
Power Optimization and Prediction Techniques for FPGAs

by

Jason Helge Anderson

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Department of Electrical and Computer Engineering

University of Toronto

c© Copyright by Jason Helge Anderson 2005

Power Optimization and Prediction Techniques for FPGAs

Jason Helge Anderson

Doctor of Philosophy, 2005

Graduate Department of Electrical and Computer Engineering

University of Toronto

Abstract

Field-programmable gate arrays (FPGAs) are a popular choice for digital circuit implementa-

tion because of their growing density and speed, short design cycle, and steadily decreasing

cost. Power consumption, specifically leakage power, has become a major concern for the semi-

conductor industry and its customers. FPGAs are less power-efficient than custom ASICs, due

to the overhead required to provide programmability. Despite this, power has been largely ig-

nored by the FPGA research community, whose prime focus to date has centered on improving

FPGA speed and area-efficiency. This dissertation presents new techniques for optimizing and

predicting the power consumption of FPGAs.

First, two novel computer-aided design (CAD) techniques for FPGA leakage power reduction

are presented. The proposed techniques are unique in that they substantially reduce leakage

power, while imposing no cost, meaning that they have no impact on FPGA area-efficiency,

speed, or fabrication cost.

Following this, the circuit-level design of low-power FPGA interconnect is considered. A

family of new low-power FPGA routing switches is proposed. The switches significantly reduce

iii

dynamic and leakage power in the interconnect, with varying amounts of area and/or perfor-

mance cost. The proposed switches require only minor changes to traditional FPGA routing

switches, allowing them to be easily incorporated into current FPGAs.

Next, a new power-aware technology mapping algorithm for look-up-table-based FPGAs is

described. The algorithm takes an activity-conscious approach to logic replication, and allows

trade-offs between circuit performance and power. The dynamic power of mapping solutions

produced by the proposed algorithm is shown to be considerably less than competing techniques.

Finally, the topic of early dynamic power estimation for FPGAs is addressed. Empirical

models are developed for the prediction of interconnect capacitance and switching activity in

FPGA designs. The proposed models can be applied early in the design process, when detailed

routing data is incomplete or unavailable, thereby reducing design effort and cost.

iv

Acknowledgements

vi

Contents

Acknowledgments v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Field-Programmable Gate Arrays . 1

1.2 Motivation . 2

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 7

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Power Dissipation in CMOS Circuits . 9

2.2.1 Dynamic Power . 9

2.2.2 Static (Leakage) Power . 12

2.3 FPGA Architecture and Hardware Structures . 20

2.4 Power Dissipation in FPGAs . 26

2.4.1 Dynamic Power . 26

2.4.2 Static (Leakage) Power . 26

2.5 FPGA Power Optimization . 28

2.5.1 Leakage Power Optimization . 28

2.5.2 Dynamic Power Optimization (Architecture/Circuit Techniques) 29

2.5.3 Dynamic Power Optimization (CAD Techniques) 33

2.6 Summary . 38

vii

Contents

3 CAD Techniques for Leakage Optimization 39

3.1 Introduction . 39

3.2 FPGA Hardware Structures . 40

3.3 Active Leakage Power Optimization via Polarity Selection 45

3.3.1 Experimental Study and Results . 51

3.4 Active Leakage Power Optimization via Leakage-Aware Routing 63

3.4.1 Experimental Study and Results . 65

3.5 Summary . 69

4 Circuit Techniques for Low-Power Interconnect 71

4.1 Introduction . 71

4.2 Preliminaries . 72

4.2.1 Related Work . 72

4.2.2 FPGA Interconnect Structures . 73

4.3 Low-Power Routing Switch Design . 74

4.4 Slack Analysis . 81

4.5 Experimental Study . 82

4.5.1 Methodology . 82

4.5.2 Leakage Power Results . 85

4.5.3 Dynamic Power Results . 92

4.5.4 Summary of Results . 94

4.6 Summary . 96

5 Power-Aware Technology Mapping 99

5.1 Introduction . 99

5.2 Preliminaries . 100

5.2.1 Power and Logic Replication . 101

5.3 Algorithm Description . 104

5.3.1 Generating K-Feasible Cuts . 104

5.3.2 Costing Cuts . 106

5.3.3 Mapping . 110

5.4 Experimental Study and Results . 110

5.4.1 Methodology . 110

5.4.2 Results . 113

5.5 Impact of Research . 118

viii

Contents

5.6 Summary . 118

6 Power Prediction Techniques 121

6.1 Introduction . 121

6.2 Background . 123

6.2.1 Target FPGA Architecture . 123

6.2.2 Prediction Methodology Overview . 124

6.3 Switching Activity Prediction . 125

6.3.1 Activity Analysis . 126

6.3.2 Noise in Switching Activity . 129

6.3.3 Prediction Model . 130

6.3.4 Results and Discussion . 134

6.4 Interconnect Capacitance Prediction . 139

6.4.1 Related Work . 139

6.4.2 Noise in Interconnect Capacitance . 140

6.4.3 Prediction Model . 143

6.4.4 Results and Discussion . 146

6.5 Summary . 151

7 Conclusions 153

7.1 Summary and Contributions . 153

7.2 Future Work . 155

7.2.1 Extensions of this Research Work . 155

7.2.2 Additional Power-Related Research Directions 157

7.3 Closing Remarks . 158

A Power Estimation Model Regression Analysis Results 159

A.1 Switching Activity Prediction . 159

A.2 Capacitance Prediction . 159

References 163

ix

Contents

x

List of Figures

2.1 Equivalent circuit for a CMOS gate charging and discharging a capacitor [Yeap 98]. 10

2.2 Leakage mechanisms in an NMOS transistor. 13

2.3 Gate oxide leakage dependence on oxide thickness and gate bias [Thom 98]. . . . 15

2.4 Scaling of gate length and supply voltage [Doyl 02]. 16

2.5 Scaling of VDD, VTH , and tox with process generation [Taur 02]. 17

2.6 Scaling of subthreshold leakage power density and dynamic power density [Nowa 02]. 18

2.7 ASIC leakage optimization techniques. 20

2.8 (a) Abstract FPGA architecture; (b) logic block; (c) LUT. 21

2.9 Logic blocks in Xilinx and Altera commercial FPGAs. 23

2.10 FPGA routing switch. 24

2.11 Multiplexers as deployed in FPGA routing switches and a LUT. 25

2.12 Dynamic power breakdown in Xilinx Virtex-II [Shan 02]. 27

2.13 Leakage power breakdown in Xilinx Spartan-3 [Tuan 03]. 28

2.14 Multiplexer leakage reduction techniques [Rahm 04]. 30

2.15 Dual-VDD FPGA structures. 32

2.16 Typical FPGA CAD flow. 34

2.17 Power-aware technology mapping. 35

2.18 Basis of post-layout power optimization. 37

3.1 Two 4-to-1 multiplexer implementations. 40

3.2 Leakage power for multiplexers. 42

3.3 Examples of transistor leakage states. 43

3.4 Buffer implementation and leakage power. 44

3.5 Low temperature leakage power results for multiplexers and buffer (40◦C). 46

3.6 LUT circuit implementation; illustration of signal inversion. 47

3.7 Leakage optimization algorithm. 48

3.8 Static probability versus switching activity. 51

xi

List of Figures

3.9 Leakage analysis flow. 55

3.10 Example active leakage power computation. 58

3.11 Leakage power reduction results. 60

3.12 Histograms of static probability. 62

3.13 Average leakage of routing resource types. 65

3.14 Leakage power reduction results for combined polarity selection and leakage-

aware routing. 67

4.1 Sleep leakage reduction techniques [Anis 02, Kuma 98]. 73

4.2 Traditional routing switch: abstract and transistor-level views [Rahm 04, Gaya 04a]. 74

4.3 Programmable low-power routing switch. 76

4.4 Routing switch buffer alternate design. 77

4.5 Switch multiplexer with programmable mode. 78

4.6 Sleep mode variant. 79

4.7 Family of routing switch designs. 80

4.8 Timing slack in industrial FPGA designs. 83

4.9 Model for transistor gate oxide leakage [Aziz 04]. 83

4.10 16-to-1 multiplexer implementation. 84

4.11 Baseline test platform. 86

4.12 85◦C leakage reduction results (low-power mode versus high-speed mode). 87

4.13 Projected tile area breakdown for traditional and proposed switch types. 94

4.14 Leakage, area, and speed of switch designs. 95

4.15 Overall leakage in FPGA tile. 96

5.1 Circuit DAG definitions. 100

5.2 Illustration of feasible cuts; effect of logic replication in LUT mapping. 103

5.3 Generating the K-feasible cut sets. 105

5.4 Identifying the replicated nodes. 109

5.5 Routing capacitance versus # of net pins. 112

5.6 Power, area, number of connections in depth-optimal 4-LUT mapping solutions. . 114

5.7 Power results for other depths, 5-LUTs. 116

6.1 CAD flow for activity analysis. 126

6.2 Circuit with regularity. 129

6.3 Activity change in regular circuit. 130

xii

List of Figures

6.4 Finding the set of path lengths for y. 132

6.5 Zero-delay activity and predicted activity versus routed-delay activity. 136

6.6 Logic-delay activity and predicted activity versus routed-delay activity. 137

6.7 Noise in interconnect capacitance. 142

6.8 Illustration of parameter NT . 144

6.9 Routing congestion estimation. 146

6.10 Average error for a variety of prediction models. 148

6.11 Estimated versus actual values (approx. 4000 points in ellipse). 150

xiii

List of Figures

xiv

List of Tables

2.1 Summary of commercial FPGA routing architectures (lengths given in CLB tiles

or LAB tiles, as appropriate). 24

3.1 Major circuit blocks in target FPGA. 52

3.2 Characteristics of benchmark circuits. 54

3.3 Detailed active leakage power results. 60

3.4 Effect of leakage-aware routing on critical path delay. 66

3.5 Detailed active leakage power results for leakage-aware routing combined with

polarity selection. 68

4.1 85◦C leakage power reduction results for basic design (unshaded) and alternate

design (shaded). 89

4.2 25◦C leakage power reduction results for basic design (unshaded) and alternate

design (shaded). 90

4.3 85◦C leakage power reduction results for basic+MUX design (unshaded) and

alternate+MUX design (shaded). 91

4.4 25◦C leakage power reduction results for basic+MUX design (unshaded) and

alternate+MUX design (shaded). 91

4.5 Sleep mode leakage results 85◦C (unshaded) and 25◦C (shaded). 92

4.6 Dynamic power results for all switch designs. 93

5.1 Detailed results for depth-optimal 4-LUT mapping solutions. 115

6.1 Characteristics of benchmark circuits. 125

6.2 Effect of glitching on switching activity. 127

6.3 Error in predicted activity values. 135

6.4 Error in predicted activity values for alternate benchmark division. 139

6.5 Noise in individual circuits. 142

xv

List of Tables

6.6 Errors for individual circuits; results for alternate characterization/test bench-

mark division). 150

A.1 Prediction model and regression analysis details (zero-delay activity and logic-

delay activity-based prediction models). 160

A.2 Prediction model and regression analysis details (low-fanout and high-fanout

prediction models). 161

xvi

1 Introduction

1.1 Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are programmable logic devices (PLDs) that can be

configured by the end-user to implement virtually any digital circuit. Since first introduced

in the mid-80s, the popularity of FPGAs has grown steadily, and today, FPGAs account for

more than half of the 3 billion dollar programmable logic industry. State-of-the-art FPGAs can

implement circuits with millions of gates that operate at speeds in the hundreds of megahertz.

The focus of this dissertation is the optimization and prediction of power consumption in

FPGAs, through novel computer-aided design (CAD) algorithms, as well as circuit-level design

techniques.

An FPGA is a VLSI chip consisting of a pre-fabricated two-dimensional array of pro-

grammable logic blocks that connect to one another through a configurable interconnection

(routing) network. Static RAM (SRAM) cells, internal to the FPGA, define the logic func-

tion implemented by each logic block and the desired connectivity between logic blocks. An

FPGA can be configured to implement a given circuit in a matter of seconds and can be re-

programmed any number of times. Custom ASICs are the primary competitor to FPGAs, and

they require weeks or months for fabrication. Hence, a key advantage held by FPGAs over

ASICs is that FPGAs reduce “time-to-market”, which is crucial in the development of new

electronic products.

The rapid expansion of the programmable logic market has been driven by a number of

factors. Perhaps most important is that as technology scales, the costs associated with building

a custom ASIC rise drastically. For example, in 90nm process technology, the cost of mask sets

1

1 Introduction

alone is over a million US dollars [Lamm 03]. Such costs make design mistakes extremely costly,

as they necessitate the creation of new mask sets and impose lengthy delays. Comprehensive

and rigorous design verification is a mandatory part of custom ASIC design. In FPGAs, the

requirement to “get it right the first time” is less critical, since mistakes, once identified, can

be taken care of quickly and cheaply by re-programming the device.

Coupled with the high cost of ASIC fabrication, the CAD tools required to design an ASIC

cost anywhere from hundreds of thousands to millions of dollars [Sant 03]. In contrast, FPGA

vendor tools are typically provided free-of-charge by the FPGA vendors to their best customers,

and third-party FPGA CAD tools, such as Synplicity, cost only tens of thousands of dollars.

Initially, FPGAs were used only in low-volume production applications or for prototyping cir-

cuits that were eventually to be implemented as custom ASICs. However, the volume threshold

at which FPGAs are cost-effective versus ASICs has advanced to a point such that modern

FPGAs are cost-effective for all but high volume applications.

One of the drawbacks of FPGAs is that they are less area-efficient and also slower than

custom ASICs. This characteristic has been the motivation for nearly two decades of academic

and industrial research on FPGA CAD and architecture. The result has been a narrowing of

the “gap” between ASICs and FPGAs from the area and speed viewpoints. Today, FPGAs

are a viable alternative to custom ASICs and can be used in applications with speed and size

requirements that previously, could only be met by ASICs.

1.2 Motivation

The ability to program and re-program an FPGA involves significant hardware overhead. More

transistors are needed to implement a given logic circuit in an FPGA in comparison with a

custom ASIC. This leads to a higher power consumption per logic gate in FPGAs [Geor 01,

Zuch 02], and power-efficiency is undisputed as an area in which ASICs are superior to FP-

GAs [Full 04]. In fact, power has been cited as a limiting factor in the ability of FPGAs to

continue to replace ASICs [Stok 03].

2

1.2 Motivation

Despite the relative weakness of FPGAs from the power angle, their power consumption has,

until recently, been largely ignored by the research community. Likewise, no commercial FPGA

vendors offer hardware or software specifically targeted to low-power applications. The extent

to which FPGA power can be optimized through either CAD, architecture, or circuit tech-

niques has been an open question. The focus of commercial vendors, as well as the majority of

published research on FPGA architecture and CAD, has concentrated on improving FPGA area-

efficiency and performance. A thorough treatment of prior research on FPGA speed and area

is outside the scope here; however, references [Rose 89, Rose 91, Betz 96, Betz 97a, Betz 99a]

present the first and seminal work on FPGA logic and routing architecture, with important

follow-up work appearing in [Sing 90, Marq 99, Ahme 02]. CAD algorithms that optimize the

area and performance of FPGAs are well-studied, with some of the most important papers be-

ing [Brow 90, Fran 90, Fran 91a, Lemi 93, Cong 94a, Cong 94b, McMu 95, Betz 97b]. Though

area and speed have been the main research focus to date, power is likely to be a key consid-

eration in the design of future FPGAs, for the reasons outlined below.

A well-known consequence of technology scaling is the rapid increase in static (leakage)

power relative to dynamic power. Dynamic power is consumed as a result of logic transitions

that occur on a circuit’s signals during normal operation. It increases in proportion to the

rate of logic transitions (switching activity) on circuit signals and the amount of capacitance

charged and discharged during logic transitions. Leakage power is consumed when a circuit is in

a quiescent, idle state. Both dynamic and leakage power consumption have become major issues

for semiconductor vendors and their customers [Inte 02]. Moreover, the considerable increase in

leakage with each process generation has significant implications for FPGAs. Leakage current

in a circuit is proportional to the circuit’s total drawn transistor width [Jian 02]. Since FPGAs

contain a huge number of transistors, as required to provide programmability, the need for

effective leakage management techniques is amplified in FPGAs versus in other technologies.

Given this, low leakage is certain to be a significant design objective in next-generation FPGAs.

Optimizing the power consumption of FPGAs has a number of benefits. First, reduced

3

1 Introduction

power is mandatory if FPGAs are to break into the low-power ASIC market. Historically,

applications such as portable or battery-powered electronics have been inaccessible to FPGA

vendors, chiefly due to the tight power budgets they impose. For example, mobile applications

have standby current limits of 10s to 100s of µA [Clar 02]. As few as 20 logic blocks in the Xilinx

Spartan-3 FPGA would exceed this standby current limit [Tuan 03]. In addition to broadening

the FPGA market, lowering power consumption would reduce packaging and cooling costs,

which represent a sizable fraction of the cost of an IC. Packaging costs for a 90nm design are

potentially on par with the cost of the silicon itself [Hawk 03]. Finally, it is worth noting that

cooler chips have better reliability, leading to long lifespans.

In conjunction with reducing FPGA power, as power becomes a first-class design considera-

tion for FPGAs, efficient power-aware design will require new estimation tools that gauge power

dissipation at the early stages of the design process. Such tools would allow design trade-offs

to be considered at a high level of abstraction, reducing design effort and cost.

1.3 Thesis Contributions

This dissertation focuses on two overarching themes:

1. Reducing FPGA power consumption, including dynamic and static power.

2. Early prediction of dynamic power consumption in FPGAs.

With respect to these themes, a number of different contributions are made, as summarized

below.

Chapter 3 considers active leakage power dissipation in FPGAs and presents two “no cost” ap-

proaches for active leakage reduction1. It is well-known that the leakage power consumed

by a digital CMOS circuit depends strongly on the state of its inputs. The first leak-

age reduction technique leverages a fundamental property of basic FPGA logic elements

1Active leakage is leakage in the used and operating part of an FPGA.

4

1.3 Thesis Contributions

(look-up-tables) that allows a logic signal in an FPGA design to be interchanged with its

complemented form without any area or delay penalty. This property is applied to select

polarities for logic signals so that FPGA hardware structures spend the majority of time

in low leakage states. The second approach to leakage optimization consists of altering

the routing step of the FPGA CAD flow to encourage more frequent use of routing re-

sources that have low leakage power consumptions. Such “leakage-aware routing” allows

active leakage to be further reduced, without compromising design performance. In an

experimental study, active leakage power is optimized in circuits mapped into a state-

of-the-art 90nm commercial FPGA. Combined, the two approaches offer a total active

leakage power reduction of 30%, on average. This work has been published in [Ande 04f]

and [Ande 05a]. To the author’s knowledge, this represents the first published work on

active leakage optimization in FPGAs.

Chapter 4 presents circuit-level techniques for reducing power dissipation in FPGA intercon-

nect. It proposes a family of new FPGA routing switch designs that are programmable

to operate in three different modes: high-speed, low-power, or sleep. High-speed mode

provides similar power and performance to traditional FPGA routing switches. In low-

power mode, speed is curtailed in order to reduce power consumption. Leakage is reduced

by 28-52% in low-power versus high-speed mode, depending on the particular switch de-

sign selected. Dynamic power is reduced by 28-31% in low-power mode. Leakage power

in sleep mode, which is suitable for unused routing switches, is 61-79% lower than in

high-speed mode. Each of the proposed switch designs has a different power/area/speed

trade-off. All of the designs require only minor changes to a traditional routing switch,

making them easy to incorporate into current FPGA interconnect. The applicability of

the new switches is motivated through an analysis of timing slack in industrial FPGA de-

signs. Specifically, it is observed that a considerable fraction of routing switches may be

slowed down (operate in low-power mode), without impacting overall design performance.

This work has been published in [Ande 04c], [Ande 04d], and [Ande 05b].

5

1 Introduction

Chapter 5 presents a new power-aware technology mapping algorithm for look-up-table-based

FPGAs. The algorithm aims to keep nets with high switching activity out of the FPGA

routing network, and takes an activity-conscious approach to logic replication. Logic

replication is known to be crucial for optimizing depth in technology mapping. An im-

portant contribution of this work is to recognize the effect of logic replication on circuit

structure and to show its consequences on power. In an experimental study, the power

characteristics of mapping solutions generated by several publicly available technology

mappers are examined. Results show that for a specific depth of mapping solution, the

power consumption can vary considerably, depending on the technology mapping ap-

proach used. Furthermore, results show that the proposed mapping algorithm leads to

circuits with substantially less power dissipation than mappings produced by previous

approaches. This work has been published in [Ande 02]. To the author’s knowledge, this

represents the first work on power/depth trade-offs in FPGA technology mapping.

Chapter 6 explores early power prediction for FPGAs. As mentioned above, the dynamic

power consumed by a digital CMOS circuit is directly proportional to both switching

activity and interconnect capacitance. Chapter 6 considers early prediction of activity

and capacitance in FPGA designs. Empirical prediction models are developed for these

parameters, suitable for use in power-aware layout synthesis, early power planning, and

other applications. The models can be applied early in the design process, when detailed

routing data is incomplete or unavailable. The impact of delay on switching activity in

FPGAs is studied by examining how the switching activity of a signal changes when delays

are zero (zero-delay activity) versus when logic delays are considered (logic-delay activity)

versus when both logic and routing delays are considered (routed-delay activity). A novel

approach for pre-layout activity prediction is proposed that estimates a signal’s routed-

delay activity using only zero-delay or logic-delay activity values, along with structural and

functional circuit properties. For capacitance prediction, the model’s prediction accuracy

is improved by considering aspects of the FPGA interconnect architecture in addition

6

1.4 Thesis Organization

to generic parameters, such as signal fanout and bounding box perimeter length. We

also demonstrate that there is an inherent variability (noise) in switching activity and

capacitance that limits the accuracy attainable in prediction. Experimental results show

that the proposed prediction models work well given the noise limitations. This work has

been published in [Ande 03], [Ande 04b], and [Ande 04e].

1.4 Thesis Organization

The remainder of this dissertation is organized as follows: Chapter 2 reviews the background

material relevant to the research, including a description of static and dynamic power con-

sumption in CMOS circuits, the impact of technology scaling on leakage, an overview of FPGA

technology, and coverage of recent research on FPGA power optimization.

The main research contributions, highlighted above, are presented in Chapters 3, 4, 5, and 6.

For clarity, and owing to the range of topics considered, each chapter is self-contained. That

is, the experimental results for each proposed power optimization or prediction technique are

presented together with the technique’s description in a single chapter.

Chapter 7 presents concluding remarks and suggestions for future work.

7

1 Introduction

8

2 Background and Related Work

2.1 Introduction

This chapter presents the background material that forms the basis for the research presented in

later chapters. Section 2.2 reviews power dissipation in CMOS circuits, covering both dynamic,

as well as static power. Section 2.3 gives an overview of FPGA architecture and hardware

structures, highlighting the features of two state-of-the-art commercial FPGAs. Section 2.4

examines power dissipation in the FPGA context and discusses the breakdown of dynamic and

static power dissipation in FPGAs. Section 2.5 surveys the recent literature on FPGA power

optimization.

