different Optimization Passes
on HLS Hardware

Clock Cycles FMax Wall-Clock Time LEs
Min 0.72 0.76 0.92 0.93
Max 1.83 1.05 2.24 1.34
St. Dev. 0.12 0.04 0.17 0.05
Impactful Passes (#) 13 16 20 10

the ratio of geomean of execution cycles relative to the -O0 case. Values less than 1
represent reductions in cycle latency relative to the baseline case. Of the 56 different
passes evaluated, only the 13 passes shown in Figure 2 impacted the geomean cycle
latency by more than 1%.

Observe in Figure 2 that -loop-extract and -loop-extract-single cause a large
increase in the geomean number of execution cycles (values > 1). Both of these opti-
mizations extract loops into separate functions. The LegUp HLS tool does not optimize
across function boundaries, and it implements each function as a separate Verilog
module with handshaking between modules when one function calls another. Exlining
loops as functions therefore leads to higher numbers of execution cycles. The -inline
pass has precisely the opposite effect: a large decrease in cycle latency is observed when
callees are collapsed (inlined) into callers.

Other passes that improve the hardware include -loop-rotate and -simplifycfg.
The -loop-rotate pass changes the position of the loop header within the IR, effectively
transforming from a while loop into a do-while loop. This optimization can reduce the
number of FSM states for each loop iteration in hardware by eliminating one branch
instruction per iteration.4 The -simplifycfg pass simplifies the program’s control flow
graph by merging basic blocks connected through unconditional branches and by elim-
inating empty basic blocks, both of which reduce the total number of states in the
schedule.

Besides cycle latency (Figure 2), we also analyzed FMax, wall-clock time, and area.
Complete data for these metrics is omitted for brevity. Table II summarizes the impact
of individual compiler passes on all hardware metrics. Four measurements are provided
for each metric. The “Min” row gives the minimum geomean value of the metric across

4Rotated loops contain a single conditional backward branch at the end of each iteration rather than one
conditional forward branch at the beginning and one unconditional backward branch at the end.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:7

Table III. Summary of Four Impacting Passes on Clock Cycles for CHStone Benchmarks

-inline -jump-threading -loop-extract-single -loop-extract
Geomean 0.72 0.93 1.11 1.83
Min 0.31 0.82 1.00 1.07
Max 1.00 0.99 1.33 3.94
St. Dev. 0.27 0.06 0.12 1.07

11 CHStone circuits for any pass, relative to (−O0). For example, the 0.72 value for the
“Clock Cycles” metric indicates that one pass caused a 28% decrease in cycle latency,
on average, across the benchmarks (see -inline in Figure 2). The “Max” row gives the
maximum change caused by any pass. The “St. Dev.” row gives the standard deviation
of change in the geomean across all 56 passes. The last row of the table shows the
number of passes (out of 56) that caused a more than 1% swing in the metric (on
average). Table II indicates that FMax and the number of LEs (area) are less sensitive
to individual compiler passes than cycle latency and wall-clock time (see the standard
deviation row). The relative stability in FMax is not surprising, as the LegUp HLS
tool attempts to meet a user-provided FMax constraint by potentially inserting more
registers into the datapath to meet the specified target.

For completeness, to give a sense of the variation in a pass’s impact across bench-
marks, Table III provides detail for four specific passes and their impact on cycle
latency: the two passes that had the most beneficial impact were -inline and -jump-
threading, and the two that did the most damage were -loop-extract-single and
-loop-extract. The data in the table is normalized to -O0 (no optimization). The ge-
omean and standard deviation are computed for a pass across all benchmarks. Observe
that with the exception of -jump-threading,the deviations are fairly large (exceeding
10% of the mean), indicating significant variability in a pass’s effect on any particular
benchmark.

We observed the set of beneficial passes to be highly benchmark dependent. For
example, on the metric of wall-clock time, the following five passes were found to
be individually beneficial for the adpcm benchmark: -block-placement, -break-crit-
edges, -reg2mem, -scalarrepl-ssa, and -simplify-libcalls. For the jpeg benchmark,
there were five beneficial passes: -sink, -loop-extract-single, -block-placement, -
simplifycfg, and -loop-rotate. Observe that there is little overlap between the two
beneficial pass sets.

In this study, we have only considered compiler passes that are already included in
the LLVM compiler. However, we can envision other hardware-specific compiler passes
that would improve the hardware circuits produced by LegUp. For instance, HLS can
exploit instruction-level parallelism (ILP) by synthesizing a datapath with the exact
number of functional units needed to extract all of the available parallelism. Therefore,
compiler passes that increase ILP will benefit HLS performance. Studies have found
that basic blocks are generally short, 5 to 20 instructions on average, limiting the
amount of ILP that can be found in one basic block. LegUp schedules operations in
the control flow graph assuming that there is an implicit barrier between basic blocks,
such that all operations from one basic block must finish before starting the next
basic block (except for pipelined loops). Consequently, we would prefer to avoid control
flow and execute operations from different basic blocks in parallel. Compiler passes
such as speculative code motion have been studied in the SPARK compiler [Gupta
et al. 2003] that move instructions across basic block boundaries and improve ILP.
Furthermore, relevant research has been conducted in compilers targeting very long
instruction word (VLIW) processors. VLIW processor architectures contain multiple
functional units that can execute in parallel, leading to compiler optimizations that
are also applicable to HLS. Compiler techniques in this area include trace scheduling

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:8 Q. Huang et al.

Table IV. Customized Recipe for the dfmul Benchmark

Normalized Hardware Metric
Recipe Clock Cycles FMax Wall-Clock Time LEs
-O3 1.00 1.00 1.00 1.00
Clock cycle 0.92 1.00 0.92 0.92
FMax 1.42 1.02 1.39 1.29
Wall-clock time 0.92 1.01 0.91 0.93
LEs 1.02 0.99 1.02 0.91

[Fisher 1981], which reduces the length of a sequence, or trace, of basic blocks that are
frequently executed by the program. This trace is scheduled as if it were a single basic
block, improving ILP along the trace. A similar technique proposed in Mahlke et al.
[1992] begins by eliminating all branches internal to the control flow graph by using
if-conversion, which converts control dependencies into data dependencies by using the
result of branch conditions, called predicates, to conditionally execute instructions. The
new basic block, called a hyperblock, can only be entered at the top but has multiple exit
branches. This hyperblock can be scheduled as a single basic block with correspondingly
improved ILP. Reverse if-condition optimization can be used to regenerate the control
flow graph, or HLS can include predicate support in the final hardware. Loop iterations
can also be executed in parallel using software pipelining algorithms such as iterative
modulo scheduling [Rau 1996], which has been studied extensively in HLS. These
speculative compiler techniques will usually improve performance, but at the cost
of increasing area. Studying the impact and interaction of these hardware-specific
compiler passes in HLS, or developing new passes that improve ILP, is an area for
future work.