2.2 Power Dissipation in CMOS Circuits

Power consumption in CMOS circuits can be classified as either dynamic or static. Dynamic

power consumption is due to the logic transitions that occur on the signals of a logic circuit.

Such transitions occur as a normal part of useful computation, and dynamic power scales in

proportion to the rate of computation. Static power, on the other hand, also referred to as

leakage power, is dissipated when a logic circuit is in a quiescent state.

2.2.1 Dynamic Power

Dynamic power is consumed through two mechanisms: short-circuit current and the charging

and discharging of capacitance [Yeap 98]. Short-circuit current arises in a CMOS gate as its

output transitions between logic states. During a transition, both the pull-up and pull-down

9

2 Background and Related Work

Figure 2.1: Equivalent circuit for a CMOS gate charging and discharging a capacitor [Yeap 98].

networks conduct concurrently for a short time window, resulting in a temporary short-circuit

path from supply to ground within the gate. In well-designed circuits, short-circuit current

typically represents only 5-10% of dynamic power [Chan 92]. By far, the majority of dynamic

power dissipation is due to charging and discharging capacitance [Yeap 98].

Figure 2.1 shows an equivalent circuit for a CMOS gate charging or discharging a capacitance

C, where VDD represents the voltage supply and Rc (Rd) represents the resistance of the

charging (discharging) circuitry1. The time dependent current/voltage characteristics of the

capacitor are given by:

ic(t) = C
dvc(t)

dt
(2.1)

Assume that the capacitor is initially uncharged at time t0 and that it is fully charged at time t1;

that is, vc(t0) = 0 and vc(t1) = VDD. The total energy drawn from the supply to charge the

capacitor is given by:

Es =

∫ t1

t0

VDD · ic(t) dt (2.2)

1Internal gate capacitances are ignored in the model of Figure 2.1.

10

2.2 Power Dissipation in CMOS Circuits

Substituting (2.1) into (2.2) yields:

Es = C · VDD

∫ t1

t0

dvc(t)

dt
dt = C · VDD

∫ VDD

0
dvc = C · VDD

2 (2.3)

The energy drawn from the supply in a rising transition on the gate’s output signal, E01,

is equal to Es. No energy is drawn from the supply when discharging the capacitor in a falling

transition, and therefore, E10 = 0. The average energy consumed per transition on the gate’s

output signal is:

Etrans =
E01 + E10

2
=

Es + 0

2
=

C · VDD
2

2
(2.4)

The average dynamic power consumed by the gate, Pgate, depends on the average rate of logic

transitions on gate’s output signal:

Pgate = Ftrans · Etrans =
Ftrans · C · VDD

2

2
(2.5)

where Ftrans is referred to as the switching activity of the gate output signal and is expressed in

units of transitions per second. In clocked circuits, it is convenient to normalize the switching

activity by the clock period as follows:

Ftrans = Fclk · F (2.6)

where Fclk represents the system clock frequency and F represents the average number of

transitions on the gate output signal per clock cycle. F is referred to as the normalized switching

activity.

Substituting (2.6) into (2.5) and summing over all signals yields the familiar equation for

the average dynamic power consumed by a CMOS digital circuit:

Pavg =
Fclk

2

∑

i ∈ signals

C(i) · F (i) · VDD
2 (2.7)

where Pavg represents average power consumption, C(i) is the load capacitance of a signal i,

11

2 Background and Related Work

and F (i) represents the average number of transitions on signal i per clock cycle (signal i’s

normalized switching activity).

Various approaches to computing switching activity have been proposed in the litera-

ture, and they can generally be classified as either simulation-based approaches or as prob-

abilistic approaches [Najm 94, Soel 00]. In a simulation-based approach, the circuit is sim-

ulated with representative vectors, and the simulation tool produces a profile of all signal

activities during the simulation. Probabilistic approaches for activity estimation are well-

studied (e.g., [Najm 93, Marc 98, Wrig 00, Chou 97, Juan 01, Meht 95]). These approaches

require no simulation vectors. Rather, a user is simply required to specify the switching activ-

ity, and possibly other properties, of the circuit’s primary inputs. An algorithmic approach is

used to compute activities for the circuit’s internal signals. The advantage of probabilistic ap-

proaches over simulation is primarily run-time; the disadvantage is that probabilistic approaches

are generally less accurate.

When delays are considered, switching activity normally increases due to the introduction

of glitches, which are spurious logic transitions on a signal caused by unequal path delays to

the signal’s driving gate. As transitions on gate inputs occur at different times, the signal

experiences multiple transitions before settling to its final value. The extra activity due to

glitching consumes dynamic power, and previous work has suggested that 20-70% of total

power dissipation in ASICs can be due to glitches [Shen 92].

Chapter 6 studies switching activity, glitching severity, and capacitance in FPGAs and

presents new techniques for early dynamic power estimation.

2.2.2 Static (Leakage) Power

The primary leakage mechanisms in an MOS transistor are illustrated in Figure 2.2, and consist

of subthreshold leakage, gate oxide leakage, and junction leakage (also called band-to-band tun-

neling leakage) [Agar 04]. Junction leakage comprises a small fraction of total leakage [Doyl 02],

and refers to the current flow across the reverse-biased p-n junctions at the interface between

12

2.2 Power Dissipation in CMOS Circuits

source

gate

drain

body (bulk)

n+ n+

gate oxide
leakage

subthreshold leakage
junction
leakage

junction
leakage

Figure 2.2: Leakage mechanisms in an NMOS transistor.

the source/drain and the substrate. The two dominant leakage mechanisms are subthreshold

leakage and gate oxide leakage [Doyl 02, Nowa 02]. These two mechanisms, as well as the way

in which they are impacted by technology scaling, are described below.

An “ideal” MOS transistor can be viewed as a perfect switch, with the gate terminal ex-

hibiting perfect control over the drain-to-source current (IDS). When the potential difference

between the gate and source (VGS) is less than the transistor’s threshold voltage (VTH), the

transistor is said to be OFF and in the cut-off state. Ideally, IDS = 0 in cut-off. In reality

however, a non-zero subthreshold current may flow between the drain and source terminals in

cut-off. Subthreshold leakage in a transistor depends on process parameters as well as bias

conditions, as modeled by [Roy 03]:

IDS = A × e
q

mkT
(VGS−VTH) × (1 − e

−VDSq

kT) (2.8)

where

VTH = Vth0 − γ′ · VS + η · VDS (2.9)

and

13

2 Background and Related Work

A = µ0Cox
W

Leff

(
kT

q
)2e1.8 (2.10)

The parameters in (2.8), (2.9), and (2.10) are defined as follows: Vth0 is the zero-bias

threshold voltage, γ′ is the linearized body effect coefficient, η is called the drain-induced

barrier lowering coefficient, Cox is the gate oxide capacitance, µ0 is the zero-bias mobility, m

is the subthreshold swing, W and Leff are the width and effective length of the transistor,

k represents Boltzmann’s constant, T is temperature in degrees Kelvin, and q is the electron

charge.

From (2.8), (2.9), and (2.10), several interesting properties of subthreshold leakage can be

inferred. First, subthreshold leakage increases exponentially as threshold voltage is reduced

and decreases exponentially as gate/source bias (VGS) is reduced. These properties arise from

the first exponential term of (2.8). Second, threshold voltage depends on the drain/source bias

(VDS). This is referred to as drain-induced barrier lowering (DIBL), and is modeled by the

third term on the right side of (2.9). Finally, subthreshold leakage increases exponentially with

temperature, roughly doubling for every 10◦C increase in temperature [Nowa 02].

Similar to how an MOS transistor is a non-ideal switch, the gate terminal of a transistor is

an imperfect insulator. Gate oxide leakage is due to a non-zero tunneling current through the

insulating gate oxide. It increases exponentially as oxide thickness is reduced. It also increases

exponentially as the potential difference across the gate oxide is increased [Lee 04, Kris 02,

Nowa 02]. Figure 2.3 (from [Thom 98]) illustrates the exponential dependence of gate oxide

leakage on gate bias and oxide thickness. For an NMOS device, in the ON state, gate oxide

leakage flows from the gate terminal to the channel, drain, source, and substrate [Agar 04], in a

mechanism referred to as direct tunneling [Roy 03]. In the OFF state, the overlap between the

gate and the source/drain regions permits leakage from the source/drain to the gate terminal.

This is referred to as edge-directed tunneling, and its magnitude is much smaller than direct

tunneling gate leakage [Lee 04].

14

2.2 Power Dissipation in CMOS Circuits

Gate voltage (V)
0 1 2 3

104

100

10-8

I G
A

T
E
 (

A
/c

m
2)

Figure 2.3: Gate oxide leakage dependence on oxide thickness and gate bias [Thom 98].

Impact of Technology Scaling on Leakage

“The number of transistors on an integrated circuit doubles every 18 months.”

Moore’s Law, first stated in the 1960s, has largely remained true for four decades, and is

the basis for the incredible growth of the semiconductor industry throughout this period. Such

drastic scaling has been made possible by the seemingly endless ability to shrink the size of a

transistor, markedly increasing the density of transistors on a single IC.

As transistors are made smaller, there are two important consequences. First, the expo-

nential growth in the number of devices on a single chip leads to a higher power consumption.

Second, the electric fields internal to a transistor increase, which impacts transistor reliability2.

To address these issues, supply voltage must be scaled in tandem with feature size. Figure 2.4

(from [Doyl 02]) shows the scaling of transistor gate length and supply voltage versus process

generation. The supply voltage scales at approximately 0.85X per generation; the gate length

scales at approximately 0.65X per generation.

The drive capability and associated speed performance of a transistor depends on the mag-

2Field strength in an MOS transistor influences failure due to gate oxide breakdown [Amer 98].

15

2 Background and Related Work

750 350 180 95 45

Process generation (nm)

10.0

1.0

0.1

S
up

pl
y

vo
lta

ge
 (

V
)

G
at

e
le

ng
th

 (
nm

)

10

100

1000

Figure 2.4: Scaling of gate length and supply voltage [Doyl 02].

nitude of VDD−VTH [Sedr 97]. Consequently, as supply voltages are reduced, threshold voltages

must also be reduced to mitigate performance degradations. As discussed in Section 2.2.2, re-

ducing VTH yields an exponential increase in subthreshold leakage. Thus, smaller feature sizes

necessitate lower supply voltages, which in turn necessitate lower threshold voltages, which are

associated with increased subthreshold leakage current. To be sure, subthreshold leakage is

predicted to increase by roughly 5X per process generation [Bork 99].

Additionally, a transistor’s drive current depends linearly on its gate oxide capacitance, Cox,

defined as:

Cox =
ε

tox

(2.11)

where ε is the permittivity of the gate insulator and tox is the oxide thickness. Current drive is

improved by thinning the oxide (reducing tox), producing an exponential increase in gate oxide

leakage3. Figure 2.5 (from [Taur 02]) illustrates the scaling of supply voltage, oxide thickness,

and threshold voltage with process generation.

The scaling trends outlined above imply that leakage power will constitute an increasingly

dominant component of total power in future process technologies. A survey conducted by

3Thinner oxides are also required to maintain adequate gate control over the drain current as technology
scales [Fran 02].

16

2.2 Power Dissipation in CMOS Circuits

G
at

e
ox

id
e

th
ic

kn
es

s
(n

m
)

P
ow

er
 s

up
pl

y
an

d
th

re
sh

ol
d

vo
lta

ge
 (

V
)

MOSFET channel length (microns)

tox

VTH

VDD

1

2

5

10

20

50

0.1

0.2

0.5

1

2

5

10

0.02 0.05 0.1 0.2 0.5 1

Figure 2.5: Scaling of VDD, VTH , and tox with process generation [Taur 02].

17

2 Background and Related Work

Active-power
density

?

Subthreshold-power
density

0.01 0.1 1

Gate Length (um)

0.01

0.1

1

10

100

1000

0.001

0.0001

10-5

P
ow

er
 (

W
/c

m
2)

25° C data

Figure 2.6: Scaling of subthreshold leakage power density and dynamic power density [Nowa 02].

Nowak produced the trend data shown in Figure 2.6 [Nowa 02]. The figure clearly illustrates

that both static and dynamic power increase as technology scales; however, the rate of increase

of static power is considerably faster. Recent work suggests that static power may constitute

over 40% of total power at the 70nm technology node [Kao 02].

Leakage Reduction Techniques

Before going further, it is worthwhile to highlight a few of the most important leakage reduction

techniques used in ASICs and microprocessors, including those that play a role in the research

presented in subsequent chapters. A more detailed overview of leakage optimization techniques

can be found in [Roy 03].

Prior work on leakage optimization in ASICs differentiates between active and sleep (or

standby) leakage. Sleep leakage is that dissipated in circuit blocks that are temporarily inactive

and that have been placed into a special “sleep state”, in which leakage power is minimized.

18

2.2 Power Dissipation in CMOS Circuits

Active leakage, on the other hand, is that dissipated in circuit blocks that are in use – blocks

that are “awake”.

Several recent papers have considered ASIC standby leakage power optimization. In [Anis 02,

Saku 02], the authors introduce high threshold sleep transistors into the N-network and/or P-

network of CMOS gates, as illustrated in Figure 2.7(a). Sleep transistors are ON when the

circuit is active and are turned OFF when the circuit is in standby mode, effectively limiting

the leakage current from supply to ground. A different approach to leakage reduction is based

on the fact that a circuit’s leakage depends on its input state. In [Halt 97, Abdo 02], a specific

input vector is identified that minimizes leakage power in a circuit; the vector is then applied

to circuit inputs when the circuit is in standby mode. This idea requires only minor circuit

modifications and has been shown to reduce leakage by up to 70% in some circuits [Abdo 02].

Active leakage reduction has also been addressed in the literature. One approach performs

dynamic VTH adjustment based on system workload [Kim 02, Mart 02]. The body effect is used

to raise transistor VTH when high system throughput is not required, and the circuit can be

slowed down. Figure 2.7(b) illustrates the concept. In the figure, V PB (V NB) would be set

higher (lower) than VDD (GND) in low leakage mode. Such body bias methods can also be

used for standby leakage power reduction [Kesh 01]. Other circuit-level techniques include the

use of dual or multi-threshold CMOS [Siri 02, Usam 02, Lee 03, Basu 04, Sriv 04b], wherein

multiple transistor types with different threshold voltages are available. Low-VTH transistors

are selected for use in delay-critical paths and high-VTH transistors are used in non-critical

paths. Considerable leakage power reductions are possible, as there are usually few delay-

critical paths. Similarly, dual-tox design techniques have been proposed recently for gate oxide

leakage reduction [Sult 04].

Another popular active leakage optimization technique is to replace individual transistors

in gates with “stacks” of transistors in series [Nare 01, John 02, Kao 02, Liu 02], as shown in

Figure 2.7(c). Transistor stacks leak less than individual transistors when in the OFF state,

a phenomenon widely referred to as the stack effect [Nare 01]. A related approach is to use

19

2 Background and Related Work

�� ���

����	

����	

�
������

�� ���

�
�

�
��

���

���

���

���

�� ���

���

���

a) supply gating b) body biasing c) stack effect

sleep
transistor

Figure 2.7: ASIC leakage optimization techniques.

transistors with longer channel lengths, which are known to have better leakage characteris-

tics [Roy 03]. Note that the leakage improvements offered by all of the techniques mentioned

here come with associated costs, impacting circuit area, delay, or fabrication cost.

In the future, in addition to the techniques noted above, leakage may be addressed through

changes to the fabrication process, such as using metal gate electrodes, or through the adoption

of alternate logic technologies, such as SOI or double-gate CMOS [Taur 02, Nowa 02, Thom 98,

Doyl 02, Zeit 04].

2.3 FPGA Architecture and Hardware Structures

Having reviewed the basis of power dissipation in CMOS circuits, we now turn our atten-

tion to FPGAs. This section presents an overview of FPGA architecture and hardware struc-

tures using two recently-developed commercial FPGAs as example cases: the Xilinx Virtex-4

FPGA [Virt 04] and the Altera Stratix II FPGA [Stra 04].

FPGAs consist of a two-dimensional array of programmable logic blocks that are connected

through a configurable interconnection fabric. Figure 2.8(a) provides an abstract view of an

FPGA. As illustrated, pre-fabricated routing tracks are arranged in channels that are inter-

20

2.3 FPGA Architecture and Hardware Structures

4-LU
T D FF

clk

S
S
S
S

S

f1

f2

f3

f4

...

f1 f2 f3 f4

SRAM cell

b) logic block

c) 4-LUT

M
U

X

M
U

X

logic block

I/O

routing tracks

a) abstract FPGA structure

Figure 2.8: (a) Abstract FPGA architecture; (b) logic block; (c) LUT.

spersed between rows and columns of logic blocks. Today’s commercial FPGAs use look-up-

tables (LUTs) as the base element for implementing combinational logic functions, and contain

flip-flops for implementing sequential logic. A K-input LUT (K-LUT) is a small memory capa-

ble of implementing any logic function that uses, at most, K inputs. A simplified FPGA logic

block is shown in Figure 2.8(b), comprising a 4-LUT along with a flip-flop. A programmable

multiplexer allows the flip-flop to be bypassed. Figure 2.8(c) shows the internal details of a

4-LUT. 16 SRAM cells hold the truth table for the logic function implemented by the LUT.

The LUT inputs, labeled f1–f4, select a particular SRAM cell whose content is passed to the

LUT output.

The logic blocks in commercial FPGAs are more complex than that of Figure 2.8(b) and

contain clusters of LUTs and flip-flops. Figure 2.9 shows the logic blocks in Virtex-4 and

Stratix II. A Virtex-4 logic block [Figure 2.9(a)] is referred to as a Configurable Logic Block

(CLB) and it contains 4 SLICEs, where each SLICE has two 4-LUTs, two flip-flops, as well

21

2 Background and Related Work

as arithmetic and other dedicated circuitry. The two 4-LUTs in a SLICE can be combined to

create a single 5-LUT; the LUTs in two SLICEs can be combined to create a single 6-LUT.

A Stratix II logic block, referred to as a Logic Array Block (LAB), is shown in Figure 2.9(b).

A LAB contains eight sub-blocks, called Adaptive Logic Modules (ALMs). Each ALM contains

two 4-LUTs and four 3-LUTs, two flip-flops, as well as arithmetic and other circuitry. Multi-

plexers and associated configuration circuitry make a single ALM quite flexible. Specifically,

the smaller LUTs in an ALM may be combined to form larger LUTs. For example, all of the

LUTs in an ALM can be combined to implement a 6-LUT. Alternately, the LUTs can be com-

bined to create various combinations of two LUTs (e.g., a 5-LUT and a 4-LUT). Many other

ALM configurations are also possible [Stra 04]. Comparing the two logic blocks, it is apparent

that a LAB is more coarse-grained than a CLB. Since a LUT with K inputs requires 2K SRAM

configuration cells, a LAB contains 8 × (2 × 16 + 4 × 8) = 512 bits of LUT RAM memory; a

CLB contains 4 × (2 × 16) = 128 bits of LUT RAM memory.

Note that in addition to the LUT-based logic blocks described here, commercial FPGAs

contain other hardware blocks, including block RAMs, multipliers, and DSP blocks [Virt 04,

Stra 04]. Typically, such blocks are placed at regular locations throughout the two dimensional

FPGA fabric. Furthermore, commercial FPGAs have programmable I/O blocks, capable of

operating according to a variety of different signaling standards.

Connections between logic blocks in an FPGA are formed using a programmable intercon-

nection network, having variable length wire segments and programmable routing switches. A

typical FPGA routing switch is shown in Figure 2.10 [Lemi 02, Lemi 04, Lewi 03, Rahm 04].

It consists of a multiplexer, a buffer, and SRAM configuration bits. Within an FPGA, the

switch’s multiplexer inputs, labeled i1–in, connect to other routing conductors or to logic block

outputs. The buffer’s output connects to a routing conductor or to a logic block input. The

programmability of an FPGA’s interconnection fabric is realized through the SRAM cells in

the configuration block, labeled “config” in Figure 2.10. The SRAM cell contents control which

input signal is selected to be driven through the buffer. Combined, a routing switch and the

22

2.3 FPGA Architecture and Hardware Structures

C
O

M
B

IN
A

T
IO

N
A

L
LO

G
IC

F
F

F
F

4-LUT

3-LUT

3-LUT

4-LUT

3-LUT

3-LUT

IN
T

E
R

C
O

N
N

E
C

T

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

LAB
ALM

S
LIC

E
S

LIC
E

S
LIC

E
S

LIC
E

IN
T

E
R

C
O

N
N

E
C

T

4-LU
T

4-LU
T

F
F

F
F

CLB
SLICE

a) Xilinx Virtex-4 logic block

b) Altera Stratix-II logic block

Figure 2.9: Logic blocks in Xilinx and Altera commercial FPGAs.

23

2 Background and Related Work

i1

i2

i3

in

S S S...

config

M
U

X BUF

Figure 2.10: FPGA routing switch.

Table 2.1: Summary of commercial FPGA routing architectures (lengths given in CLB tiles or
LAB tiles, as appropriate).
Resource type Virtex-4 Stratix II
Local Internal to CLB Internal to LAB
Short range DIRECT (8 neighbors) DIRECT (east/west neighbors)

DOUBLE (length 2)
Medium range HEX (length 6) C4, R4 (length 4)
Long range LONG (length 24) C16, R24 (length 16, 24)

conductor it drives are referred to as a routing resource. The connectivity pattern between logic

blocks and routing, as well as the length and connectivity of routing conductors constitute the

FPGA’s routing architecture.

Virtex-4 and Stratix II have similar routing architectures. Both offer “local” routing re-

sources for connections within a CLB or a LAB. Virtex-4 includes DIRECT resources that

connect a CLB to its eight neighbors (including the diagonal neighbours). DOUBLE and HEX

resources run horizontally and vertically and span two and six CLB tiles, respectively. LONG

resources in Virtex-4 span 24 CLB tiles. In Stratix II, DIRECT resources provide connectivity

between a LAB and its neighbours to the left and right. R4 and C4 resources span four LAB

tiles and run horizontally and vertically, respectively. For long distance connections, C16 and

R24 resources are available that span 16 and 24 LAB tiles, respectively. Table 2.1 summarizes

the routing architectures of the two FPGAs.

24

2.3 FPGA Architecture and Hardware Structures

i1

i2

i3

i4

i1

i2

i3

i4

a) decoded multiplexer b) encoded multiplexer

s1

s2

s3

s4

s1 s2s1s1 s2 s2

s1

s1

s1

s1

s2

s2

SRAM cell

s2

s3

s4

s1

i1

i2

c) multiplexer in 2-LUT

Figure 2.11: Multiplexers as deployed in FPGA routing switches and a LUT.

Given the discussion so far, the reader will appreciate that the multiplexer is perhaps the

most important circuit element in an FPGA, since they are used extensively throughout the

interconnect and are also used to build LUTs. It is therefore worthwhile to review this structure

in some detail. The multiplexers in FPGAs are typically implemented using NMOS transistor

trees [Lemi 02]. Figures 2.11(a) and (b) depict multiplexers, as they would be deployed in a

routing switch. Full CMOS transmission gates are generally not used to implement multiplexers

in FPGAs because of their larger area and capacitance [Lemi 03]. Figures 2.11(a) and (b)

show two possible implementations of a 4-to-1 multiplexer. Figure 2.11(a) shows a “decoded”

multiplexer, which requires four configuration SRAM cells if used in an FPGA routing switch.

Input-to-output paths through this decoded multiplexer consist of a single NMOS transistor.

Figure 2.11(b) shows an “encoded” multiplexer that requires only two configuration SRAM

cells, though has larger delay as its input-to-output paths consist of two transistors in series. In

larger multiplexers, a combination of the designs shown in Figure 2.11 is also possible, allowing

one to trade-off area for delay or vice-versa. In a LUT, the LUT inputs drive multiplexer

select signals; SRAM cells containing the truth table of the LUT’s logic function attach to the

25

2 Background and Related Work

multiplexer’s inputs. A multiplexer in a two-input LUT is shown in Figure 2.11(c).

2.4 Power Dissipation in FPGAs

2.4.1 Dynamic Power

A number of recent papers have considered the breakdown of dynamic power consumption in

FPGAs [Poon 02b, Li 03, Shan 02]. [Shan 02] studied the breakdown of power consumption

in the Xilinx Virtex-II commercial FPGA. The results are summarized in Figure 2.12. Inter-

connect, logic, clocking, and the I/Os were found to account for 60%, 16%, 14%, and 10% of

Virtex-II dynamic power, respectively. A similar breakdown was observed in [Poon 02b]. The

FPGA power breakdown differs from that of custom ASICs, in which the clock network is often

a major source of power dissipation [Yeap 98].

The dominance of interconnect in FPGA dynamic power is chiefly due to the composition

of FPGA interconnect structures, which consist of pre-fabricated wire segments, with used and

unused switches attached to each wire segment. Such attached switches are not present in

custom ASICs, and they contribute to the capacitance that must be charged/discharged in a

logic transition. Furthermore, SRAM configuration cells and circuitry constitute a considerable

fraction of an FPGA’s total area. For example, [Ye 04] suggests that more than 40% of an

FPGA’s logic block area is SRAM configuration cells. Such area overhead makes wirelengths

in FPGAs longer than wirelengths in ASICs. Interconnect thus presents a high capacitive load

in FPGAs, making it the primary source of dynamic power dissipation.

2.4.2 Static (Leakage) Power

In comparison with dynamic power dissipation, relatively little has been published on FPGA

leakage power. One of the few studies was published by Tuan and Lai in [Tuan 03], and exam-

ined leakage in the Xilinx Spartan-3 FPGA, a 90nm commercial FPGA [Spar 04]. Figure 2.13

shows the breakdown of leakage in a Spartan-3 CLB, which is similar to the Virtex-4 CLB

described in Section 2.3. Leakage is dominated by that consumed in the interconnect, configu-

26

2.4 Power Dissipation in FPGAs

Logic
16%

Clocking
14%

IOBs
10%

Interconnect
60%

Figure 2.12: Dynamic power breakdown in Xilinx Virtex-II [Shan 02].

ration SRAM cells, and to a lesser extent, LUTs. Combined, these structures account for 88%

of total leakage.

As pointed out in [Tuan 03], the contents of an FPGA’s configuration SRAM cells change

only during the FPGA’s configuration phase. Configuration is normally done once – at power-

up. Therefore, the speed performance of an FPGA’s SRAM configuration cells is not critical, as

it does not affect the operating speed of the circuit implemented in the FPGA. The SRAM cells

can be slowed down and their leakage can be reduced or eliminated using previously-published

low leakage memory techniques, such as those in [Kim 03], or by implementing the memory

cells with high-VTH or long channel transistors. Leakage was not a primary consideration in

the design of Spartan-3. If SRAM configuration leakage were reduced to zero, the Spartan-3

interconnect and LUTs would account for 55% and 26% of total leakage, respectively.

Note that unlike ASICs, a design implemented in an FPGA uses only a portion of the

underlying FPGA hardware. Leakage is dissipated in both the used and the unused parts of

the FPGA. To be sure, [Tuan 03] suggests that up to 45% of leakage in Spartan-3 is “unused”

leakage (assuming reasonable device utilization). Notably, today’s commercial FPGAs do not

yet offer support for a low leakage sleep mode for unused regions.

27

2 Background and Related Work

Other
12%

Configuration
SRAMs

38%
LUTs
16%

Interconnect
34%

Figure 2.13: Leakage power breakdown in Xilinx Spartan-3 [Tuan 03].

2.5 FPGA Power Optimization

This section summarizes recent literature on FPGA power optimization, including techniques

for leakage optimization, architecture/circuit-level techniques for dynamic power reduction, and

CAD approaches for dynamic power reduction.

2.5.1 Leakage Power Optimization

Two recent papers focussed on optimizing leakage in the unused portion of an FPGA. Calhoun

proposed the creation of fine-grained “sleep regions”, making it possible for a logic block’s

unused LUTs and flip-flops to be put to sleep independently [Calh 03]. A more coarse-grained

sleep strategy was proposed in [Gaya 04b], which partitioned an FPGA into entire regions of

logic blocks, such that each region can be put to sleep independently. The authors restricted

the placement of the implemented design to fall within a minimal number of the pre-specified

regions, and studied the effect of the placement restrictions on design performance.

One of few papers to address leakage in FPGA interconnect is [Rahm 04], which applied

well-known leakage reduction techniques to interconnect multiplexers. Four different techniques

were studied. First, extra configuration SRAM cells were introduced to allow for multiple OFF

transistors on unselected multiplexer paths. The intent is to take advantage of the “stack

28

2.5 FPGA Power Optimization

effect”, as illustrated in Figure 2.14(a). The left side of Figure 2.14(a) shows a typical routing

switch multiplexer. Observe that there is a single OFF transistor on the unselected multiplexer

path (highlighted). The right side of Figure 2.14(a) shows the redundant SRAM cell approach.

The unselected path contains two OFF transistors, which limits subthreshold leakage along the

path.

A second approach described in [Rahm 04] is to layout portions of the multiplexer in sepa-

rate wells, allowing body-bias techniques to be used to raise the VTH of multiplexer transistors

that are not part of the selected signal path [see Figure 2.14(b)]. Third, [Rahm 04] proposes

negatively biasing the gate terminals of OFF multiplexer transistors [Figure 2.14(c)]. The

negative gate bias leads to a significant drop in subthreshold leakage [recall equation (2.8)].

Finally, [Rahm 04] proposes using dual-VTH techniques, wherein a subset of multiplexer tran-

sistors are assigned high-VTH (slow/low leakage), and the remainder of transistors are assigned

low-VTH (fast/leaky). The dual-VTH idea, shown in Figure 2.14(d), impacts FPGA router com-

plexity, as the router must assign delay-critical signals to low-VTH multiplexer paths. A more

recent paper by Ciccarelli applies dual-VTH techniques to the routing switch buffers in addition

to the multiplexers [Cicc 04].

Chapters 3 and 4 present novel leakage reduction techniques for FPGA logic and intercon-

nect that are orthogonal to those mentioned here.

2.5.2 Dynamic Power Optimization (Architecture/Circuit Techniques)

The first comprehensive effort to develop a low-energy FPGA was by a group of researchers

at UC Berkeley [Kuss 98, Geor 99, Geor 01]. A power-optimized variant of the Xilinx XC4000

FPGA [X4K 02] was proposed. Power reductions were achieved through significant changes in

the logic and routing fabrics. First, larger, 5-input LUTs were used rather than 4-LUTs, allow-

ing more connections to be captured within LUTs instead of being routed through the power-

dominant interconnect. Second, a new routing architecture was deployed, combining ideas from

a 2-dimensional mesh, nearest-neighbor interconnect, and an inverse clustering scheme. Third,

29

2 Background and Related Work

�

�

�

�

�

�

�

�

�

�

�

����������	�

��

��

��

�

�

�

�

�

������������	�

���������

���	��������

����������	�

������������	�

����

���	����������

�������	�	��

��

��

�

�

�

�

�

�

�������	������� ������

!
""

!
""

#�"

!
""

!
""

#�"

�

��

��

��

�

�

�

�

�

!
""

��� ������

!$�

!$�

%��������&�����&��

������������'�	�

��

�

!
""

()*+!

��

�

#�"

��&�!
,-

��
�!
,-

a) Redundant SRAM cells

b) Multiple wells with body bias

c) “Super cut-off”

d) Dual-VTH

VDD

Figure 2.14: Multiplexer leakage reduction techniques [Rahm 04].

30

2.5 FPGA Power Optimization

specialized transmitter and receiver circuitry were incorporated into each logic block, allowing

low-swing signaling to be used. Last, double-edge-triggered flip-flops were used in the logic

blocks, allowing the clock frequency to be halved, reducing clock power. The main limitations

of the work are: 1) The proposed architecture represents a “point solution” in that the effect

of the architectural changes on the area-efficiency, performance, and routability of real circuits

was not considered; 2) The basis of the architecture is the Xilinx XC4000, which was introduced

in the late 1980s and differs considerably from current FPGAs; 3) The focus was primarily on

dynamic power – leakage was not a major consideration.

Power trade-offs at the architectural level were considered in [Li 03], which examined the

effect of routing architecture, LUT size, and cluster size (the number of LUTs in a logic block)

on FPGA power-efficiency. Using the metric of power-delay product, [Li 03] suggests that

4-input LUTs are the most power-efficient, and that logic blocks should contain 12 4-LUTs.

A similar study by Poon and Wilton found that 3-LUTs are most energy-efficient, and that

clusters containing 9 or 10 LUTs should used [Poon 02a]. In both studies, despite their focus

on power, power-aware CAD tools were not used in the architectural evaluation experiments,

possibly affecting the architectural conclusions. Also, as in the UC Berkeley work [Geor 01],

the architectures evaluated are somewhat out-of-step with current commercial FPGAs. For

example, [Li 03] suggests that a mix of buffered and unbuffered bidirectional routing switches

should be used. Modern commercial FPGAs no longer use unbuffered routing switches; rather,

they employ unidirectional buffered switches, like that in Figure 2.10.

Dynamic power in CMOS circuits, computed through Equation (2.7), depends quadratically

on supply voltage. The quadratic dependence can be leveraged for power optimization, and

this property has led to the development of dual or multi-VDD techniques, which have proved

themselves effective at power reduction in the ASIC domain (e.g., [Nguy 03, Sriv 04a]). In a

dual-VDD IC, circuitry that is not delay-critical is powered by the lower supply voltage; delay-

critical circuitry is powered by the higher supply. Level converters are generally needed when

circuitry operating at the low supply drives circuitry operating at the high supply. In [Li 04c],

31

2 Background and Related Work

high-VDD block

low-VDD block

a) Pre-defined dual-VDD FPGA

Logic block

S

config bit

S

config bitlow-VDD

high-VDD

b) Configurable dual-VDD logic block

Figure 2.15: Dual-VDD FPGA structures.

the dual-VDD concept is applied to FPGAs. A heterogeneous architecture is proposed in which

some logic blocks are fixed to operate at high-VDD (high speed) and some are fixed to operate

at low-VDD (low-power, but slower). Figure 2.15(a) illustrates one of the pre-defined dual-VDD

fabrics studied in [Li 04c]. The power benefits of the heterogeneous fabric were found to be

minimal, due chiefly to the rigidity of the fixed fabric and the performance penalty associated

with mandatory use of low-VDD in certain cases. In [Li 04b], the same authors extended their

dual-VDD FPGA work to allow logic blocks to operate at either high or low-VDD, as shown

in Figure 2.15(b). Using such a “configurable” dual-VDD scheme, power reductions of 9-14%

(versus single-VDD FPGAs) were reported. A limitation of [Li 04c] and [Li 04b] is that the

dual-VDD concepts were applied only to logic, not interconnect. The interconnect, where most

power is consumed, was assumed to always operate at high-VDD. This limitation is overcome

in [Gaya 04a] and [Li 04a], which apply dual-VDD to both logic and interconnect.

Note that a dual-VDD FPGA presents a more complex problem to FPGA CAD tools. CAD

tools must select specific LUTs to operate at each supply voltage, and then assign these LUTs

to logic blocks with the appropriate supply. To address these issues, algorithms for dual-

VDD mapping and clustering have been developed in conjunction with the architecture work

mentioned above [Chen 04b, Chen 04a].

32

2.5 FPGA Power Optimization

2.5.3 Dynamic Power Optimization (CAD Techniques)

Figure 2.16 shows the typical FPGA CAD flow, comprised of HDL synthesis, technology map-

ping, clustering, placement, and routing. In the HDL synthesis step, an input design is syn-

thesized from a text description, typically VHDL or Verilog, into a circuit netlist, composed of

generic primitive elements from a target library. The library may consist of standard logic gates

(for example, AND, OR, NOT) or it may contain FPGA-specific elements (for example, LUTs).

In technology mapping, the synthesized circuit is transformed into elements that resemble those

available in the target FPGA device, primarily LUTs and flip-flops. As mentioned above, logic

blocks in commercial FPGAs contain multiple LUTs, flip-flops, as well as arithmetic and other

circuitry. A clustering or packing step is invoked after technology mapping to group LUTs and

flip-flops into clusters corresponding to the logic blocks of the target FPGA. Placement assigns

the logic blocks in the design to logic block sites on the FPGA. Routing forms the desired

connections between logic blocks. Finally, the routed design is translated into a configuration

bitstream for programming the device.

The potential for power optimization has been studied at each stage of the flow in Fig-

ure 2.16. We briefly describe some of the published approaches below.

Front-end Synthesis

A power-aware HDL synthesis system for FPGAs was recently described in [Chen 03]. The sys-

tem leverages three observations that are unique to FPGAs: 1) datapath circuits often contain

large multiplexers, and implementing multiplexers in FPGAs imposes a substantial demand on

LUTs and interconnect; 2) FPGAs contain a large number of registers – typically one register

per LUT; 3) interconnect accounts for the bulk of FPGA power consumption. The proposed

synthesis algorithm aims to reduce interconnect usage by trading-off the number of multiplexer

ports with register count. Through a 9% increase in register count, the number of multi-

plexer ports is reduced by 23%, significantly reducing demand on interconnect. Considerable

power reductions of more than 30% are reported, in comparison with a commercial synthesis

33

2 Background and Related Work

Front-end (HDL) synthesis

Technology mapping

Clustering

Placement

Routing

HDL circuit

Routed circuit

Figure 2.16: Typical FPGA CAD flow.

tool [Chen 03]. An extension of the work appears in [Chen 04a], which proposes a new approach

to register binding and port assignment that further reduces the number of multiplexer inputs,

realizing additional power reductions.

A recent paper by Wilton, Luk, and Ang examines the impact of pipelining on FPGA power

consumption [Wilt 04]. The authors argue that pipelining is essentially “free” in FPGAs, due to

the large number of available registers. Since pipelining shortens combinational paths, it reduces

glitches and has been successfully applied for glitch reduction in the ASIC domain [Mont 93].

In [Wilt 04], the number of pipeline stages is increased gradually for each circuit in a set of

benchmark circuits. Power reductions ranging from 40-90% are reported.

Technology Mapping

Several researchers have considered power optimization during the technology mapping step

of Figure 2.16 [Farr 94, Wang 97, Li 01, Wang 01]. The key idea in power-aware technology

mapping is to keep signals with high switching activity out of the power-hungry FPGA inter-

34

2.5 FPGA Power Optimization

10 3

3

3
1 7

35

10 3

3

3
1 7

35

primary input

LUT

logic function

switching
activity

Figure 2.17: Power-aware technology mapping.

connect, as illustrated in Figure 2.17. The figure shows two mapping solutions for a circuit.

The nodes represent logic functions; the shaded regions represent LUTs. Switching activity

values are shown adjacent to each signal. In the left mapping solution, the high activity sig-

nal (with activity 10) is covered within a LUT, and therefore, this signal is not required to

be routed through the interconnect. In the right mapping solution, the high activity signal is

between LUTs and thus, must be routed through the interconnect. It is conceivable that the

two mapping solutions have considerably different power characteristics.

In an early work, Farrahi and Sarrafzadeh proposed an algorithm that minimized power at

the expense of both area and depth [Farr 94]. Their algorithm provides a 14% power improve-

ment over an algorithm that solely optimizes area. Li, Mak, and Katkoori presented an algo-

rithm that optimizes power in the portions of a circuit that are not depth-critical [Li 01]. Their

approach reduces the mapping problem to a network flow formulation, similar to FlowMap [Cong 94a].

The authors use a novel approach to translate power objectives into edge capacities in the flow

network. In [Wang 01], the authors focused on optimizing both area and power. Their method

computes a set of candidate mapping solutions for each node in an input network, and applies

a cost function to select the best solution. The approach yields mapping solutions that use 14%

less power than those produced by [Farr 94], while at the same time requiring fewer LUTs.

Each published technology mapping algorithm has been shown to produce mapping solutions

35

2 Background and Related Work

requiring less power than solutions produced by a previously published approach. However, none

of these works has studied the trade-offs between power and other design criteria, such as area

or routability. In Chapter 5, a new power-aware technology mapping algorithm is described

that permits trade-offs between power and depth.

Clustering

An interconnect-centric clustering algorithm was proposed in [Sing 02], and shown to offer

significant power benefits. The algorithm uses Rent’s rule [Dona 81] to create clusters with

low interconnect requirements, leading to lower overall power consumption. Previous work on

clustering focused on minimizing the total number of clusters [Betz 97a]. [Sing 02] showed that

this objective does not necessarily equate with minimizing the number of signals external to

clusters – signals that ultimately impose demand on the interconnect. The proposed algorithm

uses Rent’s rule to derive a preferred upper bound on the number of pins that should be

used on a cluster. An attempt is made to honor this bound during clustering, resulting in a

slight increase in the average number of clusters needed to implement circuits versus [Betz 97a].

However, the number of signals external to clusters is considerably reduced by this approach,

leading to lower overall power.

Placement and Routing

Power optimization has also been considered at the placement and routing stages. [Roy 99] pro-

posed a simulated annealing-based placer that simultaneously handles wirelength, delay, and

power minimization. Power was taken into account through an extra term in the annealing

cost function. The term tallies the product of estimated capacitance and switching activity for

each signal, representing the dynamic power dissipation of the current placement. In a similar

way, [Roy 99] realizes power-aware routing by augmenting the router’s cost function with a

power cost term. A different power-aware placement approach, based on recursive partitioning,

was described in [Toga 98]. The method aims to avoid splitting high activity signals across

36

2.5 FPGA Power Optimization

z1 = ab + ab
z2 = a + b

switching activity(z1) !=
switching activity(z2)

A B Z
0 0 0
0 1 1
1 0 1
1 1 X

Figure 2.18: Basis of post-layout power optimization.

partitions, leading to shorter wirelengths, smaller capacitances, and lower dynamic power for

such signals.

Post-layout Power Optimization

Post-layout power optimization is possible by way of techniques that re-program LUT func-

tions to optimize the switching activity of signals routed through the interconnect [Kumt 00a,

Hwan 98]. The aim is to exploit the concept of “don’t cares” in Boolean functions. Specifically,

don’t cares give rise to alternatives in the choice of a function to be implemented by a LUT.

Such alternatives may have different switching activities, and thus, offer different power charac-

teristics. Figure 2.18 shows an example truth table with a “don’t care”, leading to two Boolean

function alternatives, each having a different switching activity. In [Kumt 00a], a cluster of

LUTs to re-program is selected, and a neighborhood of LUTs that connect to the cluster is

identified. The cluster and its neighborhood represent a sub-circuit, H, of the entire circuit,

having a specific set of inputs and outputs. Implementation alternatives for the cluster LUTs

that meet the functional requirements on the inputs and outputs of H are enumerated, and

the implementation having the best power characteristics is selected. An average power re-

duction of 11.5% was reported [Kumt 00a]. Since the circuit is optimized “in-place”, without

perturbing the placement or routing, the optimization is “free” from the area and performance

perspectives.

37

2 Background and Related Work

Power-Aware CAD Flow

The research work noted above demonstrates that power optimization is possible at each step of

the FPGA CAD flow. A question that arises, however, is whether the power reductions achieved

at each stage are additive, or whether, for example, a power reduction achieved in technology

mapping lessens the potential for power reduction at a later stage, such as placement. This

question was addressed in an interesting paper by Lamoureux and Wilton, who constructed a

complete power-aware FPGA CAD flow, comprised of technology mapping, clustering, place-

ment, and routing [Lamo 03]. Applied in isolation, the power-aware algorithms produced power

reductions of 7.6%, 12.6%, 3%, and 2.6%, respectively. When all of the algorithms were applied

simultaneously, a total power reduction of 22.6% was observed – only slightly less than the

sum of the individual power reductions (25.8%). The results suggest that the power reductions

achieved at each stage are largely orthogonal.

2.6 Summary

Power dissipation in CMOS circuits can be classified as either dynamic or static. Dynamic power

consumption is due to the logic transitions that occur on a circuit’s signals during normal

operation. Static power is dissipated even when a circuit is in an idle state. Historically,

dynamic power has dominated power consumption in CMOS circuits; however, technology

scaling trends have resulted in leakage becoming an increasing component of total power. The

breakdown of power consumption in FPGAs is well-studied, and it has been observed that

interconnect accounts for the bulk of an FPGA’s static and dynamic power. In recent years,

various approaches to reducing FPGA power have been proposed in the literature, including

approaches for leakage reduction, as well as circuit, architecture, and CAD techniques for

dynamic power reduction.

38

3 CAD Techniques for Leakage Optimization

3.1 Introduction

This chapter is focussed on optimizing the active leakage power dissipation of FPGAs. Recall

that active leakage refers to leakage consumed in the used and operating part of an FPGA (see

Section 2.2.2). Two novel CAD techniques for reducing active leakage are presented. Both of

the proposed techniques are unique in that they are “no cost”, meaning that they do not worsen

area-efficiency, degrade circuit performance, or increase fabrication cost.

The leakage consumed by a digital CMOS circuit depends on its input state. Section 3.2

explores the extent to which this property holds for common FPGA hardware structures. Based

on the results observed, Section 3.3 presents a first leakage reduction approach that leverages

a specific property of the primary logic elements used in FPGAs, namely, LUTs. The property

allows one to freely use either polarity of a logic signal, without incurring any area or delay

penalty, and without requiring modifications to the underlying FPGA hardware. Polarities are

chosen for signals in a way that places hardware structures into their low leakage states.

The second leakage optimization technique, described in Section 3.4, takes the leakage power

consumptions of FPGA routing resources into account during the routing step of the CAD flow.

The objective of such “leakage-aware routing” is to route design signals with a preference for

using low leakage routing resources. Both of the proposed leakage reduction approaches are

validated experimentally by applying them to optimize leakage in a 90nm Xilinx commercial

FPGA. The chapter concludes with a summary in Section 3.5.