3.3. Customized Passes

To study the potential for compiler optimization passes to “beat” a standard compiler
optimization strategy, -O3, we used the pass analysis data above to create custom
“recipes” of passes tailored to each benchmark for each of the four metrics: clock cycle
latency, FMax, wall-clock time, and area (LEs). We created four customized recipes
for each benchmark, one for each metric, containing only those passes that positively
benefited the benchmark on the particular metric in the individual pass analysis.
In each custom recipe, we ordered the passes alphabetically (alternative orders are
discussed later).

Results for the custom recipes for a representative benchmark, dfmul, are given
in Table IV.5 The left-most column of Table IV lists the recipes, beginning with -O3.
The remaining columns show the results for each recipe on each hardware metric,
normalized to the -O3 results. For example, the “Clock Cycles” recipe improves clock
cycle latency by 8% versus -O3, and the FMax recipe improves FMax by 2%. The wall-
clock time recipe improves wall-clock time by 9%—a significant improvement over -O3.
Although it is impractical for an end user to be expected to conduct a similar analysis
for each program being compiled, the results serve to illustrate that there indeed is
considerable potential to improve upon -O3 results.

3.4. Impact of Pass Parameters

In addition to the impact of passes themselves, some passes have parameters that
significantly impact how the pass operates, and thereby impact the HLS-generated
hardware. In this section, we study the impact of two parameters found to have a
prominent role in HLS: -unroll-threshold, which controls the -loop-unroll pass,

5Results for other circuits are omitted for brevity.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:9

Fig. 3. Speed and area impact of -inline-threshold on generated hardware.

and -inline-threshold, which controls the -inline pass. As mentioned previously,
the -inline pass can reduce cycle latency as it (1) allows optimization to happen across
function boundaries and (2) eliminates the handshaking protocol between modules
(functions) in the LegUp-generated hardware. In LLVM’s inlining pass, a function is
inlined if the resulting “cost” is less than the -inline-threshold parameter value,
where the inlining cost is determined according to several properties of the function:
the number of instructions in the function, the number of calls it makes to other
functions, and the types and the sizes of the function arguments. If not specified, the
default value of -inline-threshold is 225. This value is set empirically to encourage
the inlining of infrequently called small functions.

Figure 3 shows the delay and area results of the hardware circuit generated when
the -O3 optimization level is used with different -inline-threshold values. For this
experiment, it is important to also look at the usage of multipliers and memory ele-
ments, as they can also be significantly affected by the thresholds. The horizontal axis
shows the -inline-threshold values; the vertical axis represents the geometric mean
ratio (over the 11 benchmarks) relative to that achieved when -inline-threshold=8.
Note that for multiplier usage, arithmetic mean was used instead of geometric mean,
because some benchmarks used 0 multipliers.

Examining Figure 3, we observe that the geomean cycle latency starts to decrease
when -inline-threshold=512 and reduces to 0.92 when -inline-threshold=4096.
However, we also see that FMax decreases when more inlining is performed. As more
functions are inlined, the number of states needed in the generated finite state ma-
chines (FSMs) increases. When the number of states increases excessively, the FSM
logic becomes the critical path and causes lower FMax. The motion benchmark is a rep-
resentative example of this behavior. As shown in Table V, FMax drops from 98.57MHz
to 50.53MHz when -inline-threshold is increased from 256 to 4,096. Another conse-
quence of increasing the -inline-threshold is that the number of logic elements may
also dramatically increase. If a function is called multiple times in a program, then

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:10 Q. Huang et al.

Table V. Largest State Machine Size and FMax with Different
-inline-threshold Values in the motion Benchmark

-inline-threshold 256 512 1,024 2,048 4,096
Number of States 66 192 192 192 369
FMax (MHz) 98.57 62.78 66.68 65.74 50.53

Fig. 4. Speed and area impact of -unroll-threshold on generated hardware.

inlining this function essentially creates multiple “copies” of the function, increasing
total circuit area in hardware. The usage of memory bits stays mostly constant, as inlin-
ing has no direct impact on memory usage. The usage of multipliers tends to decrease
as more functions are inlined. Note that the LegUp HLS tool does not share resources
across separate functions. However, it is able to recognize recurring operation patterns
within a single function and share resources [Hadjis et al. 2012]—inlining “creates”
larger functions, thereby exposing more sharing opportunities.

We also investigated the -loop-unroll pass, as it can typically reduce cycle latency
as follows. When there are few (or no) data dependencies across loop iterations (loop-
carried dependencies), unrolling the loop exposes ILP. In addition, a more subtle effect
of loop unrolling is that memory accesses in unrolled loops can be converted by LLVM
into register accesses. This is also beneficial to hardware performance, as register
accesses are faster than memory accesses. Loop unrolling happens when the size of
the unrolled loop is less than the -unroll-threshold. The -loop-unroll pass normally
requires the -indvars pass to canonicalize the loops so that trip counts of loops can be
determined easily [LLVM 2010b] (indvars adjusts the induction variables of loops in
ways that permit further optimizations to succeed). Thus, the -loop-unroll pass does
not show a great impact in isolation. In LLVM, the default -unroll-threshold is 150.

We synthesized the circuits using the -O3 optimization level with different values of
-unroll-threshold, ranging from 8 to 4,096. In Figure 4, the results for the generated
hardware are presented as the geometric mean ratio (arithmetic mean for multipli-
ers) relative to the baseline case with -unroll-threshold=8. As illustrated, the clock

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:11

Table VI. Impact of -unroll-threshold on the Generated Hardware for the adpcm Benchmark

Number of Un-Inlined Functions Execution
-unroll-threshold Multipliers Name Calls (#) Multi. (#) Cycles

32 34 main 1 34 37,706

64 46 main 1 46 31,581

128 62
main 1 62

34,465
upzero 200 0

256 140
main 1 140

25,732
upzero 200 0

512 140
main 1 140

25,634
upzero 200 0

1,024 48

main 1 0

27,650
upzero 200 0
encode 50 24
decode 50 24

cycle latencies decrease progressively with more unrolling, with a slight increase when
-unroll-threshold=4096. This increase is mainly caused by the gsm benchmark, whose
total execution cycles increased from 5,227 to 8,576 when -unroll-threshold increased
from 2,048 to 4,096. In this benchmark, when -unroll-threshold=4096, one of the
functions is no longer inlined, which prevents optimizations across function bound-
aries and causes more handshaking operations.

Similar to the -inline-threshold case, FMax drops as the number of states increases
with more unrolling. For example, in the gsm benchmark, when -unroll-threshold is
set to 1,024, 2,048 and 496, the numbers of states in the largest FSMs are 325, 948,
and 1,809, respectively. The corresponding FMax results are 45.73MHz, 25.71MHz, and
6.39MHz, respectively. As the loops are unrolled, some variables that would have been
represented as arrays are represented as individual variables. Such variables are then
implemented as registers instead of memory blocks, causing LE usage to increase, and
the number of memory bits to drop. Unlike the previous result for -inline-threshold,
the average usage of multipliers fluctuates when -unroll-threshold is varied. We
explain this using one of the benchmarks, adpcm.