39

3 CAD Techniques for Leakage Optimization

i1

i2

i3

i4

i1

i2

i3

i4

a) decoded multiplexer b) encoded multiplexer

s1

s2

s3

s4

s1 s2s1s1 s2 s2

s1

s1

s1

s1

s2

s2

SRAM cell

Figure 3.1: Two 4-to-1 multiplexer implementations.

3.2 FPGA Hardware Structures

Multiplexers and buffers comprise the basic building blocks of an FPGA, since they are deployed

throughout FPGA logic and interconnect. Before describing the proposed leakage reduction

methods, we study the leakage characteristics of such basic circuit blocks.

Figure 3.1, repeated here for convenience, shows two implementation alternatives for a 4-

to-1 multiplexer, one “decoded” and the other “encoded”. The trade-offs between these two

designs were outlined in Section 2.3. To evaluate the dependence of multiplexer leakage on input

state, SPICE simulations of both designs were performed. The simulations were conducted at

110◦C using BSIM4 SPICE models for a 1.2V 90nm commercial CMOS process1. The select

signals of the multiplexers were assigned values such that input i1 was selected and passed to

the multiplexer output. All 16 possible input vectors were simulated.

Figure 3.2 shows the multiplexer leakage power results. A vertical bar illustrates the leakage

for each input vector. Observe in Figure 3.2 that leakage power in the multiplexers is highly

1BSIM4 refers to the industry standard MOSFET SPICE simulation model, developed at UC Berke-
ley [BSIM4 04]. BSIM4 represents the state-of-the-art model. A significant enhancement of BSIM4 over
BSIM3 models is the proper modeling of gate oxide leakage.

40

3.2 FPGA Hardware Structures

dependent on input state. For the decoded multiplexer, the highest leakage occurs when logic-0

appears on input i1 (the input whose signal is passed to the output) and logic-1 appears on all

other inputs; the lowest leakage occurs when all inputs are logic-1. For the decoded multiplexer,

there is a 13.7X difference in leakage power between the highest and lowest leakage states; for

the encoded multiplexer, the leakage power difference is 14.2X. In addition to the leakage for

each input vector, Figure 3.2 shows the average leakage power consumed when the output of

the multiplexer is a logic-1 (solid horizontal line) and when the output of the multiplexer is a

logic-0 (dashed horizontal line).

Observe that, for both multiplexers in Figure 3.1, the average leakage for passing a logic-1

to the multiplexer output is substantially smaller than the average leakage for passing logic-0.

There are several reasons for this. First, when logic-1 (VDD) is applied to the drain terminal of

an ON NMOS device, a “weak-1” (≈ VDD − VTH) appears at the source terminal. The weak-1

leads to reduced subthreshold leakage power in other multiplexer transistors that are OFF,

versus when the potential difference across an OFF transistor is VDD [see Figure 3.3(a)]. This

is partly due to the effect of drain-induced barrier lowering (DIBL) in short-channel transistors,

which causes threshold voltage to increase (subthreshold current to decrease) when drain bias

is decreased [Roy 03].

In addition to affecting subthreshold leakage, another reason for the input-dependence of

the multiplexer leakage power is the reduction in gate oxide leakage when the multiplexer is

passing logic-1 to its output. Gate leakage is a considerable fraction of total leakage in 90nm

technology. Gate leakage in an ON NMOS transistor depends significantly on the applied

bias [Guin 03]. When an NMOS transistor is passing logic-0, the voltage difference between the

gate and source is VDD (that is, VGS = VDD) and the transistor is in the strong inversion state

[see Figure 3.3(b)]. Conversely, when the transistor is passing logic-1, the transistor is in the

threshold state (VGS ≈ VTH) [see Figure 3.3(c)]. Gate oxide leakage in the threshold state is

typically several orders of magnitude smaller than in the strong inversion state [Guin 03]. This

property makes it preferable to pass logic-1 (versus logic-0) from the gate leakage perspective.

41

3 CAD Techniques for Leakage Optimization

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

decoded multiplexer

encoded multiplexer

average power
when output = 0

average power
when output = 1

Figure 3.2: Leakage power for multiplexers.

42

3.2 FPGA Hardware Structures

VDD

GND

GND

VDD

~= VDD - VTH

subthreshold leakage

VDD

GND GND

gate leakage

VDD

VDD ~= VDD - VTH

gate leakage

a) reduced subthreshold leakage

b) high gate leakage

c) low gate leakage

Figure 3.3: Examples of transistor leakage states.

43

3 CAD Techniques for Leakage Optimization

Input Power (nW)
0 56.1
1 46.6

Figure 3.4: Buffer implementation and leakage power.

Another important circuit element in FPGAs is a buffer, since they are present throughout

the routing fabric and also within logic blocks. The two stage buffer shown in Figure 3.4 was

simulated and its leakage power in both input states was evaluated. The buffer’s transistors

were sized to achieve equal rise and fall times; the second stage was chosen to be three times

larger than the first stage. Leakage power results for the buffer are shown on the right side of

Figure 3.4. Although the difference in power between the two input states is not as pronounced

as the differences observed for the multiplexers, one can see that about 20% more power is

consumed when the buffer’s input is a logic-0 versus when its input is a logic-1. The dependence

of the buffer’s leakage on input state is a result of NMOS and PMOS devices having considerably

different subthreshold and gate oxide leakage characteristics, and also due to the dependence

of leakage on transistor size. For example, gate oxide leakage is considerably higher in NMOS

versus PMOS transistors [Yu 00] and is also directly proportional to transistor size. Therefore,

overall gate leakage is minimized when the large NMOS transistor in the buffer’s second inverter

stage is OFF, which occurs when the buffer’s output state is logic-1.

Subthreshold leakage increases exponentially with temperature, and consequently, leakage

is primarily a problem at high temperature. This work concerns active leakage power in the

operating (hot) part of the FPGA and therefore, in this chapter, the proposed leakage reduction

techniques are evaluated at high temperature (110◦C). Unlike subthreshold leakage, gate oxide

leakage is almost insensitive to temperature [Agar 04], making it a larger fraction of total leakage

44

3.3 Active Leakage Power Optimization via Polarity Selection

at low temperature. For completeness, the leakage characteristics of the basic FPGA hardware

structures were examined at low temperature (40◦C). The results are shown in Figure 3.5.

Observe that similar leakage bias trends are apparent at low temperature; namely, less leakage

in consumed when logic-1 is passed through the multiplexers and buffer versus when logic-0 is

passed through these structures. In fact, in the multiplexers, the bias is more pronounced at

low temperature. For example, in the decoded multiplexer, the average leakage power when

the output is logic-0 is 140% higher than when the output is logic-1. At high temperature, the

leakage difference between the two states is only 44%. In the buffer, the same bias is present

at low temperature, but it is less pronounced; buffer leakage in the logic-0 state is about 7%

higher than in the logic-1 state (versus 20% higher at high temperature).

3.3 Active Leakage Power Optimization via Polarity Selection

In Section 3.2, we observed that in a modern commercial CMOS process, the leakage power

dissipated by elementary FPGA hardware structures, namely buffers and multiplexers, is typi-

cally smaller when the output and input of these structures is logic-1 versus logic-0. The first

approach to active leakage power optimization approach works by choosing a polarity for each

signal in an FPGA design, in a manner that enables signals to spend the majority of their

time in the logic-1 state (the logic state associated with low leakage power). A fundamental

property of a digital signal is its static probability, which is the fraction of time a signal spends

in the logic-1 state. A signal with static probability greater than 0.5 spends more than 50%

of its time at logic-1. The leakage reduction approach alters signal polarity to achieve high

static probability for most signals. Unlike in ASICs, signal polarity inversion in FPGAs can be

achieved without any area or delay penalty, by leveraging a unique property of the basic FPGA

logic element2.

Figure 3.6 illustrates how a signal’s polarity can be reversed in an FPGA. Part (a) of

2Changing a signal’s polarity implies a change in the direction of the signal’s logic transitions. The “no cost”
property of the polarity selection optimization assumes that FPGA performance is not tied to the direction
of logic transitions. This assumption holds for today’s commercial FPGAs from Altera and Xilinx.

45

3 CAD Techniques for Leakage Optimization

0

5

10

15

20

25

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

0

5

10

15

20

25

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

decoded multiplexer

encoded multiplexer

average power
when output = 0

average power
when output = 1

Input Power (nW)
0 19.3
1 18

a) Leakage power for multiplexers

b) Leakage power for buffer

Figure 3.5: Low temperature leakage power results for multiplexers and buffer (40◦C).

46

3.3 Active Leakage Power Optimization via Polarity Selection

0
0
0
1

0
0
0
1

0
1
1
0

a b

c d

int
1
1
1
0

0
0
0
1

1
0
0
1

a b

c d

int
a
b

c
d

int

a) original circuit b) 2-LUT implementation c) after signal inversion

Figure 3.6: LUT circuit implementation; illustration of signal inversion.

the figure shows a logic circuit having two AND gates and an exclusive-OR gate. Part (b)

of the figure shows the circuit mapped into 2-input LUTs. The memory contents are shown

for each LUT and represent the truth table of the logic function implemented by the LUT’s

corresponding gate. In this example, the aim is to invert the signal int, so that its complemented

rather than its true form is produced by a LUT and routed through the FPGA interconnection

network. There are two steps to inverting a signal. First, the programming of the LUT

producing the signal must be changed. Specifically, to invert the signal, all of the 0s in its

driving LUT must be changed to 1s and the 1s must be changed to 0s. Second, the programming

of LUTs that are fanouts of the inverted signal must be altered to “expect” the inverted form.

This is achieved by permuting the bits in the SRAM cells of such “downstream” LUTs. Part (c)

of Figure 3.6 shows the circuit after the signal int is inverted. The permutation of bits in the

inverted signal’s fanout LUT is shown through shading; the contents of the top two SRAM

cells in the downstream LUT are interchanged with the contents of the bottom two SRAM

cells in the LUT. Through this method, signal inversion in FPGAs can be achieved by simply

re-programming LUTs.

47

3 CAD Techniques for Leakage Optimization

function OptimizeLeakage(design, signal static probabilities)

 for each signal n in the design do

 if static_probability(n) < 0.5 then

 if signal n can be inverted then

 invert(n)
 // FPGA is re-programmed; n replaced with n

 return new design

Figure 3.7: Leakage optimization algorithm.

The approach to leakage power optimization is shown in Figure 3.7. The input to the

algorithm is an FPGA circuit, as well as static probability values for each signal in the circuit.

A loop iterates through the signals and selects those signals having static probability less than

0.5. Such signals spend most of their time in the logic-0 state, and thus, they are candidates

for inversion. For each candidate signal, a check is made to determine if it can be inverted

(discussed below). If a candidate signal is invertible, it is inverted by re-programming the FPGA

configuration memory accordingly. After processing all signals, the output of the algorithm is a

modified design, having signals that spend the majority of their time in the logic state favourable

to low leakage power.

The majority of signals in FPGA designs are produced by LUTs and drive LUTs, and all

such signals can be inverted using the approach shown in Figure 3.6. In a commercial FPGA

however, in addition to LUTs, other types of hardware structures are usually present. Some

signals driven by or driving non-LUT structures may also be invertible, since FPGA vendors

frequently include extra circuitry for programmable inversion. However, some signals may not

be invertible, such as those driving special control circuitry, entering the FPGA device from

off-chip, or driving certain pins on non-LUT structures. As a concrete example, consider that

the Xilinx Virtex-II PRO FPGA contains 18-by-18 block multipliers [Virt 03]. The inputs to

48

3.3 Active Leakage Power Optimization via Polarity Selection

the multipliers do not have programmable inversion. Therefore, any signal feeding a multiplier

input should not be inverted by the proposed polarity selection approach, as doing so would be

functionally incorrect (it would change the multiplication results). Similarly, Virtex-II contains

large blocks of static RAM memory. Inverting a signal that drives a block RAM address input

is not straightforward, as it implies a shuffling of memory contents, and block RAM memory

contents is frequently pre-loaded during an FPGA’s initial configuration phase. A two-pass

approach would be needed to invert block RAM address signals: First, the polarity selection

optimization would be executed, permitting block RAM address signal inversion. Then, the

polarity selection results would be used to determine the appropriate rearrangement of block

RAM memory contents. The memory contents would be shuffled appropriately, prior to FPGA

configuration.

Altering the polarity of a signal n with static probability P (n), changes the signal’s prob-

ability to 1 − P (n). Therefore, for signals having static probability close to 0.5, the benefits

of inversion on leakage optimization are minimal, since the static probability of such signals

remains close to 0.5 after inversion. Low leakage power can be achieved when signals have static

probability close to 0 or 1. A question that arises, then, is whether the signals in real circuits

exhibit this property. Below, we show that it is unlikely that the majority of signals in circuits

will have probabilities close to 0.5, which bodes well for the proposed leakage optimization

approach.

The average number of logic transitions per clock cycle on a (non-clock) signal n, F (n), can

be expressed as a function of the signal’s static probability [Ciri 87, Yeap 98]:

F (n) = 2 · P (n) · [1 − P (n)] (3.1)

Recall that F (n) is referred to as signal n’s normalized switching activity. Since P (n)

ranges from 0 to 1, F (n) in (3.1) ranges from 0 to 0.5. Note that (3.1) is a frequently used

approximation that becomes exact in the absence of temporal correlations in signal n’s switching

activity. That is, (3.1) assumes that n’s values in two consecutive clock cycles are independent.

49

3 CAD Techniques for Leakage Optimization

Solving (3.1) for P (n), yields:

P (n) =
1 ±

√

1 − 2 · F (n)

2
(3.2)

which is plotted in Figure 3.8. Observe that P (n) is 0.5 only when F (n) is 0.5 and that for a

fixed decrease in F (n), there is a change in P (n) towards either 0 or 1. From Figure 3.8, one

can infer that if the switching activities of the majority of signals in circuits are not clustered

close to 0.5, then the static probabilities of signals will also not be clustered close to 0.5.

Switching activity in combinational circuits is well-studied. Prior work by Nemani and Najm

found that switching activities are generally not clustered around a single value and that on

average, activity decreases quadratically with combinational depth in circuits [Nema 99]. One

can therefore expect there to be a range of different static probabilities amongst the signals of

a circuit and that “deeper” signals in circuits will have static probabilities approaching either

0 or 1. This analysis suggests that for many signals, changing polarity will have a significant

impact on leakage power.

Often, design verification is done at the post-routing stage, through HDL simulation with

extracted routing delays, or by using logic analyzers, such as Xilinx ChipScope [XilinxCh 04].

ChipScope is an IP core that is inserted within a user’s FPGA design. It allows one to view the

states of the design’s internal signals during execution on the FPGA hardware. The presence

of the polarity selection optimization within the CAD flow may complicate such verification.

Specifically, the inversion of some signals may make verification results unintelligible to users.

This is analogous to the effect that compiler optimizations have on one’s ability to run a

debugger on optimized code in software development. In this case, however, a simple work-

around is available: the verification tools can be made “aware” of which signals have been

inverted, and can present the “true” form of signals to users, as appropriate.

50

3.3 Active Leakage Power Optimization via Polarity Selection

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
ta

tic
 p

ro
ba

bi
lit

y

Switching activity

-
P

(n
)

- F(n)

Figure 3.8: Static probability versus switching activity.

3.3.1 Experimental Study and Results

The effectiveness of the proposed leakage power reduction approach was gauged by applying it to

optimize active leakage in the Xilinx Spartan-3 1.2V 90nm commercial FPGA. The breakdown

of leakage in Spartan-3 has recently been studied by other authors [Tuan 03]. This section

describes the experimental methodology and subsequently, provides results.

Methodology

The target FPGA is composed of an array of configurable logic block (CLB) tiles, I/Os, and

other special-purpose blocks, such as multipliers and block RAMs. Smaller versions of the

FPGA contain only the CLB array and I/Os. An embedded version of the FPGA, containing

the CLB array only, is also available for incorporation into custom ASICs. In this chapter, the

focus is on leakage optimization within the FPGA’s CLB array, which represents the bulk of

the FPGA’s silicon area, especially in smaller devices and the embedded version. The non-CLB

blocks (e.g., block RAMs) are not unique to FPGAs; leakage optimization in these blocks has

51

3 CAD Techniques for Leakage Optimization

Table 3.1: Major circuit blocks in target FPGA.

Circuit block Details

IMUX 30-to-1 multiplexer, buffer
DIRECT 24-to-1 multiplexer, buffer
DOUBLE 16-to-1 multiplexer, buffer
HEX 12-to-1 multiplexer, buffer
LONG n-to-1 multiplexer, buffer

(n device/orientation dependent)
LUT 16-to-1 multiplexer, in/out buffers
FLIP-FLOP programmable set/reset

been studied in other contexts.

A Spartan-3 CLB tile contains both logic and routing resources and is similar to a Virtex-4

CLB, shown in Figure 2.9. The CLB’s logic resources consist of four logic sub-blocks, called

SLICEs. Each SLICE contains two 4-LUTs, two flip-flops, as well as arithmetic and other

circuitry. Like Virtex-4, the Spartan-3 interconnect consists of variable length wire segments

that connect to one another through programmable, buffered switches similar to that shown

in Figure 2.10. Table 3.1 provides further detail on the major circuit blocks in the Spartan-3

CLB tile, including the widths of the interconnect multiplexers. The input multiplexer (IMUX)

selects and routes a signal to a SLICE input pin. The DIRECT interconnect block selects and

routes a signal from a SLICE output pin to a neighboring logic block. DOUBLE blocks drive

wire segments that span 2 CLB tiles. HEX blocks drive wires that span 6 CLB tiles. LONG

resources span the entire width or height of the FPGA. Note that a single CLB tile contains

multiple instances of each of the blocks listed in Table 3.1.

Figure 3.9 shows the leakage optimization and analysis flow. As mentioned in Section 3.3,

the input to the optimization algorithm is an FPGA circuit, as well as the static probability

value for each of the circuit’s signals. The benchmark circuits consist of 10 large combinational

MCNC circuits and 6 industrial circuits collected from Xilinx customers; the circuits are listed

52

3.3 Active Leakage Power Optimization via Polarity Selection

in Table 3.23. The MCNC circuits were first synthesized from VHDL using Synplicity’s Synplify

Pro tool (version 7.0). Then, the circuits were technology mapped, placed, and routed in the

target FPGA using the Xilinx software tools (version M6.2i). The industrial circuits were

already available in technology mapped form so only the placement and routing steps were

required for these circuits.

An earlier version of this work presented preliminary results for circuits that were not

optimized for speed performance [Ande 04f]. In practice, however, most FPGA users seek a

high performance design implementation. Consequently, the Xilinx place and route tools were

used to generate a performance-optimized layout for each design as follows: First, each design

was placed and routed with an easy-to-meet timing (critical path delay) constraint; then, based

on the performance achieved, a more aggressive constraint was generated, and the place and

route tools were re-executed using the new constraint. The entire process was repeated until a

constraint that could not be met by the layout tools was encountered. The proposed leakage

reduction technique is evaluated for the layout solution corresponding to the most aggressive,

but achievable, constraint observed throughout the entire iterative process.

To gather static probability data, the routed circuits were simulated using either the Syn-

opsys VHDL System Simulator (VSS) (version 2000.06) or Mentor Graphics’ ModelSIM (ver-

sion 5.7a). The simulators have built-in capabilities for capturing the fraction of time a signal

spends at logic-1 (static probability). Representative simulation vectors for the circuits were

not available, and therefore, the circuits were simulated using 10,000 randomly chosen input

vectors. Clock and control inputs in the industrial circuits were identified by examining load

pin types and by inferring functionality based on signal names. Such clock/control inputs were

presented with appropriate, non-random signals in the simulations. For the control inputs, a

trial-and-error approach was used to select between applying an “active high” or an “active

low” input waveform. Note that the 6 industrial circuits were selected from an initial, larger

pool of circuits, from which the balance had to be eliminated due to a lack of knowledge re-

3The industrial circuits are single clock designs. Multi-clock designs were not used, since, for such designs, the
relationship between clock signals is difficult to determine without access to user-provided simulation vectors.

53

3 CAD Techniques for Leakage Optimization

Table 3.2: Characteristics of benchmark circuits.

Circuit LUTs FFs

alu4 500 0
apex4 1078 0

cps 524 0
dalu 323 0

ex1010 1112 0
ex5p 557 0

misex3 257 0
pdc 609 0
seq 1193 0

spla 229 0
industry1 1511 2128
industry2 1654 1278
industry3 2818 368
industry4 2942 1262
industry5 8676 5507
industry6 4895 318

garding their internal functionality. For such eliminated circuits, it was not possible to identify

a simulation vector set that realized toggling on a significant fraction of each circuit’s internal

signals.

In the randomly generated input vectors, the probability of each primary input toggling be-

tween successive vectors was set to 50%. Note that, given the static probabilities of a circuit’s

primary input signals, the static probabilities of the circuit’s internal signals can be computed

using well-known probabilistic techniques [Yeap 98]. Thus, simulation is not a requirement for

the use of the optimization approach, and it is expected that the approach could be incorpo-

rated into EDA tools that automatically perform the proposed leakage optimization. Certainly,

it seems possible that the static probabilities initially known and supplied to the proposed

algorithm may differ from those probabilities actually experienced by the circuit in the field.

This potential issue can be addressed easily since the polarity selection optimization does not

disrupt placement, routing, or design performance. One can freely re-apply the algorithm when

an updated set of static probabilities is available, and the resulting updated bitstream can then

be used to re-program an already-deployed FPGA design in the field.

54

3.3 Active Leakage Power Optimization via Polarity Selection

HDL synthesis (Synplify Pro)

Technology mapping

Placement and routing

F
P

G
A

 v
en

do
r

to
ol

s

MCNC HDL circuit

Simulation (VSS or ModelSIM)

Routed design

Device usage analysis

Static probability data

Power analysis script

Active leakage power for design

Design usage data

S
im

ulation
vectors

C
ircuit block

leakage data
(from

 S
P

IC
E

)

Industrial circuit

Leakage Optimization (Optional)

Static probability data

Figure 3.9: Leakage analysis flow.

55

3 CAD Techniques for Leakage Optimization

SPICE simulations were performed for each type of circuit block in the FPGA’s CLB tile.

The leakage power consumed by each block for each of its possible input vectors was captured.

Circuit regularity permitted the blocks with many inputs to be partitioned into sub-blocks,

which were then simulated independently. To illustrate, consider a 16-to-1 multiplexer, con-

structed using four 4-to-1 multiplexer in a “first stage”, and a fifth 4-to-1 multiplexer in a

“second stage”. One need not simulate all 216 input combinations of the 16-to-1 multiplexer

to gather accurate leakage data for each of these input combinations. One can simulate the

individual 4-to-1 multiplexers and combine their leakage results to produce leakage data for

the large 16-to-1 multiplexer. This was the approach taken to gather leakage data for the

commercial blocks with many inputs. Notably, we observed the leakage characteristics of the

commercial FPGA’s circuit blocks to be similar to those of the generic structures studied in

Section 3.2.

The total active leakage power, Lactive, was computed twice for each benchmark circuit,

both with and without the proposed optimization technique. Lactive is defined as the sum of

the leakage power in each used circuit block. By analyzing the routed FPGA implementation

for a benchmark, one can determine its circuit block usage, including the signals on the inputs

and outputs of each used circuit block.

Computing the leakage for a used instance of a circuit block in a benchmark involves com-

bining the power data extracted from the block’s SPICE simulation with usage data from the

benchmark circuit’s FPGA implementation and static probability data from the benchmark’s

HDL simulation. It is worth reinforcing that we do not use the power data presented in Sec-

tion 3.2 in the experimental study; rather, the results here are based on power data extracted

from SPICE simulations of the commercial FPGA’s circuit blocks.

Consider a used instance B of a circuit block in a benchmark and let ~vB represent an input

vector that may be presented to block B. Each bit i in vector ~vB , ~vB(i), corresponds to an

input i on block B. Let SB(i) represent the signal on input i of block B in the benchmark’s

FPGA implementation. The static probability of signal SB(i), P (SB(i)), is a known quantity,

56

3.3 Active Leakage Power Optimization via Polarity Selection

extracted from the benchmark’s HDL simulation. If bit ~vB(i) is logic-1 in vector ~vB , then we

define the static probability of bit ~vB(i), P (~vB(i)), to be equal to P (SB(i)). On the other

hand, if ~vB(i) is logic-0 in ~vB, then P (~vB(i)) is defined to be 1 − P (SB(i)). One can compute

the probability of vector ~vB appearing on the inputs of block B, P (~vB), as the product of its

constituent bit probabilities:

P (~vB) =
∏

~vB(i) ε ~vB

P (~vB(i)) (3.3)

Note that it is entirely possible that some inputs to a used circuit block may have no

signal on them. For example, some inputs to a routing switch (see Figure 2.10) may attach

to conductors that are not used in the FPGA implementation of a benchmark circuit. In a

commercial FPGA, unused routing conductors are not allowed to “float” to an indeterminate

voltage state. In the target Xilinx FPGA, unused routing conductors are pulled up to logic-1.

Pulling unused routing conductors into the low leakage, logic-1 state benefits overall leakage

in the FPGA, since an FPGA implementation of a benchmark circuit requires only a fraction

of the FPGA’s routing resources. To demonstrate this, a detailed analysis of a portion of

the routing in the industry4 benchmark was performed. In industry4’s routing, we found that

there were 15,235 used DOUBLE resources, and 5,918 used HEX resources. On average, 10.4

(of 16) inputs on each DOUBLE resource in industry4’s routing attached to unused routing

conductors. The remaining 5.6 inputs (on average) attached to routing conductors with an

active logic signal on them; that is, 5.6 inputs attached to routing conductors that were used

in the routing of industry4. Likewise, the HEX resources in industry4 had 7.6 (of 12) inputs

attached to unused routing conductors, on average, with the remaining 4.4 inputs attached to

used routing conductors. In other words, considering all HEX and DOUBLE resources used in

industry4, nearly 2/3 of the inputs to these resources attach to unused routing conductors, and

are therefore pulled to logic-1. This amplifies the need for the “prefer logic-1” approach taken

in the polarity selection optimization.

57

3 CAD Techniques for Leakage Optimization

signal X

I2

I1 I2 POWER
 0 0 5
 0 1 6
 1 0 8
 1 1 10

I1

signal Y
B

P(X) = 0.25, P(Y) = 0.33

Lactive(B) = (1 - 0.25)•(1 - 0.33)•5 + (1 - 0.25) •0.33•6 +
 0.25•(1 - 0.33) •8 + 0.25•0.33*10 = 6.1

from
 S

P
IC

E
 sim

ulations

from benchmark’s HDL simulation

Figure 3.10: Example active leakage power computation.

The average active leakage power for a used circuit block B, Lactive(B), is computed as a

weighted sum of the leakage power consumed by B for each of its input vectors:

Lactive(B) =
∑

~vB ε VB

P (~vB) · Lactive(~vB) (3.4)

where VB represents the set of all possible input vectors for circuit block B, and Lactive(~vB)

represents the leakage power consumed by block B when its input state is vector ~vB , obtained

from SPICE simulations.

An example of the leakage power computation approach for a block with two inputs is shown

in Figure 3.10. In the example, the signal, X, on block input I1 has a static probability of 0.25

and the signal, Y , on input I2 has a static probability of 0.33. A table gives the power consumed

by the block for each possible input vector. Consider, for example, the vector in which I1 = 1

and I2 = 0. The leakage power consumed by the block for this vector is 8. The probability of

the vector appearing on the inputs of the block is: P (X) · [1−P (Y)] = 0.25 ·(1−0.33) = 0.1675.

Thus, the contribution of this vector to the block’s active leakage is 0.1675 · 8 = 1.34, which is

the third term in the equation shown in Figure 3.10.

Leakage power was not a primary design consideration in the target commercial FPGA.

58

3.3 Active Leakage Power Optimization via Polarity Selection

We envision that the proposed active leakage reduction approach will be used in conjunction

with a future, leakage-optimized FPGA architecture. Consequently, the experimental results

presented here consider only the active leakage power and ignore leakage in the unused parts

of the FPGA. Reducing unused leakage can be viewed as a separate optimization problem that

can be addressed by either powering down the unused circuit blocks, by applying the standby

leakage optimization techniques mentioned in Section 2.2.2, or through circuit techniques that

will be introduced in the next chapter. Moreover, the results do not include the leakage in

the FPGA’s SRAM configuration cells. As observed in Section 2.4.2 (page 27), the contents

of such cells changes only during the initial FPGA configuration phase, and thus, their speed

performance is not critical. In a future low leakage FPGA, the SRAM configuration cells can

be slowed down, and their leakage greatly reduced.

Results

We begin by comparing the active leakage power consumed in the unoptimized circuits with

that consumed in the optimized circuits. Figure 3.11 shows the percentage reduction in active

leakage power for each circuit. The improvement ranges from 15% to 38%, with the average

being 25%. The power benefits observed are quite substantial, considering that the proposed

optimization has no impact on circuit area or delay and requires no hardware changes.

Table 3.3 gives the detailed power results for each circuit. Columns 2-4 give power data for

the unoptimized circuits. Columns 2 and 3 present the power dissipated in the interconnect

and non-interconnect (labeled “other”) circuit blocks, respectively. Column 4 presents the total

active leakage power for each circuit. Columns 5-7 present analogous data for the optimized

circuits. In these columns, percentage improvement values, relative to the unoptimized circuits,

are shown in parentheses. From Table 3.3, one can see that the proposed optimization is more

effective at reducing leakage in the interconnect versus the non-interconnect circuit blocks. The

non-interconnect blocks include LUTs, flip-flops, and other circuitry. A more in-depth analysis

revealed that flip-flop leakage power was only slightly dependent on whether the flip-flop was

59

3 CAD Techniques for Leakage Optimization

0

5

10

15

20

25

30

35

40

45
al

u4

ap
ex

4

cp
s

da
lu

ex
10

10

ex
5p

m
is

ex
3

pd
c

se
q

sp
la

in
du

st
ry

1

in
du

st
ry

2

in
du

st
ry

3

in
du

st
ry

4

in
du

st
ry

5

in
du

st
ry

6

L
ea

ka
g

e
p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

avg = 25.3%

Figure 3.11: Leakage power reduction results.

Table 3.3: Detailed active leakage power results.

Unoptimized Optimized

Interconnect Other Total Interconnect Other Total
Circuit (µW) (µW) (µW) (µW) (%) (µW) (%) (µW) (%)

alu4 690 193 883 494 (28.4) 187 (3.1) 681 (22.8)
apex4 1625 415 2040 1060 (34.8) 410 (1.2) 1470 (27.9)

cps 698 183 881 476 (31.8) 180 (1.6) 656 (25.6)
dalu 465 126 591 341 (26.7) 125 (0.8) 466 (21.1)

ex1010 1747 427 2174 1045 (40.2) 424 (0.7) 1469 (32.4)
ex5p 829 210 1039 432 (47.8) 210 (0.0) 642 (38.2)

misex3 295 99 394 222 (24.8) 97 (2.0) 319 (19.1)
pdc 854 235 1089 598 (30.0) 230 (2.1) 828 (24.0)
seq 1895 453 2348 1335 (29.6) 451 (0.4) 1786 (23.9)

spla 315 89 404 239 (24.1) 87 (2.2) 326 (19.3)
industry1 3415 1557 4972 2164 (36.7) 1530 (1.7) 3693 (25.7)
industry2 2392 1340 3732 1408 (41.1) 1306 (2.6) 2713 (27.3)
industry3 4987 1573 6560 4086 (18.1) 1558 (0.9) 5644 (14.0)
industry4 6856 1927 8782 3531 (48.5) 1856 (3.7) 5386 (38.7)
industry5 14696 6486 21183 10657 (27.5) 6412 (1.1) 17069 (19.4)
industry6 6429 3524 9953 3919 (39.0) 3464 (1.7) 7382 (25.8)

Average: 33.1% 1.6% 25.3%

60

3.3 Active Leakage Power Optimization via Polarity Selection

storing a 0 or a 1. Consequently, flip-flop leakage is not affected substantially by the proposed

method. Similarly, it was observed that the LUTs in the target FPGA contain additional input

buffers and other circuitry that make their leakage less sensitive to their input state. In the

unoptimized circuits, 24% of active leakage power is dissipated in the non-interconnect circuit

blocks and 76% in the interconnect blocks, on average. In the optimized circuits, 32% of leakage

is attributable to non-interconnect blocks.

The results in Table 3.3 show a wide variation in improvement across the circuits. This can

be partially explained by considering the distribution of static probabilities amongst a circuit’s

signals. The proposed technique offers the greatest benefit in circuits having many signals

with low static probability, and the least benefit in circuits having many signals with static

probability ≥ 0.5, as these signals are already in the low leakage state. Note that the static

probability of a signal in a circuit is a function of both the simulation vector set, as well as the

circuit’s logic functionality. According to the data in Table 3.3, the best results were achieved

for the circuit industry4, with leakage reduced by 38%. Figure 3.12(a) shows a histogram of

static probabilities in this circuit, extracted from the ModelSIM simulation. The horizontal

axis represents static probability; the vertical axis represents the fraction the circuit’s signals

having static probability in a specific range. Observe that, for this circuit, the majority of

signals have low static probability, with more than 60% of signals having probability less than

0.1. We verified that the skewed distribution was not a result of the simulation vector set failing

to adequately exercise the circuit. In fact, more than 90% of the signals in circuit industry4

experienced toggling during its simulation. Figure 3.12(b) shows the histogram for the circuit

industry3, for which the worst leakage reduction results were observed. Here, it is apparent

that many signals have static probability close to 0.5. For such signals, the static probability

remains close to 0.5 after inversion, limiting the benefit of the leakage reduction approach.

Further characterization and control of static probability in FPGA circuits is a direction for

future work.

61

3
C

A
D

T
ech

n
iq

u
es

fo
r

L
ea

k
a
g
e

O
p
tim

iza
tio

n

0 10 20 30 40 50 60 70

[0.0:0.1]

[0.1:0.2]

[0.2:0.3]

[0.3:0.4]

[0.4:0.5]

[0.5:0.6]

[0.6:0.7]

[0.7:0.8]

[0.8:0.9]

[0.9:1.0]

S
tatic p

ro
b

ab
ility

% of signals

0 10 20 30 40 50 60 70

[0.0:0.1]

[0.1:0.2]

[0.2:0.3]

[0.3:0.4]

[0.4:0.5]

[0.5:0.6]

[0.6:0.7]

[0.7:0.8]

[0.8:0.9]

[0.9:1.0]

S
tatic p

ro
b

ab
ility

% of signals

a) circuit industry4

b) circuit industry3

F
igu

re
3.12:

H
istogram

s
of

static
p
rob

ab
ility.

62

3.4 Active Leakage Power Optimization via Leakage-Aware Routing

3.4 Active Leakage Power Optimization via Leakage-Aware

Routing

This section introduces a second approach to active leakage optimization, referred to as “leakage-

aware FPGA routing”. The idea is based on two observations:

1. Different routing switch types in an FPGA have different leakage power consumptions.

For example, as illustrated in Table 3.1, some switch types have wider input multiplexers

or larger buffers than other switch types, leading to higher average leakage.

2. Between any two logic block pins in an FPGA, there exist a variety of different routing

paths, comprised of different routing switch types. The routing step of the CAD flow

is tasked with selecting a path between the driver and load pin(s) for each of a design’s

signals.

FPGA routers employ a cost function and aim to find low-cost paths through the routing

fabric from each signal’s source pin to its load pin(s) [McMu 95, Swar 98]. The cost of a complete

routing path is defined to be the sum of the costs of the path’s constituent routing resources

(switches). A cost function associates a particular cost value with each routing resource in the

FPGA. Cost values can be chosen based on any number of criteria, for example, delay, scarcity,

capacitance, or congestion. The main idea in leakage-aware routing is to select the cost for

each routing resource in proportion to the resource’s leakage power consumption, and then to

use such costs during routing. The intent is to associate higher costs with more “leaky” switch

types, making them less likely to be selected during routing, ultimately producing routing

solutions having lower active leakage power consumptions.

The router in the Xilinx CAD flow classifies a design’s driver/load connections as either

critical or non-critical, based on their timing slack relative to the design’s performance con-

straints. Critical and non-critical connections are then routed in timing-driven or cost-driven

mode, respectively [Ande 04a]. In timing-driven mode, detailed RC delay calculations are used

63

3 CAD Techniques for Leakage Optimization

during routing to minimize driver/load connection delay. In cost-driven mode, each routing

resource is given a specific cost, as mentioned above, and the router attempts to minimize the

total path cost for a given driver/load connection. The specific resource cost assignment used

within the Xilinx router is proprietary; however, it reflects a combination of delay, wirelength,

and scarcity. The original, unmodified Xilinx router is referred to as the baseline router.

The proposed leakage-aware routing approach can be applied in tandem with the polarity

selection optimization described in Section 3.3. Consequently, the optimized circuits (optimized

through polarity selection) were used to derive a set of new, leakage-aware routing resource

costs. The leakage of each used routing resource in the optimized circuits was analyzed, and

from this, the average leakage of each routing resource type was computed. The results are

shown in Figure 3.13, normalized to the leakage consumed by a DOUBLE resource. Observe

that the average leakage of a HEX resource, which spans 6 CLB tiles, is slightly lower than that

of a DOUBLE resource, which spans 2 CLB tiles, implying that on a leakage basis, using a HEX

should be “cheaper” than using a DOUBLE4. This relative costing is counter to other traditional

costing criteria, such as wirelength, in which the cost of a HEX would be set considerably higher

than the cost of a DOUBLE.

The Xilinx router was modified by altering the cost values used in cost-driven mode. Specif-

ically, the cost of each routing resource was set to be proportional to the average leakage of

its routing resource type. Since the aim here is to reduce leakage without compromising per-

formance, we continue to allow the router to route timing-critical connections in timing-driven

mode. Only non-critical connections are routed using the new leakage-derived costs. The

modified router is referred to as the leakage-aware router.

4A routing resource that drives a long wire segment may consume less leakage than some other resource that
drives a short wire segment. This is possible since switch leakage does not depend on the metal segment
length. Rather, leakage depends on the switch multiplexer size and structure, and transistor sizings in the
multiplexer and buffer.

64

3.4 Active Leakage Power Optimization via Leakage-Aware Routing

0

0.5

1

1.5

2

2.5

DOUBLE IMUX OMUX HEX LONG

Routing resource type

N
o

rm
al

iz
ed

 a
ve

ra
g

e
le

ak
ag

e
p

o
w

er

Figure 3.13: Average leakage of routing resource types.

3.4.1 Experimental Study and Results

Using the leakage-aware router, we again target the 90nm commercial FPGA described in Sec-

tion 3.3.1 with the same set of 16 benchmark circuit designs. To begin with, the procedure

described in Section 3.3.1 was repeated that computes an aggressive, but feasible, timing con-

straint for each design. The constraints achieved using the leakage-aware router were compared

with those achieved using the baseline router. The results are shown in Table 3.4. Columns 2

and 3 show the critical path delay constraint for each circuit, routed using the baseline and

leakage-aware routers, respectively. Note that the same placer was used in both cases. The

parentheses in column 3 show the percentage degradation in performance when the leakage-

aware router is used versus the baseline router. Ten of the 16 circuits experienced a slight

performance degradation, though no degradation was larger than 4%. The performance of the

remaining 6 circuits actually improved slightly (negative values in the table). Changes to the

router’s cost function lead to variability in the routing solutions produced, resulting in perfor-

65

3 CAD Techniques for Leakage Optimization

Table 3.4: Effect of leakage-aware routing on critical path delay.
Baseline routing Leakage-aware routing
performance (ns) performance (ns)

Circuit (% degradation)

alu4 11.05 11.12 (0.6)
apex4 14.31 14.79 (3.4)

cps 11.59 11.90 (2.7)
dalu 11.43 11.32 (-0.9)

ex1010 21.84 22.08 (1.1)
ex5p 12.92 12.32 (-4.6)

misex3 11.89 11.53 (-2.9)
pdc 13.93 13.63 (-2.0)
seq 13.30 13.55 (1.9)

spla 10.76 10.91 (1.4)
industry1 4.63 4.51 (-2.6)
industry2 10.83 10.78 (-0.5)
industry3 16.79 17.19 (2.3)
industry4 4.83 4.94 (2.1)
industry5 5.13 5.23 (2.0)
industry6 21.86 22.07 (1.0)

Average
Degradation: 0.3%

mance improvements in some cases. On average, the degradation across all circuits was 0.3%,

which we consider to be noise. One can therefore conclude that any reductions in leakage power

offered by leakage-aware routing do not come at the expense of speed performance. As with the

polarity selection optimization presented in Section 3.3, leakage-aware routing is a “no cost”

leakage reduction technique.

The polarity selection optimization was applied in conjunction with leakage-aware routing,

and the leakage in the resultant circuits was computed. Leakage was computed using the same

approach described in Section 3.3.1. Figure 3.14 summarizes the results observed and illustrates

the reduction in leakage in the optimized versus unoptimized circuits. Each bar in the figure

represents the percentage reduction in leakage for a given circuit; the bars are partitioned to

show the portion of the total reduction due to the polarity selection and leakage-aware routing

optimizations, respectively. The average reduction across all circuits is 30.2%. Though the bulk

66

3.4 Active Leakage Power Optimization via Leakage-Aware Routing

0

5

10

15

20

25

30

35

40

45

50
al

u4

ap
ex

4

cp
s

da
lu

ex
10

10

ex
5p

m
is

ex
3

pd
c

se
q

sp
la

in
du

st
ry

1

in
du

st
ry

2

in
du

st
ry

3

in
du

st
ry

4

in
du

st
ry

5

in
du

st
ry

6

L
ea

ka
g

e
p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

Leakage-aware routing

Polarity selection

avg = 30.2%

Figure 3.14: Leakage power reduction results for combined polarity selection and leakage-aware
routing.

of the power reduction is due to the polarity selection optimization, the benefits of leakage-aware

routing are nonetheless substantial, especially in the industrial benchmark circuits.

Detailed leakage power results for each circuit are shown in Table 3.5. Columns 2 and 3

give data for the interconnect and non-interconnect (labeled “other”) circuit blocks, respectively.

Column 4 gives the total active leakage power. The numbers in parentheses are percentage im-

provement values that show the reduction in leakage power relative to the unoptimized circuits;

they compare the data in Table 3.5 with the data in columns 2 through 4 of Table 3.3. Notice

that, as expected, only leakage in the interconnect circuit blocks is affected by leakage-aware

routing; leakage in the “other” circuit blocks is unchanged versus using the polarity selection

optimization alone (see column 6 of Table 3.3). For the MCNC circuits, the average reduc-

tion in total active leakage was 29.4%. In the industrial circuits, larger leakage reductions

were observed, with the average reduction being 31.6%, due primarily to larger reductions in

interconnect leakage for these circuits. The circuit industry4 experienced the largest leakage

reduction of nearly 44%. Column 5 of Table 3.5 shows the percentage improvement in leakage

67

3 CAD Techniques for Leakage Optimization

Table 3.5: Detailed active leakage power results for leakage-aware routing combined with po-
larity selection.

% improvement
Interconnect Other Total versus polarity

Circuit (µW) (%) (µW) (%) (µW) (%) selection alone

alu4 460 (33.3) 187 (3.1) 647 (26.7) 5.0
apex4 953 (41.4) 410 (1.2) 1363 (33.2) 7.3

cps 434 (37.9) 180 (1.6) 614 (30.3) 6.4
dalu 341 (26.7) 125 (0.8) 466 (21.2) 0.7

ex1010 972 (44.4) 424 (0.7) 1396 (35.8) 5.0
ex5p 431 (48.0) 210 (0.0) 641 (38.3) 0.2

misex3 201 (31.6) 97 (2.0) 298 (24.2) 6.3
pdc 542 (36.5) 230 (2.1) 772 (29.1) 6.7
seq 1177 (37.9) 451 (0.4) 1628 (30.7) 8.8

spla 217 (31.3) 87 (2.2) 304 (24.9) 7.0
industry1 1840 (46.1) 1530 (1.7) 3369 (32.2) 8.8
industry2 1191 (50.2) 1306 (2.6) 2497 (33.1) 8.0
industry3 3515 (29.5) 1558 (0.9) 5073 (22.7) 10.1
industry4 3085 (55.0) 1856 (3.6) 4941 (43.7) 8.3
industry5 9404 (36.0) 6412 (1.1) 15816 (25.3) 7.3
industry6 3268 (49.2) 3464 (1.7) 6731 (32.4) 8.8

Average (MCNC): 36.9% 1.4% 29.4% 5.3%
Average (Industrial): 44.3% 2.0% 31.6% 8.5%

relative to applying the polarity selection optimization alone. That is, the data in column 5

compares the leakage numbers in column 4 with the leakage numbers in column 7 of Table 3.3.

On average, leakage-aware routing provides a 5.3% leakage reduction in the MCNC circuits,

and an 8.5% reduction in the industrial circuits. In summary, the results show that the ad-

ditional leakage power reductions offered by leakage-aware routing are considerable, especially

given that the approach involves software changes only, and imposes no hardware, fabrication,

or performance cost.

As mentioned above, the cost of a HEX resource in the leakage-aware router is similar to

that of a DOUBLE resource. Whereas, in the baseline router, the cost of HEX is higher than

that of a DOUBLE. Certainly, leakage-aware routing leads to higher HEX utilization, and, since

the capacitance of a HEX is larger than that of a DOUBLE, it is conceivable that leakage-aware

68

3.5 Summary

routing may increase dynamic power consumption. A future research direction is to investigate

this possibility, and, if deemed a problem, to enhance leakage-aware routing to account for it,

perhaps by taking signal switching activity into account when deciding how a signal should

be routed. That being said, we anticipate that the proposed techniques will be applied in a

future low leakage FPGA, perhaps implemented in 65 or 45nm process technology. At such

technology nodes, we expect that leakage power, not dynamic power, will be the overriding

power consideration.