Table VI shows hardware characteristics for the adpcm benchmark when -unroll-
threshold is varied from 32 to 1,024. The left-most column shows the values of
-unroll-threshold and the second column shows the total number of multipliers used
in the generated circuits. The left side of the third column lists the functions that are
not inlined. For example, when -unroll-threshold=32,64, only the main function ex-
ists in the program—all other functions are inlined into the main function. Following
that, the number of calls and the number of multipliers in the corresponding func-
tion are provided. The last column shows the cycle latency of the hardware. When
-unroll-threshold increases from 32 to 512, we see that the multiplier usage pro-
gressively increases. Generally, multiplier usage increases when the loops that contain
multiplications are unrolled. However, multiplier usage drops from 140 to 48 when
-unroll-threshold=1024. This is because the encode and decode functions are no
longer inlined into the main function—unrolling the loops causes the function’s inlining
costs to exceed the -inline-threshold. This result shows that inlining and unrolling
interact with one another. Since both the encode and decode functions are called 50
times and use 24 multipliers each, not inlining the functions prevents them from be-
ing duplicated 50 times, which reduces the number of multipliers. Besides multiplier
usage, we see a slight increase in cycle latency for -unroll-threshold=128 and 1,024,
since there are functions not being inlined. Thus, there is an interdependency between

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:12 Q. Huang et al.

Fig. 5. Wall-clock time for the jpeg benchmark for all permutations of six optimization passes.

the two parameters: -inline-threshold and -unroll-threshold. Looking back at mul-
tiplier usage in Figure 4, the steep increase at -unroll-threshold=4096 is caused by
unrolling of a multiply-intense loop in the gsm benchmark.

In summary, beyond the chosen passes, the parameters provided to such passes
can have a considerable impact on the quality of HLS-generated hardware, further
underscoring the immense size of the optimization space.

3.5. Impact of Pass Ordering

We also consider the order in which passes are applied and have found it to have a
significant impact on the hardware quality. Figure 5 shows the wall-clock time for the
jpeg benchmark for all 6! (=720) orderings of the same six passes shown to be beneficial
in isolation for this benchmark’s wall-clock time. A wide range of wall-clock times was
observed. The average wall-clock time was 47.6ms, with a minimum of 41.7ms and a
maximum of 53.2ms (nearly 28% higher than the minimum). The results in Figure 5
demonstrate that optimization passes are highly interdependent on one another. Thus,
to optimize HLS-generated hardware, is it not simply a matter of determining which
optimization passes are helpful, but it also is crucial to determine the order in which
they should be applied.

To further study the impact of pass ordering, we selected 33 passes, comprised of all
of those passes that had an impact in isolation (on top of -O0) and also those passes
that had an impact when removed from -O3. We considered all pairs of passes from
this group and evaluated the pairs in both orders, performing synthesis, placement,
routing, and ModelSim simulation for all 2 × (33

2) = 2 × 528 = 1,056 combinations
for the 11 CHStone benchmarks. Then, looking at the impact of each pass pair on the
clock cycle latency of each benchmark, we counted (1) the number of pass pairs that
had no affect in either order on any benchmark, (2) the number of pass pairs for which
“forward” (alphabetical) order improved an equal number of benchmarks as “reverse”
order (a tie), (3) the number of pass pairs for which the forward order improved more
benchmarks than the reverse order, and (4) the number of pass pairs for which the
reverse order improved more benchmarks than the forward order. The results of this
analysis are shown in Figure 6. Of the 528 pass pairs, 117 had no impact in either order,
and for 55 pairs the orders were tied. For the remaining 356 pairs, one order was better
than the other in reducing cycle latency. For 242 pairs, forward order was preferred
over reverse order, whereas for 114 pairs, the reverse order was preferred. The results
clearly demonstrate the importance of pass ordering on HLS quality of results for the
majority of pass pairs. Although it is tractable to evaluate all combinations of pairs of
passes, it is computationally intractable to investigate all orderings of larger numbers
of passes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:13

Fig. 6. Impact of pass pair forward/reverse ordering on clock cycle latency. Results are shown for all (33
2) =

528 combinations of 33 passes.

From the analysis of passes in isolation, we also generated a general benchmark-
agnostic recipe containing only those passes that showed a benefit for a majority of
benchmarks when applied in isolation. On average, the recipe performed worse than
-O3, because some passes depend on other passes to show any impact. For example,
there are passes that showed no benefit for a benchmark when applied in isolation, yet
they showed a benefit when applied after certain other passes. Clearly, the -O3 recipe
includes some such passes that do not affect results in isolation.

Given our experience with customized recipes and the observation that the compiler
passes beneficial to each benchmark are both benchmark dependent and order depen-
dent, we felt that it would be difficult to devise a single recipe of passes that would
benefit all circuits. We therefore opted to explore a more adaptive feedback-based pass
recipe approach that automatically determines a good recipe of passes for a given
benchmark without any user intervention, as described in the next section.

4. HLS-DIRECTED COMPILER OPTIMIZATION

Algorithm 1 shows the top-level flow of our scheme. The input to the algorithm is the
program’s unoptimized IR, as well as an ordered list of candidate optimization passes,
P, which we refer to as the pass pool. Within a while loop (line 4), we iteratively
choose a pass p from the pass pool (line 5), execute it (apply it to the IR) (line 6),
and then estimate whether p will be beneficial or detrimental to the HLS-generated
hardware (line 7). We use total hardware execution cycles as the cost metric, as it is
correlated with wall-clock time and can be determined rapidly (see later discussion).
If p is deemed beneficial (line 8), then it is accepted and its effect on the IR is left
intact (lines 9 through 11). Otherwise, p is rejected and the IR is rolled back to the
state prior to p being applied. Once we come to the end of the pass pool, we start again
from the beginning and attempt to reapply passes. The process of selecting passes from
the pool and judiciously applying them continues until a stopping criteria is met (also
discussed later). Note that although we focus on circuit speed performance in this work,
future work may consider the automatic generation of pass recipes that optimize circuit
area or power. Likewise, although the CHStone benchmarks do not exhibit significant
opportunities for loop pipelining, it would be useful in the future to consider the impact
of pass recipes on loop pipelining using a different benchmark set.

We devised an approach to determine the number of hardware execution cycles for
a given IR without requiring time-consuming logic simulation with ModelSim. Our
approach is based on the observation that the total number of hardware cycles can be

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:14 Q. Huang et al.