3.5 Summary

This chapter presented two “no cost” approaches to active leakage power reduction in FPGAs.

The leakage power characteristics of common FPGA hardware structures were studied, and

it was observed that their leakage depends strongly on the state of their inputs. A novel

approach to leakage power reduction was proposed, in which polarities are selected for logic

signals to place hardware structures into low leakage states, as much as possible. The technique

is based on a unique property of FPGA logic elements (LUTs) that permits either the true or

complemented form of a signal to be generated, without any area or delay penalty. Experimental

results for a 90nm state-of-the-art commercial FPGA show that the proposed approach reduces

active leakage by 25%, on average. Subsequently, the concept of leakage-aware routing was

introduced, in which the cost function used during the routing step of the CAD flow is altered

to consider the leakage power consumptions of routing resources. Leakage-aware routing incurs

no significant performance penalty, and offers additional leakage reductions. Combining the two

techniques produces a total active leakage reduction of up to 44%, with the average reduction

being 30%.

69

3 CAD Techniques for Leakage Optimization

70

4 Circuit Techniques for Low-Power Interconnect

4.1 Introduction

Interconnect plays a dominant role in the dynamic and static (leakage) power dissipation of

FPGAs. In comparison with custom ASICs, FPGA interconnect presents a high capacitive

load, due to the presence of lengthy pre-fabricated wire segments and the programmable rout-

ing switches attached to each wire. Dynamic power scales in direct proportion to amount of

capacitance switched in a logic transition. Leakage power, on the other hand, is proportional

to total transistor width and interconnect comprises roughly 2/3 of an FPGA’s total silicon

area [Rahm 04]. The influence of interconnect on overall FPGA power implies that any future

low-power FPGA must include a low-power interconnection fabric. This chapter presents a

family of novel FPGA routing switch designs that offer reduced leakage and dynamic power

dissipation.

A property common to all of the proposed switch designs is the concept of “programmable

mode”. Specifically, the routing switches can be programmed to operate in one of three modes:

high-speed, low-power, or sleep mode. In high-speed mode, power and performance characteris-

tics of the proposed switches are similar to those of current FPGA routing switches. Low-power

mode offers reduced leakage and dynamic power, albeit at the expense of speed performance.

As noted in Section 2.4.2, an FPGA implementation of a design uses only a portion of the un-

derlying FPGA hardware. Leakage is dissipated in both the used and the unused parts of the

FPGA. The sleep mode of the proposed switch designs is suitable for unused routing switches,

and it offers leakage reductions significantly beyond those available in low-power mode. The

71

4 Circuit Techniques for Low-Power Interconnect

remainder of the chapter is organized as follows: Section 4.2 presents related work and relevant

background material. The proposed switch designs are described in Section 4.3. Section 4.4 an-

alyzes the timing slack present in industrial FPGA designs implemented in a 90nm commercial

FPGA, and demonstrates that a large fraction of routing switches may operate in low-power

mode, without compromising overall circuit performance. Experimental results are given in

Section 4.5. A summary is provided in Section 4.6.

4.2 Preliminaries

4.2.1 Related Work

Section 2.2.2 reviewed techniques for leakage optimization in ASICs and microprocessors. The

proposed switch designs draw upon ideas from two previously published techniques for sleep

leakage reduction, briefly reviewed here. The first technique introduces sleep transistors into

the N-network (and/or P-network) of CMOS gates [Anis 02], as shown in Figure 4.1(a). Sleep

transistors (MPSLEEP and MNSLEEP) are ON when the circuit is active and are turned

OFF when the circuit is in sleep mode, gating the leakage current from supply to ground. A

limitation of this approach is that in sleep mode, internal voltages in sleeping gates are not

well-defined and therefore, the technique cannot be directly applied to data storage elements.

A way of dealing with the data retention issue was proposed in [Kuma 98] and is shown in

Figure 4.1(b). Two diodes, DP and DN , are introduced in parallel with the sleep transistors.

In active mode, the virtual VDD voltage (VV D) and the virtual ground voltage (VV GND) are

equal to rail VDD and GND, respectively. In sleep mode, the sleep transistors are turned

OFF and VV D ≈ VDD − VDP , where VDP is the built-in potential of diode DP . Likewise,

VV GND ≈ GND + VDN in sleep mode. The potential difference across the latch in sleep mode

is well-defined and equal to VDD −VDP − VDN , making data retention possible. In sleep mode,

both subthreshold and gate oxide leakage are reduced as follows: 1) The reduced potential

difference across the drain/source (VDS) of an OFF transistor yields an exponential decrease in

subthreshold leakage, due to the drain-induced barrier lowering (DIBL) effect (see Section 2.2.2),

72

4.2 Preliminaries

Figure 4.1: Sleep leakage reduction techniques [Anis 02, Kuma 98].

and, 2) Gate oxide leakage decreases superlinearly with a reduction in gate/source potential

difference (VGS).

4.2.2 FPGA Interconnect Structures

Section 2.3 gave an overview of FPGA interconnect structures. Figure 4.2(a), repeated here for

convenience, shows a typical buffered FPGA routing switch, similar to those in modern Xilinx

and Altera commercial FPGAs [Lewi 03]. A transistor-level view of a switch with 4 inputs

is shown in Figure 4.2(b) [Rahm 04, Gaya 04a]. Observe that the buffer in Figure 4.2(b) is

“level-restoring” – transistor MP1 serves to pull the buffer’s input to rail VDD when logic-1 is

passed through the switch [Rahm 04]. Without MP1, if a logic-1 (VDD) were passed through

73

4 Circuit Techniques for Low-Power Interconnect

Figure 4.2: Traditional routing switch: abstract and transistor-level views [Rahm 04, Gaya 04a].

the multiplexer, a “weak-1” would appear on the multiplexer’s output (VINT ≈ VDD − VTH),

causing MP2 to turn partially ON, leading to excessive buffer leakage.

4.3 Low-Power Routing Switch Design

The proposed switch designs are based on three key observations that are specific to FPGA

interconnect:

1. Routing switch inputs are tolerant to “weak-1” signals. That is, logic-1 input signals need

not be rail VDD – it is acceptable if they are lower than this. This is due to the level-

restoring buffers that are already deployed in FPGA routing switches [see Figure 4.2(b)].

2. There exists sufficient timing slack in typical FPGA designs to allow a sizable fraction of

routing switches to be slowed down, without impacting overall design performance. This

assertion will be demonstrated in the next section.

3. Most routing switches simply feed other routing switches, via metal wire segments. This

74

4.3 Low-Power Routing Switch Design

observation holds for the majority of switches in commercial FPGAs, such as the Xilinx

Spartan-3 FPGA [Spar 04]. Observation #1, above, permits such switches to produce

“weak-1” signals. The main exceptions to this observation are switches that drive inputs

on logic blocks.

Based on these three observations, we propose the new switch design shown in Figure 4.3.

The switch includes NMOS and PMOS sleep transistors in parallel (MNX and MPX). The

sleep structure is similar to that in Figure 4.1(b), with diode DP being replaced by an NMOS

transistor, MNX. The new switch can operate in three different modes as follows: In high-

speed mode, MPX is turned ON and therefore, the virtual VDD (VV D) is equal to VDD and

output swings are full rail-to-rail. The gate terminal of MNX is left at VDD in high-speed

mode, though this transistor generally operates in the cut-off region, with its VGS < VTH .

During a 0-1 logic transition however, VV D may temporarily drop below VDD − VTH , causing

MNX to leave cut-off and assist with charging the switch’s output load.

In low-power mode, MPX is turned OFF and MNX is turned ON. The buffer is powered by

the reduced voltage, VV D ≈ VDD −VTH . Since VV D < VDD, speed is reduced versus high-speed

mode. However, output swings are reduced by VTH , reducing switching energy, and leakage is

reduced for the same reasons mentioned above in conjunction with Figure 4.1(b). Lastly, in

sleep mode, both MPX and MNX are turned OFF, similar to the supply gating notion in

Figure 4.1(a).

In addition to the switch in Figure 4.3, a second buffer design is proposed in Figure 4.4,

and it offers a different power/area trade-off. In the alternate design, the bodies of the PMOS

transistors are tied to VV D, rather than the typical VDD. This lowers the threshold voltage

of the PMOS transistors in low-power mode, via the “body effect”, thus increasing their drive

strength. In high-speed mode, as mentioned above, VV D drops temporarily below VDD during

a 0-1 logic transition, and therefore, improved PMOS drive capability may also be exhibited

in this mode. The benefit of enhanced drive strength is that the sleep transistors can be made

smaller, reducing the area overhead of the proposed switch versus a traditional switch. The

75

4 Circuit Techniques for Low-Power Interconnect

Figure 4.3: Programmable low-power routing switch.

downside is that the reduced threshold voltage of the PMOS transistors will likely lead to greater

subthreshold leakage in these transistors versus leakage in the initial design of Figure 4.3. For

the remainder of the chapter, the switch design in Figure 4.3 is referred to as the basic design,

and the one in Figure 4.4 as the alternate design.

The alternate design offers a different leakage/area trade-off versus the basic design; that

is, the alternate design requires less area, but is likely more “leaky”. For both designs, a

straightforward extension can be made to realize a different leakage/speed trade-off. Specifically,

one can apply the sleep structure discussed above to the multiplexer that precedes the buffer, as

shown in Figure 4.5. Two additional sleep transistors, MNX M and MPX M , are introduced

into the pull-up network of the multiplexer and its configuration circuitry. The programmable

multiplexer concept can be combined with both the basic buffer design, as well as the alternate

design. These switch variants are referred to as basic+MUX and alternate+MUX, respectively.

In high-speed mode, the multiplexer is powered by VDD, similar to a standard routing switch.

In low-power mode, the multiplexer is powered by VDD−VTH . Recall that the multiplexer select

76

4.3 Low-Power Routing Switch Design

Figure 4.4: Routing switch buffer alternate design.

lines attach to the gate terminals of NMOS transistors (see Figure 4.2). The reduced voltage

on the select lines in low-power mode will lower gate oxide leakage in the multiplexer. Leakage

in the SRAM configuration cells will also be reduced in low-power mode. Of course, signal

propagation delay through the multiplexer will increase in low-power mode. Note that, because

the contents of the SRAM configuration cells do not change during normal operation, the SRAM

cell performance is not critical. Consequently, transistors MNX M and MPX M can be made

very small. While the sizes of MNX and MPX strongly influence the FPGA’s performance,

the sizes of MNX M and MPX M do not.

There are several reasons for introducing two additional sleep transistors (MNX M and

MPX M) instead of simply using the existing sleep transistors (MNX and MPX) to control

both the buffer and the multiplexer. First, as mentioned above, the VV D signal powering the

buffer may swing below VDD − VTH during a 0-1 logic transition. If the same sleep transis-

tors were shared between the multiplexer and buffer, such a voltage drop, depending on its

magnitude, could destabilize the contents of the SRAM configuration cells – a catastrophic

77

4 Circuit Techniques for Low-Power Interconnect

VVD

~SLEEP LOW_POWER v SLEEP

VDD VDDS S ...SRAM cell
CONFIG

…
..

i1

i2

i3

i4

in

M
U

X

S

MNX MPX

sLOW_POWER ~LOW_POWER

VVD

VDD

VDD VDD

MNX_M MPX_M

LOW_POWER v SLEEP

Figure 4.5: Switch multiplexer with programmable mode.

device failure. Second, sleep mode works differently in the buffer versus the multiplexer. In

the buffer, both MNX and MPX are turned OFF in sleep mode. In the multiplexer, sleep

and low-power mode are identical. If MNX M and MPX M were turned OFF in sleep mode,

the SRAM configuration cells would lose their state. Moreover, the voltages on the multiplexer

select lines would not be well-defined, potentially turning ON one or more multiplexer paths,

and introducing additional capacitive loading on upstream routing switches.

Finally, for all of the switch designs, we also consider a variant for sleep mode, shown

in Figure 4.6. Transistor MSLEEP is added to pull node VINT to ground in sleep mode.

The intent of MSLEEP is to set the buffer’s internal node voltages (VINT , VINTB, OUT)

to a known state in sleep mode, thus improving buffer leakage. This differs from the switch

designs described above, wherein the internal node voltages are allowed to “float” in sleep mode,

possibly leading to a scenario in which both transistors in an inverter stage are (partially) ON.

78

4.3 Low-Power Routing Switch Design

OUT

VVD

~SLEEP LOW_POWER v SLEEP

VDD

GND GND

VDD

…
..

i1

i2

i3

i4

in

M
U

X

MNX MPX

SLEEP MSLEEP

MP1

VINTBVINT

Figure 4.6: Sleep mode variant.

When MSLEEP is ON, VINT is pulled to logic-0, VINTB is pulled to VV D, and, provided

VV D is sufficiently high, OUT is pulled to logic-0. Note that since MSLEEP is loading the

multiplexer output, its size should be kept very small. Observe that VINT cannot be pulled

high (instead of low) in sleep mode. Doing so would cause MP1 to turn ON, pulling VV D high

to VDD, thereby negating the benefit of MNX and MPX being OFF in sleep mode.

Figure 4.7 summarizes all of the switch designs considered in this study. As shown, the

switch buffer can be of either the basic design (Figure 4.3) or the alternate design (Figure 4.4).

Two different switch multiplexers are possible: one with the sleep structure in its pull-up

network, and one without the sleep structure. This yields a total of four different switch designs.

The NMOS pull-down transistor on the buffer input (for use in sleep mode) can be introduced

into any of the four designs, and therefore, eight different sleep modes will be evaluated.

In essence, the new switch designs mimic the programmable dual-VDD concepts proposed

in [Li 04c, Li 04b, Gaya 04a, Li 04a], while avoiding the costs associated with true dual-VDD,

such as distributing multiple power grids and providing multiple supply voltages at the chip

level. In traditional dual-VDD design, level converters are required to avoid excessive leakage

when circuitry operating at low supply drives circuitry operating at high supply. However, in

79

4 Circuit Techniques for Low-Power Interconnect

S S ...

…
..

i1

i2

i3

i4

in

M
U

X

S

VDD

VDD VDD

LOW_POWER v
 SLEEP

Basic or
Alternate

SLEEP

Optional

Optional

Figure 4.7: Family of routing switch designs.

this case, because of observation #1, no level converters are required when a switch in low-power

mode drives a switch in high-speed mode.

We envision that the selection between low-power and high-speed modes can be realized

through an extra configuration SRAM cell in each routing switch. Alternately, to save area,

the extra SRAM cell could be shared by a number of switches, all of which must operate in

the same mode. We expect that today’s commercial FPGA routing switches already contain

configuration circuitry to place them into a known state when they are unused. This circuitry

can be used to select sleep mode, as appropriate. A key advantage of the proposed designs is

that they have no impact on FPGA router complexity – the mode selection can be made at the

post-routing stage, when timing slacks are accurately known.

The relatively low hardware cost and negligible software impact make the proposed switch

designs quite practical. It is expected that they can be deployed in place of most existing

routing switches in commercial FPGAs.

80

4.4 Slack Analysis

4.4 Slack Analysis

The benefits of a routing switch that offers a low-power (slow) mode depend on there being a

sufficient fraction of routing resources that may actually operate in this mode, without violating

design performance constraints. This depends directly on the amount of “timing slack” present

in typical FPGA designs. In custom ASICs, any available slack is generally eliminated by sizing

down transistors, saving silicon area and cost. In the FPGA domain, however, the device fabric

is fixed, and therefore, it is conceivable that for many designs, the available timing slack is

substantial.

To motivate the proposed switch designs, timing slack was evaluated in 22 routed indus-

trial designs implemented in the Xilinx Spartan-3 FPGA [Spar 04] (described in Section 3.3.1).

The Xilinx placement and routing tools were used to generate a performance-optimized layout

for each design using the iterative constraint tightening process described in Section 3.3.1 (see

page 53). Timing slack was evaluated in the layout solution corresponding to the most aggres-

sive, yet achievable, constraint observed throughout the entire iterative process. Evaluating

slack with respect to such aggressive constraints ensures that the picture of available timing

slack generated is not overly optimistic.

To gauge slack, the algorithm in [Wang 02] was implemented, which finds a maximal set of a

design’s driver/load connections that may be slowed down by a pre-specified percentage without

violating timing constraints. The algorithm was originally used to select sets of transistors to

have high-VTH in a dual-VTH ASIC design framework. Since the aim here is to maximize the

number of routing switches that operate in low-power mode, the algorithm was altered slightly

to establish a preference for selecting connections (to be slowed down) that use larger numbers

of routing switches in their routing solutions. In [Wang 02], each driver/load connection can be

viewed as having “unit weight”. In our implementation, a simple heuristic is employed: each

connection is assigned a weight corresponding to the number of routing switches in its routing

solution. Instead of finding a maximum size set of connections that may be slowed down (as

81

4 Circuit Techniques for Low-Power Interconnect

in [Wang 02]), the same algorithm is applied to find a maximum weight set of connections that

may be slowed down. The interested reader is referred to [Wang 02] for complete details.

Three slack analyses were performed for each design and sets of connections that may be

slowed down by 25%, 50%, and 75% were computed. Then, the fraction of routing resources

that were used in the routing of the selected connections was determined; that is, the fraction

of used routing resources that may be slowed down. The results are shown in Figure 4.8. The

vertical axis shows the fraction of routing resources that may be slowed down by a specific

percentage, averaged across all 22 designs. The horizontal axis shows the main routing resource

types in Spartan-3. For each resource type, three bars represent the fraction of used routing

resources of that type that may be slowed down. For example, the left-most set of bars indicate

that roughly 80%, 75%, and 70% of used DOUBLE resources may be slowed down by 25%, 50%,

and 75%, respectively. The right-most set of bars in Figure 4.8 provides average results across

all resource types. Observe, for example, that ∼75% of all routing resources can be slowed

down by 50%, on average. Interestingly, the results observed here agree closely with prior work

by Betz and Hutton et. al, which showed that only 20% of an FPGA’s routing resources need to

be high-speed [Betz 98, Hutt 02]. The considerable slack in typical FPGA designs bodes well

for the proposed routing switch designs.

4.5 Experimental Study

4.5.1 Methodology

Unless noted otherwise, all HSPICE simulation results reported in this chapter were pro-

duced at 85◦C using the Berkeley Predictive Technology Models (BPTM) for a 70nm tech-

nology [Berk 04]. The technology models were enhanced to account for gate oxide leakage us-

ing four voltage controlled current sources, as shown in Figure 4.9, and described in [Aziz 04].

Both direct tunneling current, in an ON transistor, as well as edge-directed tunneling, in an OFF

transistor, are modeled through current sources IGON GS, IGON GD and IEDT SG, IEDT DG, re-

spectively. The results presented correspond to an oxide thickness of 1.2nm [Inte 02].

82

4.5 Experimental Study

50

60

70

80

90

100

DOUBLE DIRECT HEX LONG ALL

Routing resource type

A
ve

ra
g

e
%

 o
f

re
so

u
rc

es 25% slowdown tolerance

50% slowdown tolerance

75% slowdown tolerance

Figure 4.8: Timing slack in industrial FPGA designs.

Figure 4.9: Model for transistor gate oxide leakage [Aziz 04].

83

4 Circuit Techniques for Low-Power Interconnect

Figure 4.10: 16-to-1 multiplexer implementation.

To study the proposed switch designs, the first step was to develop a 16-input tradi-

tional routing switch [see Figure 4.2(b)], representative of those in current commercial FP-

GAs [Spar 04]1. The buffer was sized for equal rise and fall times, with the second inverter

stage being 3 times larger than the first stage. The 16-to-1 input multiplexer was constructed

as shown in Figure 4.10, and it is believed to reflect a reasonable trade-off between speed and

area. Two stages of 4-to-1 multiplexers are used to form the 16-input multiplexer. Input-to-

output paths through the multiplexer consist of three NMOS transistors. As in [Rahm 04],

SRAM configuration cells are assumed to be shared amongst the four 4-to-1 multiplexers in the

first stage. Thus, the entire 16-to-1 multiplexer requires 6 SRAM cells to select a path from

one of its inputs to its output.

The 16-input traditional switch was then used as a basis for developing the proposed switch

designs. Specifically, in the basic design, transistor MPX (see Figure 4.3) was sized to provide

high-speed mode performance within 5% of the traditional switch. Interconnect delay typically

comprises about half of total path delay in FPGAs, and therefore, a 5% increase in interconnect

delay would produce a 2.5% performance degradation overall. Transistor MNX was sized to

achieve 50% slower speed performance in low-power versus high-speed mode. From Figure 4.8,

one can expect that ∼75% of routing switches designed as such could operate in low-power

1A 16-input switch was selected as it is similar to the switches driving DOUBLE-length segments in Xilinx
Spartan-3 [Spar 04].

84

4.5 Experimental Study

mode in a typical design. Certainly, the sizes of sleep transistors MNX and MPX can be

adjusted to realize different area/power/performance trade-offs, as desired.

Both a basic version of the proposed switch (Figure 4.3), as well as an alternate version

(Figure 4.4) were developed. Both versions have the same performance characteristics; however,

in the alternate version, it was possible to reduce the total width of the sleep transistors by

36% compared to the basic version. The basic and alternate switches were then extended to

create two additional switch types: basic+MUX and alternate+MUX (see Figure 4.5). In these

designs, where the programmable mode concept is applied to the multiplexer, the low-power

mode is 80% slower than high-speed mode. Therefore, if these designs are used, slightly fewer

routing switches would be permitted to operate in low-power mode.

To study the power characteristics of the proposed switch designs, the conditions of a used

switch in an actual FPGA were simulated using the test platform shown in Figure 4.11. The

test platform corresponds to a contiguous path of three switches through an FPGA routing

fabric; the multiplexers in all three switches are configured to pass input i1 to their outputs.

Power and performance measurements are made for the second switch, labeled “test switch”, in

Figure 4.11. The power measurements include current drawn from all sources, including gate

oxide leakage in the multiplexer and sleep transistors. Subthreshold leakage current through the

inputs of the test switch is not included, as this is attributable to the buffer(s) in the preceding

switch stage(s). As in Chapter 3, this work ignores leakage power dissipated in the SRAM

configuration cells, since such cells can be slowed down and their leakage reduced or eliminated.

4.5.2 Leakage Power Results

We first examine the difference in leakage power in low-power versus high-speed mode. For this

task, two instances of the test platform were used: one in which all three switches are in high-

speed mode, and one in which all three switches are in low-power mode. This configuration

produced the most pessimistic power results for low-power mode. Both the high-speed and

low-power platforms were simulated with identical vector sets, consisting of 2,000 random input

85

4 Circuit Techniques for Low-Power Interconnect

Figure 4.11: Baseline test platform.

vectors2. The leakage power consumed in the test switch was captured for each vector in both

platforms. The results for the basic switch design are shown in Figure 4.12(a). The horizontal

axis shows the percentage reduction in leakage power in the low-power switch versus the high-

speed switch. The vertical axis shows the number of vectors that produced a leakage reduction

in a specific range. Observe that larger leakage reductions are realized when the switch output

signal is logic-0 versus logic-1, due primarily to the different leakage characteristics of NMOS

versus PMOS devices. On average, in the basic design, low-power mode offers a 36% reduction

in leakage power compared with high-speed mode.

Figure 4.12(b) gives results for the alternate switch design. Observe that, as expected,

leakage reductions in the logic-0 state are smaller than in the basic design [Figure 4.12(a)], due

to the lower threshold voltage, and increased subthreshold leakage of the PMOS transistors

when the alternate switch operates in low-power mode. On average, the low-power mode of the

alternate switch design offers a 28% reduction in leakage versus high-speed mode.

To evaluate sleep mode leakage, the test platform was altered by attaching the output of

the test switch to a different, non-selected input of the load switch. Also, the multiplexer in the

test switch was configured to disable all paths to the multiplexer output (SRAM cell contents

are all 0s). As above, the modified platform was simulated with random vectors. The average

2Random signals were presented to all 46 inputs in each test platform. The same set of vectors were presented
to each test platform.

86

4.5 Experimental Study

0
250
500
750

1000
1250

[1
5:

20
]

[2
0:

25
]

[2
5:

30
]

[3
0:

35
]

[3
5:

40
]

[4
0:

45
]

[4
5:

50
]

[5
0:

55
]

[5
5:

60
]

% leakage reduction (vs. high-speed mode)

N
u

m
b

er
 o

f
ve

ct
o

rs

output logic-1 output logic-0

0
250
500
750

1000
1250

[1
5:

20
]

[2
0:

25
]

[2
5:

30
]

[3
0:

35
]

[3
5:

40
]

[4
0:

45
]

[4
5:

50
]

[5
0:

55
]

[5
5:

60
]

% leakage reduction (vs. high-speed mode)

N
u

m
b

er
 o

f
ve

ct
o

rs

a) Basic switch design

b) Alternate switch design

Figure 4.12: 85◦C leakage reduction results (low-power mode versus high-speed mode).

87

4 Circuit Techniques for Low-Power Interconnect

reduction in leakage power for sleep mode relative to high-speed mode was found to be 61%.

Similar results were observed for both the basic and alternate switch designs.

Routing conductors in FPGAs have multiple used and unused switches attached to them.

Consequently, the sensitivity of the low-power mode results to multi-fanout conditions was

studied. In one scenario, the test platform was augmented to include 5 unused switches in

sleep mode on the test switch output. In a second scenario, the test platform was augmented

to include 5 used switches on the test switch output. Average leakage power reduction results

for all scenarios considered are summarized in Table 4.1, which gives the average percentage

reduction in leakage power for each scenario versus the proposed switch in high-speed mode.

The unshaded portion of the table gives results for the basic switch design; the shaded portion

of the table gives results for the alternate design. Observe that the dependence of the low-power

mode results on fanout is relatively weak – the results are slightly better in the more realistic

multi-fanout scenarios.

Row 6 of Table 4.1 gives data comparing the average leakage power of the proposed switch

designs with that of the traditional routing switch used as the development basis. The leakage of

the proposed switch designs in high-speed mode is roughly equivalent to that of the traditional

switch. Thus, there is no significant penalty for deploying the proposed switch designs from the

leakage viewpoint, even if they are operated in high-speed mode.

An FPGA implementation of a circuit uses only a fraction of the FPGA’s available hardware

resources [Tuan 03]. It is therefore possible that large regions of an FPGA may be lightly

utilized, and that the die temperature in lightly utilized regions is somewhat lower than in

heavily utilized regions. To gain insight into how the leakage results presented above scale

with temperature, the leakage characteristics of the proposed designs were evaluated at low

temperature (25◦C). The results are summarized in Table 4.2. The interpretation of the rows

and columns in Table 4.2 is the same as that of Table 4.1.

Looking first at the 25◦C simulation results for the single fanout scenario (row 2 of Ta-

ble 4.2), one can see that the difference between the two designs is less pronounced than at high

88

4.5 Experimental Study

Table 4.1: 85◦C leakage power reduction results for basic design (unshaded) and alternate design
(shaded).

Avg. leakage pwr Avg. leakage pwr
reduction (%) vs. reduction (%) vs.
high-speed mode high-speed mode

Test scenario (basic) (alternate)
low-power mode

(single fanout) 36.0% 27.6%
sleep mode 60.8% 61.3%

low-power mode
(+ unused fanout) 39.7% 28.7%

low-power mode
(+ used fanout) 38.7% 29.5%

traditional switch
(single fanout) 0.3% 0.25%

temperature. This is explained by recalling that the superior leakage characteristics of the basic

switch design are primarily due to its smaller subthreshold leakage current (see Section 4.3).

Subthreshold leakage increases exponentially with temperature, whereas gate oxide leakage is

almost insensitive to temperature [Agar 04]. At low temperature, gate oxide leakage comprises

a larger fraction of total leakage. Gate oxide leakage is smaller in the alternate versus the basic

design, due to its smaller sleep transistors. This leads to a narrower “gap” between the two

designs from the leakage perspective at low temperature. Similar results are evident for the

multi-fanout scenarios.

In sleep mode (row 3 of Table 4.2), the alternate design actually offers lower leakage than the

basic design at low temperature, again due to the increased significance of gate oxide leakage.

At high temperature, where subthreshold leakage dominates, the two designs exhibit roughly

equivalent leakage (see row 3 of Table 4.1). Thus, although the smaller sleep transistors in the

alternate design result in lower gate oxide leakage, they do not appear to yield a significant

reduction in subthreshold leakage in sleep mode.

Tables 4.3 and 4.4 present the leakage power results for the basic+MUX and alternate+MUX

designs at 85◦C and 25◦C, respectively. At 85◦C, the leakage improvements over the original

basic and alternate designs are modest. For example, in the single fanout case, the low-power

89

4 Circuit Techniques for Low-Power Interconnect

Table 4.2: 25◦C leakage power reduction results for basic design (unshaded) and alternate design
(shaded).

Avg. leakage pwr Avg. leakage pwr
reduction (%) vs. reduction (%) vs.
high-speed mode high-speed mode

Test scenario (basic) (alternate)
low-power mode

(single fanout) 33.3% 30.0%
sleep mode 64.7% 72.3%

low-power mode
(+ unused fanout) 34.8% 31.4%

low-power mode
(+ used fanout) 33.3% 31.4%

traditional switch
(single fanout) 1.6% 1.3%

mode of the basic+MUX (alternate+MUX) design offers a 42% (33%) leakage reduction versus

high-speed mode. This is a moderate improvement over the basic (alternate) design, which

yields a 36% (28%) leakage reduction in low-power mode.

At 25◦C, the benefits of reduced gate oxide leakage in the multiplexer (in basic+MUX and

alternate+MUX) are more apparent. Consider row 2 of Table 4.4, which gives the low-power

mode leakage results for the single fanout scenario. Leakage is reduced by 52% in basic+MUX

and 48% in alternate+MUX versus high-speed mode. This can be compared with the basic and

alternate designs which offer 33% and 30% leakage reductions, respectively (row 2 of Table 4.2).

Subthreshold and gate oxide leakage exhibit different technology scaling trends. Should gate

oxide leakage come to dominate total leakage in deep sub-100nm technologies, the benefits of

the basic+MUX and alternate+MUX designs will be amplified.

Finally, we consider the benefits of the variant sleep mode, depicted in Figure 4.6. Leakage

reduction results for the variant sleep mode relative to high-speed mode are shown in column

3 of Table 4.5. For comparison, column 2 of the table summarizes the sleep results already

presented above for the original sleep mode. Observe that, for all but one of the switch types at

both temperatures, the variant sleep mode offers better leakage results. The only exception is

the alternate design at low temperature, for which similar leakage results are observed for both

90

4.5 Experimental Study

Table 4.3: 85◦C leakage power reduction results for basic+MUX design (unshaded) and alter-
nate+MUX design (shaded).

Avg. leakage pwr Avg. leakage pwr
reduction (%) vs. reduction (%) vs.
high-speed mode high-speed mode

Test scenario (basic+MUX) (alternate+MUX)
low-power mode

(single fanout) 42.2% 33.0%
sleep mode 67.4% 64.0%

low-power mode
(+ unused fanout) 42.0% 32.9%

low-power mode
(+ used fanout) 41.3% 32.6%

Table 4.4: 25◦C leakage power reduction results for basic+MUX design (unshaded) and alter-
nate+MUX design (shaded).

Avg. leakage pwr Avg. leakage pwr
reduction (%) vs. reduction (%) vs.
high-speed mode high-speed mode

Test scenario (basic+MUX) (alternate+MUX)
low-power mode

(single fanout) 52.1% 47.8%
sleep mode 68.7% 75.8%

low-power mode
(+ unused fanout) 51.4% 47.6%

low-power mode
(+ used fanout) 50.2% 46.5%

91

4 Circuit Techniques for Low-Power Interconnect

Table 4.5: Sleep mode leakage results 85◦C (unshaded) and 25◦C (shaded).
Orig. sleep mode Sleep mode variant

Switch type % leakage reduction % leakage reduction
basic 60.8% 77.1%

basic+MUX 67.4% 79.0%
alternate 61.3% 73.1%

alternate+MUX 64.0% 75.0%
basic 64.7% 66.9%

basic+MUX 68.7% 73.0%
alternate 72.3% 71.8%

alternate+MUX 75.8% 77.8%

sleep modes (72% leakage reduction). Pulling internal buffer nodes to a known voltage state

in sleep mode ensures that there are at least two OFF transistors on each path from supply to

ground in the buffer. This significantly reduces subthreshold leakage due to the stack effect (see

Section 2.2.2). At high temperature, the variant sleep mode offers a 73-79% leakage reduction

versus high-speed mode, whereas the original sleep mode offers a 61-67% leakage reduction.

4.5.3 Dynamic Power Results

The dynamic power characteristics of the switch designs in low-power mode were evaluated;

the results are given in Table 4.6. Switching energy was computed by using HSPICE to the

integrate the supply current drawn during logic transitions. The dynamic energy benefits of

all of the switch designs are similar, ranging from 28-31%, and due chiefly to the reduced

output swing and smaller short-circuit current in the buffer. Note, however, that this may

represent an optimistic estimate of the dynamic power reduction. The area overhead of the

new switch designs versus a traditional switch will lead to a larger base FPGA tile, resulting in

longer wire segment lengths and increased metal capacitance (higher dynamic power). A precise

measurement of the area overhead for incorporating the new switch designs into a commercial

FPGA is difficult, as it depends on available layout space and existing transistor sizings, both of

which are proprietary. Nevertheless, a rough estimate of the area overhead is attempted below.

As mentioned previously, the 16-input traditional switch used as the development basis

92

4.5 Experimental Study

Table 4.6: Dynamic power results for all switch designs.
Switching energy reduction

Switch type in low-power vs. high-speed mode
basic 28.2%

basic+MUX 28.8%
alternate 30.9%

alternate+MUX 31.2%

requires 6 SRAM configuration cells. An additional cell to control the switch mode increases

the SRAM cell count by ∼17%. Based on transistor width, the area overhead for the remainder

of the basic switch design, versus the traditional switch, is estimated as ∼31%, mainly due

to the need for relatively large sleep transistors. Certainly, routing switches in commercial

FPGAs have additional configuration and test circuitry beyond that shown in Figure 4.2(b),

which will reduce the area overhead of the proposed switches. Pessimistically, we can assume

that deploying the basic switch design increases an FPGA’s interconnect area by 30%, and

that interconnect accounts for ∼2/3 (66%) of an FPGA’s base tile area [Rahm 04]. Given

this, the overall tile area increase to include the proposed basic switch amounts to ∼20%.

Assuming a square tile layout, the tile length in each dimension would increase by ∼9.5%.

However, the metal wire segment represents only a fraction of the capacitance seen by a switch

output. Significant capacitance is due to fanout switches that attach to the metal segment.

This “attached switch capacitance” is unaffected by a larger tile length. Thus, 9.5% is a loose

upper bound on the potential increase in capacitance seen by a switch output. The capacitance

increase is surpassed considerably by the dynamic power reductions offered by the basic switch.

The projected tile area breakdowns for the traditional and basic switch types are summarized

graphically in Figures 4.13(a) and (b), respectively.

As mentioned previously, the alternate switch design has a considerably lower area overhead

compared to the basic design. Applying the same rough analysis used above, we expect that

incorporating the alternate switch design into an FPGA would increase the base tile length in

each dimension by only ∼6.5% [see Figure 4.13(c)]. The area overheads of the basic+MUX and

alternate+MUX designs are similar those of the basic and alternate designs, since sleep transis-

93

4 Circuit Techniques for Low-Power Interconnect

~66% ~72% ~70.5%

interconnect logic, other

1.0 1.095 1.065

a) baseline tile b) tile incorporating
basic switch

c) tile incorporating
alternate switch

tile length

Figure 4.13: Projected tile area breakdown for traditional and proposed switch types.

tors MNX M and MPX M (see Figure 4.5) can be made small for the reasons mentioned in

Section 4.3.

4.5.4 Summary of Results

In summary, the results show that all of the proposed switch designs have attractive qualities:

the basic design offers large leakage reductions at high speed; the alternate design requires less

silicon area; the basic+MUX and alternate+MUX designs offer the largest reduction in gate

oxide leakage. The leakage/area/speed trade-offs between the switch designs are illustrated

in Figure 4.14; the data values in the figure are normalized to those of the traditional switch

design.

The leakage results presented above were for a single routing switch. A “back of the en-

velope” analysis can be used to project the overall leakage reductions offered by the proposed

switch designs in an FPGA tile, which contains both logic and interconnect. Based on prior

work, one can assume that ∼40% of leakage in a tile is in unused circuitry and ∼60% in used

circuitry [Tuan 03]. Furthermore, as above, one can assume that about ∼66% of leakage in

the used and unused circuitry is due to interconnect. Consider first the basic design with the

variant sleep mode, operating at 85◦C. In this design, leakage is reduced by 77.1% in sleep

versus high-speed mode, and by ∼40% in low-power versus high-speed mode (see Tables 4.1

and 4.5). Assuming that all of the unused interconnect can be put into sleep mode, leakage

94

4.5 Experimental Study

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6

Switch type

N
o

rm
al

iz
ed

 le
ak

ag
e/

ar
ea

/d
el

ay

Switch area

Average leakage (85 deg C)

Delay

Average leakage (25 deg C)

N
or

m
al

iz
ed

 le
ak

ag
e/

ar
ea

/d
el

ay

T
ra

di
tio

na
l

B
as

ic
(L

P
 m

od
e)

A
lte

rn
at

e
 (

LP
 m

od
e)

B
as

ic
+

M
U

X
(L

P
 m

od
e)

A
lte

rn
at

e+
M

U
X

 (
LP

 m
od

e)

Switch Type

Figure 4.14: Leakage, area, and speed of switch designs.

95

4 Circuit Techniques for Low-Power Interconnect

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
T

ra
di

tio
na

l

B
as

ic

(8
5

de
g

C
)

A
lte

rn
at

e
(8

5
de

g
C

)

B
as

ic
+

M
U

X

(8
5

de
g

C
)

A
lte

rn
at

e+
M

U
X

(8

5
de

g
C

)

B
as

ic

(2
5

de
g

C
)

A
lte

rn
at

e
(2

5
de

g
C

)

B
as

ic
+

M
U

X

(2
5

de
g

C
)

A
lte

rn
at

e+
M

U
X

(2

5
de

g
C

)

Switch type

N
o

rm
al

iz
ed

 p
ro

je
ct

ed
 t

ile
 le

ak
ag

e

Figure 4.15: Overall leakage in FPGA tile.

in the unused part of a tile is reduced by: 0.66 · 77.1% = 50.9%. Leakage in the used part

of a tile is reduced by: 0.66 · 0.75 · 40% = 19.8%, where the “0.75” represents the average

fraction of used interconnect that may be slowed down and operate in low-power mode (from

the slack analysis). Given these partial results, the projected reduction in overall tile leakage

for deploying the basic switch design is: 0.4 ∗ 50.9% + 0.6 ∗ 19.8% = 32%. Applying the same

analysis to all the switch types produces the data in Figure 4.15. Note that the data in the

figure corresponds to use of the variant sleep mode, which consistently offers better leakage.

4.6 Summary

Static and dynamic power dissipation in FPGAs is dominated by consumption in the inter-

connection fabric, making low-power interconnect a mandatory feature of future low-power

96

4.6 Summary

FPGAs. In this chapter, we proposed a number of new FPGA routing switch designs that

can be programmed to operate in high-speed, low-power, or sleep mode. Each of the proposed

designs offers a different power/area/speed trade-off. At high temperature, leakage reductions

in low-power versus high-speed mode range from 28-42%. Depending on the design selected,

such leakage reductions come with varying levels of performance and/or area overhead. At low

temperature, leakage reductions range from 30-52% in low-power versus high-speed mode. Sleep

mode leakage reductions range from 61-79% relative to high-speed mode. All of the proposed

designs reduce dynamic power by up to 28-31%. An analysis of the timing slack in commercial

FPGA benchmark circuits showed that the proposed switch designs are well-motivated. A ma-

jority of routing switches can be slowed down, and operated in low-power mode. The switch

designs require only minor changes to a traditional FPGA routing switch and have no impact

on router complexity, making them easy to deploy in current commercial FPGAs.

97

4 Circuit Techniques for Low-Power Interconnect

98

5 Power-Aware Technology Mapping

5.1 Introduction

In contrast to the two preceding chapters, which addressed leakage power optimization, this

chapter focuses on optimizing an FPGA’s dynamic power. Specifically, we concentrate on power

reduction during the technology mapping step of the FPGA CAD flow. A number of techniques

have been proposed in the literature for reducing FPGA power during technology mapping (see

Section 2.5.3). A limitation of the prior work is that it has not explored the trade-offs between

power and other optimization criteria. This chapter presents a new technology mapping algo-

rithm that offers two key benefits: 1) It produces technology mapping solutions that consume

less power than those produced by other, previously-published algorithms, and, 2) The pro-

posed algorithm allows one to explore the depth/power curve, and therefore, to trade-off one

criterion for the other. A novel feature of the algorithm is its approach to logic replication,

which is shown to be generally undesirable from the power perspective. Furthermore, as part of

this work, we demonstrate that different technology mapping approaches can produce solutions

with widely varying power characteristics, despite having similar area and performance.

The chapter is organized as follows: Section 5.2 presents necessary background material.

The technology mapping approach is described in Section 5.3. Section 5.4 presents an experi-

mental study and the associated results. The impact of this work on other related research is

briefly discussed in Section 5.5. A summary is provided in Section 5.6.

99

5 Power-Aware Technology Mapping

b

w

q

a

t y u

subgraph H
inputs(a) = {t, y}
outputs(a) = {q, b}
inputs(H) = {t, y, u}
outputs(H) = {q, w}

Figure 5.1: Circuit DAG definitions.

5.2 Preliminaries

Before presenting the technology mapping algorithm, we review some terminology. This chapter

uses terminology similar to that in [Cong 94a].

The combinational part of a logic circuit can be represented as a Boolean network, which is a

directed acyclic graph (DAG), G(V,E), in which each node, z ∈ V , represents a single-output

logic function and edges between nodes, e ∈ E, represent input/output dependencies between

the corresponding logic functions. A primary input node is a node with an in-degree of 0; a

primary output node has an out-degree of 0. For a node z in a circuit DAG, let inputs(z)

represent the set of nodes that are fanins of z, and outputs(z) represent the nodes that are

fanouts of z. For a subgraph, H, of a DAG, let inputs(H) represent the set of nodes outside

of H that are fanins of nodes in H; let outputs(H) be the set of nodes that are outside of H

that are fanouts of nodes in H. Figure 5.1 gives an example illustrating the subgraph, fanin,

and fanout concepts. The depth of a node z, D(z), is defined as the length (in nodes) of the

longest path from any primary input to z.

A node x is said to be a predecessor of node z if there exists a directed path in the graph

100

5.2 Preliminaries

from x to z. The subgraph consisting of a node z and all of its predecessors is referred to as

the subgraph rooted at z. For any node z in a network, a K-feasible cone at z, Nz, is defined

to be a subgraph consisting of z and some of its predecessors such that |inputs(Nz)| ≤ K. A

K-input LUT, or K-LUT, can implement any logic function with less than or equal to K inputs.

Consequently, the technology mapping problem for K-LUTs can be thought of as “covering”

an input Boolean network with K-feasible cones. Generally, there are many K-feasible cones

for each node in the network, each having different area, delay, or power characteristics.

A concept closely related to K-feasible cone is that of K-feasible cut. A K-feasible cut for

a node z is a partition, (X,X), of the nodes in the subgraph rooted at z such that z ∈ X ,

and the number of nodes in X that fanout to a node in X is ≤ K. Figure 5.2(a) shows a

network having an output node z. The figure shows two 4-feasible cuts for node z. There is a

one-to-one correspondence between K-feasible cuts and K-feasible cones. Given a cut, (X,X),

the K-feasible cone is simply the subgraph induced by the nodes in X. The problem of finding

all possible K-LUTs that generate a node z’s logic function is equivalent to the problem of

enumerating all K-feasible cuts for node z.

To simplify the presentation of the proposed algorithm, for a K-feasible cut, Cz = (X,X),

for a node z, Nodes(Cz) is used to represent the set X, where z ∈ X. Support(Cz) is used

to represent subset of nodes in X that fanout to a node in X . For example, for cut 2 in

Figure 5.2(a), Nodes(cut 2) = {c, z} and Support(cut 2) = {b, i5, i6}. Finally, Cuts(z) is used

to represent the set of all feasible cuts for a node z.

5.2.1 Power and Logic Replication

The aim of this work is dynamic power reduction, as computed by (2.7), and repeated here for

convenience:

Pavg =
Fclk

2

∑

i ∈ signals

C(i) · F (i) · VDD
2 (5.1)

More specifically, the objective here is to reduce power dissipated in the FPGA intercon-

nection network, since, as noted in Section 2.4, this accounts for roughly 60% of an FPGA’s

101

5 Power-Aware Technology Mapping

dynamic power. For the remainder of this chapter, the term “power” is used to mean dynamic

power dissipated in the interconnect.

Logic replication or duplication is an important concept in FPGA technology mapping. It is

performed implicitly when a LUT covers a node that has fanout nodes both inside and outside

the LUT. It is widely known that logic replication is necessary for depth minimization. Consider

again the network shown in Figure 5.2. Figure 5.2(b) shows a mapping solution without logic

replication, assuming LUTs with 4 inputs, where LUTs are shown as shaded, dashed regions.

The duplication-free mapping has depth 2 and uses 3 LUTs. Figure 5.2(c) shows a mapping

solution in which logic replication is permitted. This solution has a depth of 1, which is achieved

by replicating node b. Observe that node b is covered by two different LUTs in the mapping

solution.