Table VII. Runtime Comparison between Proposed Profiler
and ModelSim

Simulation Time (s)
Benchmark PR MS
adpcm 1.8 37
blowfish 1.4 99
dfadd 0.4 2
dfdiv 0.5 2
dfmul 0.3 2
dfsin 1.3 27
gsm 1.2 5
jpeg 5.1 3,425
mips 0.4 2
motion 0.3 3
sha 0.7 84

Geomean 0.8 15
Ratio 1.0 20

PR, Profiler; MS, ModelSim.

determined if two criteria are known for each basic block:6 (1) the number of times that
it is executed and (2) the number of clock cycles that it needs to execute. Specifically,

CycleCount(IR) =
∑

b∈BB(IR)

Execs(b) · SchedLen(b), (1)

where BB(IR) is the set of basic blocks in the IR, Execs(b) is the number of times
basic block b is executed, and SchedLen(b) is the schedule length of b. Execs(b) can be
determined by profiling the execution of the IR in software7—hardware simulation is
not required. SchedLen(b) can be determined by executing HLS up to the scheduling
step. Thus, both criteria can be computed rapidly for each basic block, providing an
accurate picture of the post-HLS cycle latency for an IR. Note that although the profiling
step may be deemed as costly from the runtime angle in a software compilation flow,
the time consumed is very small compared to ModelSim simulation of the Verilog code.
Table VII compares the runtime required by our approach and ModelSim for each of
the CHStone benchmarks. On average, our approach extracts cycle latencies 20× faster
than ModelSim.

The other tunable aspects of Algorithm 1 include the stopping criteria of the while
loop (discussed later), the Apply function that executes the selected pass p on the best
IR seen so far, and the composition of the pass pool P. For P, we use 41 of the 56 LLVM
passes, including (1) all passes that showed any impact when applied in isolation,
(2) passes that showed any impact when we removed them from -O3, and (3) passes not
in -O3 and that showed no impact in isolation (as these might show an impact when
combined with other passes). Default values are used for pass parameters (e.g., the
inlining threshold).

We implemented and evaluated three variants of Algorithm 1 offering different
runtime/quality trade-offs, which we call the iteration method, the insertion method,
and the insertion-3 method. The first two variants differ from one another in their im-
plementation of the Apply function, which applies the chosen pass p to the best recipe

6A basic block has a single entry and exit point.
7This is possible because the CHStone benchmarks contain input vectors within the programs themselves
and can therefore be executed without user intervention. For general programs, one would need to execute
them with representative inputs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:15

Fig. 7. Illustration of the iteration versus insertion methods.

ALGORITHM 1: Algorithm for applying optimization passes.
Input: IROrig
Input: Pass pool P
Output: IRBest, RecipeBest

1: CyclesBest = CycleCount(IROrig);
2: IRBest = IROrig;
3: RecipeBest = empty;
4: while Stopping Criteria Is Not Met do
5: Choose next pass p from pass pool P;
6: IRNew, RecipeNew = Apply(p, IROrig, RecipeBest);
7: CyclesNew = CycleCount(IRNew)
8: if CyclesNew ≤ CyclesBest then
9: CyclesBest = CyclesNew;
10: RecipeBest = RecipeNew;
11: IRBest = IRNew;
12: end if
13: end while

found so far and generates a new IR with the new recipe. In the iteration method,
we first sort all passes based on the pairs analysis results (see Section 3) so that the
pairwise pass ordering favors reductions in clock cycle latency. Passes that showed no
impact in isolation (or through the pairs analysis) were added to the end of the list.
We apply the passes in order: in particular, we apply the selected pass, p, at the end
of the recipe that produces the best IR so far. Hence, the iteration method is highly
pass-order dependent, which is not true for the other two methods.

In the insertion method, we consider all possible insertion positions for p in the
recipe that produced the best IR so far, and keep the recipe and IR corresponding to
the insertion position that produced the IR with the lowest number of clock cycles. Our
insertion method is thus somewhat analogous to the classic insertion sort algorithm
which, given an element to insert into a sorted list, walks the list from beginning to
end to find the correct insertion position. The advantage of the insertion method is
that it reduces the dependence on the order in which the passes are applied because
it attempts all possible insertion positions for each pass, selecting the position that
yields the best results. Thus, its overarching intent is to find the “good” points in the
ordering solution space (e.g., like that illustrated in Figure 5). Sorting the passes is
thus unnecessary for the insertion method. Figure 7 pictorally illustrates the difference
between the iteration method and the insertion method: with the iteration method, the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:16 Q. Huang et al.

ALGORITHM 2: Apply function for the iteration method.
Input: p, IROrig, RecipeBest
Output: IRNew, RecipeNew

1: RecipeNew = RecipeBest with p added to its end;
2: IRNew = IR produced by applying RecipeNew to IROrig;

ALGORITHM 3: Apply function for the insertion method.
Input: p, IROrig, RecipeBest
Output: IRNew, RecipeNew

1: N = the # of passes in RecipeBest;
2: CyclesCurr = ∞;
3: for i = 0 to N do
4: Recipetemp = first i passes in RecipeBest, followed by p, followed by the next N − i

passes in RecipeBest;
5: IRtemp = IR produced by applying Recipetemp to IROrig;
6: Cyclestemp = CycleCount(IRtemp)
7: if Cyclestemp ≤ CyclesCurr then
8: CyclesCurr = Cyclestemp;
9: RecipeNew = Recipetemp;
10: IRNew = IRtemp;
11: end if
12: end for

selected pass is added to the end of the “best pass so far” recipe; with the insertion
method, all possible insertion points are explored.

Clearly, the insertion method requires significantly more computation than the it-
eration method: after drawing M passes from the pool P, the iteration method will
have considered M possible IRs, whereas the insertion method will have considered
M · (M + 1)/2 possible IRs. The iteration and insertion method’s Apply functions are
shown formally in Algorithms 2 and 3, respectively.

Our last variant, insertion-3, is similar to the insertion method except that it stores
the top three IRs and recipes instead of storing the single best IR and recipe. In
insertion-3, the chosen pass p is applied to all three of the top IRs/recipes. By storing
three IRs/recipes instead of just one, we permit a broader exploration of the solution
space. Note that different sequences of passes may produce the same IR (say, e.g., if
some passes had no impact). We ensure that the top three IRs stored are different from
one another, thereby creating diversity in the recipes/solutions considered.

For the stopping criteria, we terminate when one of the following two conditions is
true: (1) we have “walked” through all passes in the pass pool three times (determined
empirically), or (2) no benefit was realized during the most recently completed “walk”
through the pass pool, in which case we terminate early. Figure 8 shows how the
geomean cycle latency (across all CHStone circuits) changes across three walks through
the pass pool for the insertion-3 method. Observe that most of the improvement in cycle
latency happens in the first walk.

5. EXPERIMENTAL STUDY

5.1. Speed Performance Analysis

Table VIII shows the speed performance results for circuits optimized using five dif-
ferent compiler optimization flows: no optimization (-O0), standard -O3 optimization,
the iteration method, insertion method, and the insertion-3 method. The left-most

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:17

Ta
bl

e
V

III
.S

pe
ed

P
er

fo
rm

an
ce

R
es

ul
ts

C
lo

ck
C

yc
le

s
F

M
ax

(M
H

z)
W

al
lT

im
e

(μ
s)

B
en

ch
m

ar
k

−O
0

−O
3

IT
IN

IN
3

−O
0

−O
3

IT
IN

IN
3

−O
0

−O
3

IT
IN

IN
3

ad
pc

m
41

,5
61

41
,1

31
22

,1
30

22
,1

30
10

,5
85

47
47

49
51

53
88

6
86

6
45

2
43

8
19

9
bl

ow
fi

sh
21

4,
14

0
21

4,
40

0
19

6,
94

3
20

0,
97

2
19

6,
77

4
57

63
62

64
60

3,
74

7
3,

40
9

3,
18

1
3,

15
1

3,
30

3
df

ad
d

87
0

79
7

79
6

78
1

78
8

87
91

90
92

10
2

10
9

9
8

8
df

di
v

2,
54

2
2,

26
5

2,
24

2
2,

23
1

2,
23

1
65

78
75

81
71

39
29

30
28

32
df

m
u

l
30

5
29

2
27

5
26

6
26

6
92

91
93

91
93

3
3

3
3

3
df

si
n

71
,1

23
64

,6
11

63
,8

88
63

,5
60

63
,5

60
48

58
50

48
46

1,
48

0
1,

11
0

1,
28

4
1,

31
2

1,
38

9
gs

m
11

,0
51

5,
89

7
5,

42
8

5,
18

6
5,

41
2

59
49

67
57

61
18

7
12

0
81

90
89

jp
eg

1,
55

5,
33

6
1,

41
0,

00
2

1,
39

7,
58

0
1,

39
1,

90
2

1,
36

2,
75

1
31

28
30

31
37

50
,0

43
50

,9
58

46
,5

39
44

,7
85

36
,7

32
m

ip
s

5,
27

6
5,

24
4

5,
22

5
5,

18
4

5,
18

4
80

79
78

79
78

66
66

67
65

66
m

ot
io

n
8,

50
5

8,
43

0
6,

40
9

6,
36

1
6,

37
5

71
98

66
78

62
12

1
86

97
82

10
4

sh
a

24
9,

11
1

20
6,

39
2

20
2,

00
4

20
1,

74
6

20
1,

74
6

66
54

73
61

58
3,

75
6

3,
85

4
2,

76
4

3,
29

1
3,

47
2

G
eo

m
ea

n
18

,4
04

16
,3

81
14

,7
17

14
,5

72
13

,6
41

61
63

64
64

63
30

0
26

0
23

1
22

9
21

7
R

at
io

1.
12

1.
00

0.
90

0.
89

0.
83

0.
97

1.
00

1.
01

1.
01

1.
00

1.
16

1.
00

0.
89

0.
88

0.
84

(I
T

:I
te

ra
ti

on
M

et
h

od
,I

N
:I

n
se

rt
io

n
M

et
h

od
,I

N
3:

In
se

rt
io

n
-3

M
et

h
od

).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:18 Q. Huang et al.

Fig. 8. Geomean clock cycle latency after each walk through the pass pool for the insertion-3 method.

column lists the names of each benchmark. The next-to-last row of the table gives
geometric mean results across all circuits; the last row of the table shows the ratios
of the geomeans relative to -O3, which is LegUp’s default optimization. Columns 2
through 6 give the clock cycle latencies for each of the five different flows. First, ob-
serve that -O3 provides a clear advantage over -O0: clock cycle latencies without any
optimization are 12% higher, on average, versus those with -O3. All of the proposed
flows produce significantly better results than -O3, on average. The iteration method
provides 10% improvement, the insertion method offers 11% improvement, and the
insertion-3 method provides 17% improvement in cycle latency. Although the largest
improvements in cycle latency were seen for the adpcm benchmark (due to a greater
amount of loop unrolling and the subsequent reduction in loads/stores via their trans-
lation into register accesses), the iteration, insertion, and insertion-3 methods were
able to improve upon -O3 for all circuits.

Columns 7 through 11 of Table VIII show the postrouting FMax of the circuits for
their Cyclone II implementation, as reported by the Altera TimeQuest static timing
analysis tool. Observe that FMax was relatively flat across all flows, with the excep-
tion of a 3% degradation in FMax without any optimization (-O0). The five right-most
columns of the table show the wall-clock execution time of the circuits for the differ-
ent flows. Without any compiler optimizations, wall-clock times are 16% higher than
-O3, on average. As the FMax changes were modest with the proposed flows, the cycle
latency improvements seen with the proposed flows yield wall-clock time improve-
ments versus -O3. The average reductions in wall-clock time are 11%, 12%, and 16%
for the iteration, insertion, and iteration-3 methods, respectively. The results demon-
strate that considerable performance gains can be had at the HLS stage of the design
flow.

5.2. Area Analysis

Table IX gives the area results and reports the number of Cyclone II logic elements
(LEs), memory bits, and multipliers used for each circuit for each of the four flows.
Observe that on average, the number of LEs and memory bits is not significantly af-
fected by the compiler optimization flow. An exception is the LE count in the iteration
and insertion-3 flows, which increased slightly due to a single benchmark, motion,
whose area grew by nearly 3×. This exception is due to the lack of successful appli-
cation of the pass -indvars, which prevents the pass -loop-unroll from unrolling the
loops and subsequently allows a major function to be inlined three times, increasing
area.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:19

Ta
bl

e
IX

.A
re

a
R

es
ul

ts

L
E

s
M

em
or

y
(b

it
s)

M
u

lt
ip

li
er

s
B

en
ch

m
ar

k
−O

0
−O

3
IT

IN
IN

3
−O

0
−O

3
IT

IN
IN

3
−O

0
−O

3
IT

IN
IN

3
ad

pc
m

19
,2

29
16

,9
37

15
,2

50
15

,5
51

17
,5

69
27

,6
46

27
,6

46
26

,1
10

26
,1

10
23

,8
70

30
40

68
52

70
bl

ow
fi

sh
6,

68
7

6,
11

8
6,

46
4

6,
53

7
6,

90
1

15
0,

78
4

15
0,

72
0

15
0,

72
0

15
0,

72
0

15
0,

14
4

0
0

0
0

0
df

ad
d

6,
16

1
6,

07
6

6,
05

7
5,

95
8

5,
99

0
17

,0
56

17
,0

56
17

,0
56

17
,0

56
17

,0
56

0
0

0
0

0
df

di
v

12
,3

90
12

,8
42

12
,4

91
12

,1
48

13
,2

93
13

,4
95

13
,4

95
13

,4
95

13
,4

95
13

,4
95

32
32

32
32

32
df

m
u

l
3,

55
9

3,
88

4
3,

61
7

3,
43

6
3,

48
1

12
,0

32
12

,0
32

12
,0

32
12

,0
32

12
,0

32
32

32
32

32
32

df
si

n
24

,2
64

24
,7

02
26

,3
84

24
,6

29
24

,8
39

13
,9

11
13

,9
11

13
,9

11
13

,9
11

13
,9

11
70

70
70

70
70

gs
m

10
,3

72
12

,2
28

10
,7

40
12

,0
14

10
,7

88
10

,7
04

10
,2

88
10

,5
76

10
,1

44
10

,6
56

16
22

22
16

22
jp

eg
31

,8
70

34
,3

51
33

,2
15

37
,4

73
43

,5
94

47
0,

42
7

47
0,

05
4

47
0,

42
7

47
0,

15
0

47
0,

52
3

52
50

56
46

42
m

ip
s

3,
65

9
3,

65
9

3,
98

7
3,

22
8

3,
22

4
4,

99
2

4,
73

6
4,

99
2

4,
48

0
4,

48
0

8
8

8
8

8
m

ot
io

n
16

,8
99

4,
67

0
18

,2
45

5,
63

0
16

,8
41

34
,4

64
33

,3
12

34
,6

56
33

,3
44

34
,5

28
0

8
0

0
8

sh
a

7,
84

2
13

,1
49

8,
12

6
12

,5
64

12
,5

39
13

5,
16

0
13

5,
05

6
13

5,
16

0
13

5,
20

8
13

5,
20

8
0

4
0

4
4

G
eo

m
ea

n
10

,2
83

9,
72

0
10

,3
76

9,
60

2
10

,9
35

30
,1

63
29

,8
14

29
,9

88
29

,4
78

29
,4

55
8

12
9

10
13

R
at

io
1.

06
1.

00
1.

07
0.

99
1.

12
1.

01
1.

00
1.

01
0.

99
0.

99
0.

70
1.

00
0.

75
0.

83
1.

04
(I

T
:I

te
ra

ti
on

M
et

h
od

,I
N

:I
n

se
rt

io
n

M
et

h
od

,I
N

3:
In

se
rt

io
n

-3
M

et
h

od
).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:20 Q. Huang et al.

Table X. LLVM/HLS Runtime

Runtime (s)
Benchmark −O3 IT IN IN3
adpcm 1.8 127 1,872 6,578
blowfish 1.4 115 604 5,600
dfadd 0.4 163 831 1,112
dfdiv 0.5 32 625 2,881
dfmul 0.3 79 319 926
dfsin 1.3 26 2,077 3,332
gsm 1.2 250 4,931 9,079
jpeg 5.1 208 13,963 132,252
mips 0.4 448 282 2,590
motion 0.3 27 1,772 16,951
sha 0.7 82 1,487 17,755

Geomean 0.8 98 1,312 5,966
Ratio 1 125 1,668 7,584

IT, iteration method; IN, insertion method; IN3,
insertion-3 method.

The “Multipliers” columns show the multiplier block usage (for these columns, the
geometric mean across the 11 benchmarks is used to present the results). Although a
significant variation in the number of multipliers is shown in several benchmarks for
different flows, a detailed look at the average results for each flow shows multiplier
usage to be fairly even across all flows (within the range of ±4 multipliers of the
-O3 result). We have observed that Quartus II synthesis incorporates sophisticated
techniques for optimizing multiplier usage, replacing them with shifts/adds based on
constant propagation.

5.3. Runtime Analysis

We now turn to the runtime required for the various flows, shown in Table X. We
ran all flows and benchmarks on a single machine containing an Intel Core i5-2410M
@2.30GHz processor with 2GB of RAM. The values in the table represent the runtime
in seconds for all LLVM optimizations and HLS for each circuit in each of the flows (not
to be confused with the wall-clock times for actual circuit execution in Table VIII). As
with the prior tables, the bottom row of Table X gives the ratio of the geomeans versus
the -O3 flow. The geomean runtime for the iteration method is 98 seconds, about 125×
higher than the -O3 flow runtime. For the insertion method, the geomean runtime is
about 22 minutes, nearly 1,700× higher than the -O3 flow. The geomean runtimes of the
insertion-3 flow are significantly higher: 99 minutes, more than 7,500× higher than the
-O3 flow. Although the runtime of the insertion-3 method may be prohibitively large,
we believe that the absolute runtimes are manageable for the iteration and insertion
methods. The iteration method particularly provides an 11% wall-clock time reduction,
on average, and its runtime is considerably less than the runtime of the back-end FPGA
synthesis, placement, and routing tools.

Moreover, the approaches can be run once for a benchmark and then the recipe
produced can be reused in future compilations. The focus of our work was on under-
standing the potential for compiler optimizations to impact hardware quality—we did
not focus on runtime. We believe that considerable runtime reductions can be achieved
through a more careful analysis of when certain passes may potentially provide a ben-
efit, allowing us to “skip” passes under certain circumstances. We explore this direction
in the next section.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:21

Table XI. Average Number of Passes in Recipes

Methods Original Recipes “Shrunk” Recipes
Iteration 67.6 5.9
Insertion 80.1 10.6
Insertion-3 80.0 12.9

Fig. 9. Number of times that each pass is included in the reduced recipes.

5.4. Quality of Recipes

As shown in line 8 of Algorithm 1, a pass is added to the recipe as long as it does not
increase cycle latency. The rationale for this is that some passes have no impact in
isolation, but they may have positive impact when applied in conjunction with other
passes. A question that arises then is this: do all passes included in the recipes provide
a positive effect in terms of cycle latency? To answer this question, we developed a
simple approach that iteratively removes each pass from a recipe one at a time and
reassesses the cycle latency of the hardware. If the pass did not affect cycle latency,
it is permanently removed; otherwise, it is reinserted in its original location. Through
this straightforward approach to gauging pass utility, we found that it was possible to
dramatically reduce the size of the recipes.

Table XI lists the average number of passes included in the original recipe, as well
as the new reduced recipe. Clearly, the original recipes include many redundant passes
that do not positively impact circuits in terms of cycle latency. We also noticed that
only 29 passes (with 41 passes in the pass pool) remained in the 33 (3 methods ×
11 benchmarks) reduced recipes. With fewer passes in the pass pool, the runtime of
the different recipe-generation approaches can be reduced considerably. Therefore, we
changed the pass pool to include only these 29 passes and reran the three optimization
flows. By doing this, the geomean runtime of the iteration, insertion, and insertion-3
methods was reduced by 57.4%, 31.0%, and 66.1%, respectively. The cycle latencies of
the generated circuits were improved slightly, by 0.29%, 0.41%, and 1.09%, respectively,
versus when the 41-pass pool was used. Therefore, some of the removed passes had a
slightly negative impact on cycle latency.

We also noticed that in the 33 reduced recipes, some passes were much more fre-
quently used than others. As shown in Figure 9, the -loop-rotate pass was included
45 times, whereas 17 other passes were included fewer than 10 times. Next, we cate-
gorize the commonly used passes into three groups based on their impact.

5.4.1. Passes That Increase ILP. As mentioned in Section 3.2, compiler passes that in-
crease ILP can benefit HLS-generated hardware. Many of the frequently used passes
permit more ILP by merging basic blocks. For example, the -tailduplicate pass du-
plicates the basic blocks ending in unconditional branches into the tails of their pre-
decessor basic blocks. Similarly, the -simplifycfg pass merges pairs of basic blocks

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

14:22 Q. Huang et al.

that are connected with an unconditional branch edge. The -jump-threading pass is
another commonly used pass that duplicates basic blocks within other basic blocks and
enables more ILP. In the case where a basic block has multiple predecessors and multi-
ple successors, if some of its predecessors always cause a jump to one of its successors,
-jump-threading forwards the branches from these predecessors to the corresponding
successors and duplicates the basic block into the successors. Last, the -loop-unroll
and -inline passes mentioned in Section 3.4 also have a significant impact on ILP.

5.4.2. Passes That Eliminate Operations. Other beneficial compiler passes eliminate op-
erations by moving or eliminating instructions. For instance, all preceding passes that
duplicate/merge basic blocks have a secondary effect, which is the removal of branch
operations. Moreover, the -loop-rotate transforms while loops into do-while loops and
eliminates the branch instructions at the beginning of the loops. The -loop-unswitch
pass transforms the loops that contain loop-invariant branches into multiple different
loops and moves the loop-invariant branches in front of the duplicated loops as pre-
decessors. Both -loop-rotate and -loop-unswitch eliminate branch operations from
loop bodies and thereby reduce overall latency. The -sink pass can also reduce redun-
dant operations by pushing instructions into successor blocks so that they will not be
executed if their results are not needed. The -instcombine pass also reduces opera-
tion count by combining algebraic instructions into fewer instructions, where possible.
Two other frequently used passes are -scalarrepl and -scalarrepl-ssa. These can
potentially replace structures and arrays with registers, reducing load/store (memory)
operations.

5.4.3. Passes That Permit More Optimization. Some passes do not directly improve the
circuit performance, but they permit other compiler passes to perform more optimiza-
tions. The -break-crit-edge pass breaks the critical edges8 by adding a dummy basic
block on the edge. With this pass, many passes that cannot operate with critical edges
can then be applied. The -indvars adjusts the induction variables of loops to an an-
alyzable form and enables further optimizations. The -reassociate pass reassociates
commutative algebraic expressions in an order that can promote better constant prop-
agation. These three passes are included in the 33 reduced recipes 19, 17, and 15 times,
respectively.

5.5. Fine-Grained Optimization

In the preceding study, the compiler passes were applied “globally” to a benchmark,
meaning that the entire benchmark was subjected to the same set of passes. Since the
impact of compiler passes is program dependent, it is conceivable that the performance
of the generated circuits could be improved if the compiler passes were selectively
applied at a finer-grained function level. To investigate this, we created a flow that
does the following: (1) iteratively applies the iteration method (without inlining) on
each function’s IR to obtain a new IR with the minimum cycle latency, (2) replaces
the functions in the original IR of the entire benchmark with the optimized function
IRs, and (3) reruns the iteration method on the updated benchmark IR with inlining
enabled.

We found that this new flow impacted cycle latency by less than 0.5%, on aver-
age, versus the global approach. We believe that this is because most of the CHStone
benchmarks contain one function that dominates overall execution time, making the

8A critical edge is an edge connecting a predecessor block that has multiple successors to a successor block
that has multiple predecessors. Many optimizations cannot be applied on such a control-flow graph structure.
For example, the -tailduplicate pass cannot be applied on a critical edge since the predecessor(s) of the
duplicated basic block could branch to other basic blocks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:23

Fig. 10. Wall-clock time time of program execution on x86 and HLS-generated hardware normalized to -O3.

impact of optimizing the dominating function quite similiar to that of optimizng the
entire program. It is an interesting direction for future work to consider fine-grained
optimizations on a different benchmark set.

5.6. Recipes for x86 Processors

We now consider whether the recipes determined to be “good” for HLS-generated hard-
ware performance are also beneficial to software running on a standard ×86 processor.
We first optimized software code using the pass recipes produced by the three recipe-
generation approaches for HLS. We then targeted the optimized code to an ×86 pro-
cessor and profiled execution time using a Linux profiler called Perf.9 We compared
the ×86 results with the wall-clock time of the HLS-generated hardware. For the ×86
results, we profiled each program 3,000 times and took the average value to improve
data accuracy. We found this to be necessary, as the runtime data fluctuated as the ×86
machine state varied.

Figure 10 shows the execution time results for programs executed on the ×86 pro-
cessor, as well as the wall-clock time for HLS-generated hardware, normalized to -O3.
The y-axis represents the geomean time across 11 benchmarks. The x-axis represents
the recipes from the different flows. The figure shows that execution time is inconsis-
tent across the two different compute platforms. For the ×86 runtimes, little variation
is observed for the different optimization schemes—all approaches are within 3% of
the -O3 results. For HLS-generated hardware, the insertion method provides better
wall-clock time than the iteration method, and the insertion-3 method provides further
wall-clock time reductions versus the insertion method. However, such trends are not
evident in the ×86 results. The ×86 results therefore are not a good predictor of circuit
wall-clock time. In other words, the passes that enable more parallelism in HLS do not
have an analogous impact on the x86, probably due to the more sequential nature of
processor architecture.

9https://perf.wiki.kernel.org.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

https://perf.wiki.kernel.org.

14:24 Q. Huang et al.

5.7. Relevance to Commercial HLS Tools

Although the preceding results demonstrate that careful selection of compiler pass
recipes has a considerable impact on the speed of LegUp-generated hardware, a nat-
ural question is whether such results will also hold for commercial HLS tools. Un-
fortunately, to the authors’ knowledge, commercial HLS vendors do not permit users
to change the set of compiler passes applied to a program before HLS commences,
and consequently, replicating the preceding results would best be done by the com-
mercial vendors themselves. Note, however, that both Xilinx’s VivadoHLS and Altera’s
OpenCL SDK are themselves built with the same LLVM compiler as LegUp. These
commercial HLS tools are therefore able to apply the same sets of passes to pro-
grams as used in this work. We expect that the preceding results are not unique to
the LegUp context and that performance gains are also be possible with commercial
tools.

The use of custom pass recipes is not possible with commercial tools; however, such
tools do provide a variety of directives that a user may specify. Taking Xilinx’s Vi-
vadoHLS as an example, the tool has directives to inline functions, optimize specific
instances of functions, pipeline and perform dataflow optimizations for increased con-
currency, and set a target latency constraint for a function in cycles. Of these, only
inlining resembles one of the LLVM compiler passes. At the loop level, VivadoHLS
offers constraints for unrolling, merging consecutive loops, flattening nested loops,
dataflow-style hardware generation for consecutive loops, loop pipelining, specifying
loop trip counts, and a target latency in cycles. Of these, only loop unrolling re-
sembles an LLVM compiler pass. VivadoHLS also supports array optimization di-
rectives that likewise bear little similarity to the existing LLVM compiler passes.
Hence, we believe that there is little overlap between the 50+ compiler optimization
passes available in LLVM and the constraints currently offered by commercial HLS
tools.

In summary, we believe the proposed automated approaches to selecting compiler
optimizations on a per-program basis are practical and will be of keen interest to FPGA
users seeking high design performance. Such approaches also appear to be a useful
mechanism for narrowing the gap between HLS-generated hardware and manually
designed RTL.

6. CONCLUSIONS AND FUTURE WORK

We considered the impact of compiler optimization passes on HLS-generated hardware
and proposed approaches for the automated generation of recipes of passes to benefit
hardware speed performance. The proposed techniques work by selecting and apply-
ing a particular optimization pass, performing a fast estimation of its impact on the
resulting hardware, and then potentially undoing its impact based on the predicted
outcome. Results show that the automatically generated pass recipes produce circuits
with 16% better wall-clock time, on average, versus those produced using standard -O3
optimization. To the authors’ knowledge, ours is among the first comprehensive studies
of methods for applying an extensive set of compiler optimization passes in the HLS
context.

Directions for future work include compiler optimizations for circuit area and power
consumption. Additionally, we believe that the proposed iteration and insertion meth-
ods are just a first step toward using compiler-based techniques to improve HLS re-
sults. In particular, we believe that it will be possible to prune the solution space of the
insertion-3 method to reduce its runtime. We also would like to explore writing new
custom optimization passes specifically intended for hardware.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

The Effect of Compiler Optimizations on High-Level Synthesis-Generated Hardware 14:25

REFERENCES

Altera. 2012a. Implementing FPGA Design with the OpenCL Standard. White Paper WP-01173-2.0. Altera
Corporation. Available at http://www.altera.com/literature/wp/wp-01173-opencl.pdf.

Altera. 2012b. Cyclone-II FPGA Family Datasheet. Altera Corporation.
Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika

Subramanian, Linda Torczon, and Todd Waterman. 2004. Finding effective compilation sequences. In
Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’04). 231–239.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski, Stephen
Brown, and Jason Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based
processor/accelerator systems. ACM Transactions on Embedded Computing Systms 13, 2, Article No. 24.

Jason Cong, Bin Liu, Raghu Prabhakar, and Peng Zhang. 2012. A study on the impact of compiler optimiza-
tions on high-level synthesis. In Proceedings of the International Workshop on Languages and Compilers
for Parallel Computing. 143–157.

Jason Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm based on SDC formula-
tion. In Proceedings of the 2006 43rd ACM/IEEE Design Automation Conference (DAC’06). 433–438.

Phillipe Coussy, Ghizlane Lhairech-Lebreton, Dominique Heller, and Eric Martin. 2010. GAUT—a free and
open source high-level synthesis tool. In Proceedings of IEEE Design Automation and Test in Europe
(DATE’10).

Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea Namo-
laru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard, Elton
Ashton, Edwin Bonilla, John Thomson, Christopher K. I. Williams, and Michael O’Boyle. 2011. Milepost
GCC: Machine learning enabled self-tuning compiler. International Journal of Parallel Programming
39, 296–327. Issue 3.

Joseph A. Fisher. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Transactions
on Computers 100, 7, 478–490.

Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. 2003. SPARK: A high-level synthesis framework
for applying parallelizing compiler transformations. In Proceedings of the 16th International Conference
on VLSI Design. 461–466.

Stefan Hadjis, Andrew Canis, Jason Anderson, Jongsok Choi, Kevin Nam, Tomasz Czajkowski, and Stephen
Brown. 2012. Impact of FPGA architecture on resource sharing in high-level synthesis. In Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA’12). 111–114.

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. 2009. Proposal and quantitative
analysis of the CHStone benchmark program suite for practical C-based high-level synthesis. Journal
of Information Processing 17, 242–254.

Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Stephen Brown, and Jason Anderson.
2013. The effect of compiler optimizations on high-level synthesis for FPGAs. In Proceedings of the
2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM’13). 89–96.

LLVM. 2010a. The LLVM Compiler. Infrastructure. Retrieved April 9, 2015, from http://www.llvm.org.
LLVM. 2010b. LLVM Loop Unroll Pass. Retrieved April 9, 2015, from http://www.llvm.org/docs/Passes.html#

loop-unroll-unroll-loops.
Chris Loken, Daniel Gruner, Leslie Groer, Richard Peltier, Neil Bunn, Michael Craig, Teresa Henriques,

Jillian Dempsey, Ching-Hsing Yu, Joseph Chen, L. Jonathan Dursi, Jason Chong, Scott Northrup, Jaime
Pinto, Neil Knecht, and Ramses Van Zon. 2010. SciNet: Lessons learned from building a power-efficient
top-20 system and data centre. Journal of Physics: Conference Series 256, 1, 012026.

Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bringmann. 1992. Effective
compiler support for predicated execution using the hyperblock. In ACM SIGMICRO Newsletter 23,
45–54.

Zhelong Pan and Rudolf Eigenmann. 2006. Fast and effective orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO’06). 319–332.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August. 2003. Compiler
optimization-space exploration. In Proceedings of the International Symposium on Code Generation
and Optimization (CGO’03). 204–215.

Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. 2010. Designing modular hardware accel-
erators in C with ROCCC 2.0. In Proceedings of the 2010 IEEE 18th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM’10). 127–134.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

http://www.altera.com/literature/wp/wp-01173-opencl.pdf.
http://www.llvm.org.
http://www.llvm.org/docs/Passes.html#loop-unroll-unroll-loops
http://www.llvm.org/docs/Passes.html#loop-unroll-unroll-loops

14:26 Q. Huang et al.

B. Ramakrishna Rau. 1996. Iterative modulo scheduling. International Journal of Parallel Processing 24,
13–64.

Xilinx. 2013. C-Based Design: High-Level Synthesis with the Vivado HLS Tool. Technical Report. Xilinx
Incorporated. Available at http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm.

Y. Explorations. 2012. Y Explorations—C to RTL Behavioral Synthesis. Retrieved April 9, 2015, from
http://www.yxi.com.

Received September 2013; revised February 2014; accepted April 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 3, Article 14, Publication date: May 2015.

http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm.
http://www.yxi.com.