When a node in a circuit is replicated for depth minimization, a connection from the node

to one of its fanouts is “covered” within a LUT. In Figure 5.2(c), for example, both of the

connections from node b to its fanouts are covered within LUTs. Such covered connections are

not routed through the FPGA interconnection network, and therefore, do not contribute to

interconnect power dissipation. The other consequence of node replication is that it generally

increases the fanout of nodes that fanin to the replicated node. Referring again to Figure 5.2(b),

primary inputs i3 and i4 each have one fanout LUT. In Figure 5.2(c), node b is replicated and

therefore, primary inputs i3 and i4 must drive two LUTs. It is evident that replicating a node

for depth minimization has two effects: 1) Connections from the replicated node to its fanouts

may be covered within LUTs, and, 2) the fanout of nodes that fanin to the replicated node is

generally increased.

Equation (5.1) specifies that power consumption depends linearly on switching activity.

An important characteristic of switching activity in combinational circuits is that it typically

decreases with circuit depth. Previous empirical research has shown, in fact, that activity falls

quadratically with depth, on average [Nema 96]. This suggests that a node is likely to have

fanins with higher switching activity than the switching activity at its output. Replicating

102

5.2 Preliminaries

y

b ca

i1 i2 i3 i4 i5 i6

z

(a) original network

y

b ca

i1 i2 i3 i4 i5 i6

z

LUT

(b) no duplication

y

b ca

i1 i2 i3 i4 i5 i6

z

(c) duplication permitted

cut 2

cut 1
primary
input

Figure 5.2: Illustration of feasible cuts; effect of logic replication in LUT mapping.

103

5 Power-Aware Technology Mapping

a node for depth minimization covers a fanout of the node within a LUT, but increases the

fanout of the node’s fanins. The activity/depth relationship implies that the activity on the

signals whose fanout (and capacitance) has been increased is likely higher than the activity

on the signal whose fanout has been decreased (by covering a connection within a LUT).

Consequently, it is apparent that logic replication in LUT mapping is generally undesirable

from a power perspective, except in specific cases, depending on the switching activities local

to a node. This notion is applied in the proposed technology mapping algorithm, which includes

an activity-based penalty for the replication of a node.

5.3 Algorithm Description

The proposed technology mapping algorithm operates in three phases, and has a high-level flow

similar to that used in [Cong 99] and [Wang 01]. In phase 1, the set of K-feasible cuts for each

node in the network is computed. In phase 2, the costs for the cuts generated in phase 1 are

computed, and a “best cut” is selected for each node. In phase 3, the best-cost cuts are used

to transform the Boolean network to produce the final LUT mapping solution. Each of these

phases is described below in detail.

5.3.1 Generating K-Feasible Cuts

The input to the cut generation process is a K-bounded Boolean network, G(V,E), where

K-bounded implies that:

∀v ∈ V |inputs(v)| ≤ K (5.2)

Traversing the input Boolean network from primary inputs to primary outputs, the cuts for

each node z are generated by merging cuts from its fanin nodes, using the method described

in [Cong 99, Schl 94]. At a high level, this works as follows: Consider generating the K-feasible

cuts for a node z with two fanin nodes, a and b. The list of K-feasible cuts for a and b

have already been computed, owing to the network traversal order. Say that node a has two K-

104

5.3 Algorithm Description

z

a b

e fd

c g

Ca1

Ca2

Cb

(a) cuts for nodes a and b

z

a b

e fd

c g

Cz1

Cz2

(b) cuts for node z

Nodes(Ca1) = {a}
Support(Ca1) = {d,e}

Nodes(Cb) = {b}
Support(Cb) = {e,f}

Nodes(Ca2) = {a,d}
Support(Ca2) = {c,g,e}

Nodes(Cz1) = {z,a,b}
Support(Cz1) = {d,e,f}

Nodes(Cz2) = {z,a,b,d}
Support(Cz2) = {c,g,e,f}

Figure 5.3: Generating the K-feasible cut sets.

feasible cuts, Ca1 and Ca2, and node b has one K-feasible cut, Cb, as shown in Figure 5.3(a). We

can merge Ca1 and Cb to create a cut, Cz1, for node z, such that Support(Cz1) = Support(Ca1)∪

Support(Cb) and Nodes(Cz1) = z ∪ Nodes(Ca1) ∪ Nodes(Cb) [see Figure 5.3(b)]. Clearly, if

|Support(Cz1)| > K, the resulting cut is not K-feasible, and it is therefore discarded. Similarly,

one can merge Ca2 and Cb to create another candidate cut, Cz2, for node z. This provides a

general picture of how the cut generation procedure works; however, there are several special

cases to consider, and the interested reader is referred to [Schl 94] for complete details.

Note that other LUT-based technology mapping algorithms prune the cut-set for each node

in order to reduce run-time [Cong 99]. Although an upper bound on the number of cuts for a

node is O(nK), where n is the number of nodes in the circuit (n = |V |), we have observed that

in actual circuits, the set of all cuts can be computed quickly when the target LUTs are small,

as in commercial FPGAs. Thus, for this work, it was not necessary to implement and apply

pruning techniques such as [Cong 99], although this is certainly possible.

105

5 Power-Aware Technology Mapping

5.3.2 Costing Cuts

After computing the set of K-feasible cuts for each node in the network, the network is again

traversed from primary inputs to primary outputs. The objective of this second traversal is to

select a best cut for each node. The best cut for a node is determined using a cost function with

several components, reflecting depth (DCost), power (PCost), as well as a logic replication cost

(RCost), to be described below. As will be shown, the cost components are defined in a way

that freely permits logic replication in depth-critical portions of a circuit, and penalizes logic

replication in non-depth-critical portions of a circuit. For a node z with a K-feasible cut, Cz,

the cost of the cut is defined as:

Cost(Cz) = α · DCost(Cz) + β · PCost(Cz) + γ · RCost(Cz) (5.3)

where the parameters α, β, and γ are coefficients reflecting the relative importance of each

term. After computing the cost of the K-feasible cuts for node z, the best cut is selected to be

the one with the minimum cost. We refer to the best cut for a node z as BestCut(z).

We now elaborate on the terms of (5.3). The depth cost of a cut, Cz, is defined to be

the depth of the LUT mapping solution of the subgraph rooted at node z, if Nodes(Cz) is

implemented as a LUT in the mapping solution. That is:

DCost(Cz) = 1 + max
v ∈ Support(Cz)

{DCost[BestCut(v)]} (5.4)

Thus, to compute the depth cost of cut Cz, (5.4) considers the depth cost of the best cut

for each node, v, that fans out to a node in Nodes(Cz). For each of these support nodes, the

best cut has already been selected since the network is being traversed in an input-to-output

fashion. Primary input nodes are assigned a depth cost of zero.

For power optimization, the goal is to keep connections with high switching activity out of

the FPGA interconnect. The algorithm aims to “capture” as many high-activity connections

as possible within LUTs, leaving only low-activity connections between LUTs. The power cost

106

5.3 Algorithm Description

of cut Cz, for node z, is therefore defined as:

PCost(Cz) =
∑

v ∈ Support(Cz)

[F (v) + PCost(BestCut(v))] −

∑

w ∈ Nodes(Cz)

[F (w) · |outputs(w) ∩ Nodes(Cz)|] (5.5)

where F (x) represents the switching activity of the signal driven by a node x. The first summa-

tion tallies the activities of the connections in the mapping solution of the subgraph rooted at

z. The first term in the first summation represents the switching activities of nodes that fanout

to a node in Nodes(Cz). The signals driven by these nodes will need to be routed through

the interconnect if Nodes(Cz) is implemented as a LUT in the mapping solution; hence, they

contribute to higher cost. The second term in the first summation represents the power cost

of the mapping solutions rooted at each of the support nodes. The second summation term,

whose sign is negative, represents the sum of the fanout-weighted switching activity on the

connections that have been captured inside a LUT, namely, the LUT implementing the func-

tionality of Nodes(Cz). For each node w in Nodes(Cz), the summation counts the number of

w’s fanouts that are in Nodes(Cz), and multiplies this count by the activity of the signal driven

by w.

Prior to defining the replication cost term of (5.3), several additional concepts must be

introduced, including slack, slack weight, and the notion of “replicated nodes”. The slack of a

node z, Slack(z), is defined to be the number of levels in the circuit’s Boolean network DAG by

which the depth of node z may be increased, without increasing the overall depth of the DAG.

For example, if a node has slack 0, then its depth cannot be increased without also increasing

the overall depth of the DAG. A node with slack 1 can have its depth increased by 1 level

without affecting the overall depth of the DAG. Formally,

Slack(z) = MaxDepth − [D(z) + DO(z)] (5.6)

where MaxDepth is the maximum combinational depth of any primary output, and DO(z)

107

5 Power-Aware Technology Mapping

is the length of the longest path from z to any primary output. The slack of each node in a

DAG can be computed in O(|V |) time by first performing a forward breadth-first search from

the DAG’s primary inputs to its primary outputs, and computing depth for each node and

MaxDepth. Then, a reverse-order breadth-first search from the DAG’s primary outputs to its

primary inputs is performed, and the value of DO for each node is computed. The maximum

slack, among all nodes in the network, is represented by MaxSlack. Using the slack and

maximum slack, the slack weight of a node z is defined as:

SlackWeight(z) = 1 + κ ·

[

MaxSlack − Slack(z)

MaxSlack

]

(5.7)

where κ is a positive real number. The definition of slack weight implies that nodes with 0

slack have a slack weight of 1 + κ, and nodes with MaxSlack have a slack weight of 1. The

slack values and slack weights of nodes are computed up-front in the circuit’s unmapped DAG.

We have observed that a node’s slack in the unmapped DAG generally correlates well with the

slack of the node’s covering LUT in the mapped network.

For a cut, Cz, for node z, the replicated nodes, RNodes(Cz), in Nodes(Cz) are those

nodes that fanout to a node outside of Nodes(Cz)
1. This is illustrated in Figure 5.4, where

Nodes(Cz) = {z, a, b} and RNodes(Cz) = {a}. If Nodes(Cz) is implemented as a LUT in the

mapping solution, then the logic function of node a must be replicated in a second LUT, since

it has fanouts outside the first LUT. The formal definition of the replicated nodes in a cut Cz

is:

RNodes(Cz) = {v ∈ Nodes(Cz) | v 6= z, (∃ u | u ∈ outputs(v), u /∈ Nodes(Cz))} (5.8)

We are now ready to define the replication cost of a cut Cz:

RCost(Cz) =

∑

v ∈ RNodes(Cz)[(
∑

u ∈ inputs(v) F (u)) − λ · F (v) · |outputs(v) ∩ Nodes(Cz)|]

SlackWeight(z)
(5.9)

1Root node z is not included in the set of replicated nodes.

108

5.3 Algorithm Description

h

a bf

z
Nodes(Cz)

replicated node

i

g

Figure 5.4: Identifying the replicated nodes.

The first summation in the numerator is over the replicated nodes. For each replicated

node, v, the activities of the signals driven by v’s fanins are tallied. Recall that in Section 5.2.1,

we showed that replicating a node generally increases the fanout and load capacitance of its

fanin nodes. The consequences of this on power consumption depend on the activities of the

signals driven by these fanin nodes, and hence, RCost is increased in proportion to these

activities. The second term in the square brackets is negative, and its intent is similar to the

second summation term in (5.5). By including a replicated node v in a LUT, a subset of its

fanout connections are captured within the LUT. The RCost is reduced in proportion to the

product of the number of captured connections and activity of these captured connections. λ

is a coefficient whose value was determined empirically by manually trying different values and

evaluating the mapping results produced. Its value was set to 0.5 for the experiments.

It is important to recognize that to minimize the overall depth of a mapped circuit, it is not

mandatory that all nodes in the circuit be mapped with minimal depth. Only some nodes play

a significant role in influencing overall depth. The rationale for dividing by the slack weight

in (5.9) is to reduce the replication cost for nodes whose depth in the mapping solution is likely

to impact the overall depth of the mapped circuit. Nodes with low slack will have a slack weight

that is substantially larger than one. For such “critical” nodes, it may be more important to

109

5 Power-Aware Technology Mapping

select a best cut that optimizes depth, rather than one that avoids logic replication. This is

achieved by reducing the replication cost through dividing by the larger slack weight.

5.3.3 Mapping

The mapping phase of the algorithm is similar to that of FlowMap [Cong 94a]. A FIFO queue

is initialized to contain all of the primary output nodes. A node, v, is removed from the queue

and its best cut, Cv = BestCut(v), is recovered. The subnetwork corresponding to Nodes(Cv)

is implemented as a LUT in the mapping solution. Each node in Support(Cv) is then added

to the end of the FIFO queue, if it is not already in the queue. The process of removing nodes

from the queue, using their best cuts to establish LUTs in the mapping solution, and adding the

support of these cuts to the end of the queue continues until the queue contains only primary

inputs. When this condition is met, the input Boolean network has been fully mapped into

LUTs.

5.4 Experimental Study and Results

5.4.1 Methodology

The algorithm described in Section 5.3 has been implemented in the C language within the

Berkeley SIS framework [Sent 92]. To evaluate the algorithm, 29 of the largest MCNC combi-

national circuits were used (each circuit uses > 300 LUTs). Prior to technology mapping, each

benchmark circuit was optimized in SIS using script.rugged [Sent 92], and then transformed

into a network of 2-bounded functions using dmig [Chen 92].

The technology mapper was compared with two publicly available mappers: 1) FlowMap [Cong 94a],

which maps circuits in a depth-optimal manner; and, 2) FlowMap-r [Cong 94b], which opti-

mizes both depth and area by relaxing the depth optimality on portions of a circuit that are

not depth-critical. FlowMap-r performs duplication-free mapping on non-critical portions of a

circuit. Additionally, this study evaluates the effect on power of using various area-reducing

110

5.4 Experimental Study and Results

post-processing routines, including FlowPack (FP) [Cong 94a], and MP-Pack (MP)2 [Chen 92].

In the proposed algorithm, parameters α and β in (5.3) were set to be 1 and 0.0001, respec-

tively, reflecting a preference for optimizing depth over power. An iterative, automatic approach

was implemented to select a value for parameter γ (the replication cost weight) individually for

each circuit, such that power was minimized, while meeting certain depth constraints, described

below. To compute the value of γ for each circuit, γ was initially set to a small value, and then

increased gradually. For each value of γ considered, steps 2 and 3 of the algorithm were in-

voked (costing and mapping), and the mapping solution with the best power characteristics was

tracked. Generally, as γ is increased, more logic replication is eliminated, reducing power and

increasing depth. In practice, a binary search could be used to select a value for γ, most likely

with a small reduction in quality. Following mapping, MP-Pack is called as a post-processing

routine on each mapped circuit.

To estimate power consumption using (5.1), the capacitance of each net is required. Ac-

tual net capacitance is not known until after layout is complete. Therefore, capacitance was

estimated through an empirically-derived model based on structural properties of the circuit.

The model estimates each net’s capacitance based on its fanout, and is similar to ASIC wire

load models (e.g., [Synopsys 04]), and the capacitance models applied in prior FPGA technol-

ogy mapping work [Li 01]. The capacitance model was developed by using VPR [Betz 97b] to

place and route the benchmark circuits, mapped using the FlowMap-r algorithm. The logic

block in the targeted FPGA architecture contained a cluster of four 4-LUT/flip-flop pairs.

The routing network was comprised of wire segments of length 4 (span 4 logic blocks), with

half of the routing switches being buffered, and half unbuffered. This FPGA architecture was

shown to be efficient from both the area and delay perspective [Betz 99b]. VPR’s built-in in-

terconnect model was used with resistance and capacitance values based on a 180nm TSMC

process [TSMCPROC 02]. Following the placement and routing of each circuit, the capacitance

data for each net was extracted, including all metal and transistor capacitance. In generating

2MP-Pack was executed with node duplication off.

111

5 Power-Aware Technology Mapping

Number of pins on net

N
et

 r
ou

tin
g

ca
pa

ci
ta

nc
e

0 20 40 60 80 100
0

50

100

150

200

250

300

Figure 5.5: Routing capacitance versus # of net pins.

the capacitance model, only the routing of nets between logic blocks was considered; the connec-

tions within a logic block were ignored during model generation. The results of the capacitance

analysis and model construction are shown in Figure 5.5. The horizontal axis represents the

number of pins per net; the vertical axis shows total net capacitance. Each point in the figure

represents the capacitance of a single net in one of the benchmark circuits. In addition to the

raw data, the figure shows a line of best fit, which has the following equation:

Ci = 1.05 + 1.55 · [FO(i) + 1] (5.10)

where FO(i) represents the fanout of net i. Equation (5.10) is used in computing the power

results presented below. However, as is evident in Figure 5.5, a net with a given number of

pins can have a range of capacitance values. Consequently, power estimates made using (5.10)

may be inaccurate. Section 5.5 describes follow-up research work that has validated the power

results after physical layout.

To measure power using (5.1), one also needs a switching activity value for each net. This

112

5.4 Experimental Study and Results

value was computed using the power characterization capabilities that are built-in to SIS.

Specifically, for each primary input, i, SIS allows one to specify the input’s static probability,

P (i), which, as described in Section 3.3, is the probability that the value at the primary input

is logic-1 during circuit operation. SIS propagates primary input static probabilities through

the network to yield a probability for each internal signal. The activity value for the signal

driven by an internal node, n, is computed by SIS using F (n) = 2 · P (n) · [1 − P (n)] [Ciri 87].

For most of the results in this paper, the static probability of all primary inputs was set to

0.5, corresponding to a primary input activity of 2 · (0.5) · (1 − 0.5) = 0.5. For a limited set of

results, the effect of this choice was investigated by re-computing the power of already-mapped

solutions using randomly chosen primary input signal probabilities.

5.4.2 Results

The first experimental scenario considered is that of mapping circuits into 4-LUTs in a depth-

optimal manner. Figure 5.6 shows the average power, area (# of LUTs), and number of connec-

tions between LUTs for this case. The power for a circuit was computed by first estimating the

capacitance of each net (between LUTs) using (5.10); total circuit power was then computed

using (5.1). Figure 5.6 includes the number of connections since this metric correlates with

overall routing complexity – it represents the total number of net load pins to be routed by the

routing step of the CAD flow, which roughly corresponds to routing demand. The numbers

in Figure 5.6 were computed by first determining the increase in power, area, and number of

connections for each mapped circuit in comparison with the mapping solution produced by the

proposed algorithm. The increases were then averaged across all circuits for a given mapping

approach.

Figure 5.6 shows that the mapping solutions produced by the proposed approach have

substantially less power dissipation than those produced by other approaches. The most com-

petitive alternate method is FlowMap-r followed by MP-Pack; the solutions produced using this

technique require 14.2% more power than the proposed algorithm, on average. Table 5.1 shows

113

5 Power-Aware Technology Mapping

0.90

1.00

1.10

1.20

1.30

1.40

1.50
O

ur
s

+
 M

P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

O
ur

s
+

 M
P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

O
ur

s
+

 M
P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

Area (# LUTs) # of connectionsPower

N
o

rm
al

iz
ed

 p
o

w
er

, a
re

a
(#

 L
U

T
s)

,

co
n

n
ec

ti
o

n
s

Figure 5.6: Power, area, number of connections in depth-optimal 4-LUT mapping solutions.

detailed results comparing the proposed algorithm with FlowMap-r + MP-Pack for each of the

29 circuits. Observe that the gains offered by the new algorithm are consistent. Specifically,

the power dissipation was equal to, or better than FlowMap-r + MP-Pack for 26 of 29 circuits,

with 2 of the 3 degradations being only 1%. Further, the algorithm also improves the area and

number of connections slightly (≈5-6%); hence, it is likely that the results will remain valid

after layout.

Figure 5.6 shows that for optimal depth 4-LUT mapping solutions, power can vary by as

much as 40% on average, depending on the mapping approach used. The power variation is

considerably larger than the variation in area or the number of connections, which can change

by about 25% and 20%, respectively. Thus, it is apparent that simply knowing a circuit has

been mapped in a depth-optimal manner does not allow one to make inferences regarding power.

Another interesting feature of Figure 5.6 is that it shows the effect of the post-processing

routines. One can see that FlowPack (FP) reduces the number of LUTs in mapping solutions

substantially; however, it increases the power, as well as the number of connections to route.

FlowPack is a variation on FlowMap that maximizes cut volume; that is, it maximizes the num-

ber of nodes that are packed into each LUT, permitting logic replication. The logic replication

114

5.4 Experimental Study and Results

Table 5.1: Detailed results for depth-optimal 4-LUT mapping solutions.
Circuit Power increase Area increase # conns increase

FlowMap-r + MP FlowMap-r + MP FlowMap-r + MP
vs. ours + MP vs. ours + MP vs. ours + MP

C3540 1.11 1.09 1.05
C5315 1.02 1.03 1.04
alu4 1.20 1.11 1.11
apex1 1.14 1.00 1.00
apex2 1.15 1.08 1.07
apex3 1.19 1.10 1.09
apex4 1.03 1.01 1.01
apex5 1.05 1.05 1.03
cordic 1.08 1.04 1.06
cps 1.16 1.06 1.05
dalu 1.16 1.03 1.07
des 1.06 1.01 1.02
ex1010 1.73 1.17 1.17
ex4p 1.07 1.04 1.07
ex5p 1.26 0.97 0.97
frg2 1.00 1.00 1.03
i10 0.87 0.80 0.79
i8 1.23 1.19 1.18
i9 1.42 1.59 1.57
k2 1.03 0.98 0.97
misex3 1.24 1.05 1.08
misex3c 1.20 1.12 1.11
pair 0.99 0.97 0.96
pdc 1.34 1.03 1.02
rot 0.99 1.00 0.99
seq 1.07 1.02 1.04
spla 1.14 1.00 1.01
table3 1.10 1.03 1.04
table5 1.09 0.99 1.04

Average: 1.14 1.05 1.06

115

5 Power-Aware Technology Mapping

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Optimal depth Optimal depth + 1

Depth

N
o

rm
al

iz
ed

 p
o

w
er

Ours + MP (4-LUTs)

Flowmap-r + MP (4-LUTs)

Ours + MP (5-LUTs)

Flowmap-r + MP (5-LUTs)

Figure 5.7: Power results for other depths, 5-LUTs.

performed by FlowPack may lead to increased net fanout and higher power. On the other hand,

the data in Figure 5.6 show that MP-Pack is about as effective as FlowPack in reducing area,

and also reduces both power and the number of connections to route.

Figure 5.7 shows how power varies when the optimal depth constraint is relaxed and circuits

are mapped with optimal depth + 1. Results are given for the new algorithm, as well as

FlowMap-r + MP-Pack for 4-LUTs, and larger, 5-LUTs. Again, the numbers in the figure

are normalized to the 4-LUT, depth-optimal solutions produced by our algorithm. As depth

is increased, greater amounts of logic replication can be eliminated, which permits further

reductions in power. Specifically, relaxing the depth constraint by one level allows the new

algorithm to reduce power by about 8% over the depth-optimal case for 4-LUTs, and 10% for

5-LUTs. Note that the 4-LUT mapping solutions produced by FlowMap-r + MP-Pack with

relaxed depth use more power than the depth-optimal solution produced by the new approach.

Modern commercial FPGAs contain 4-input LUTs; however, some devices allow two 4-

LUTs to be combined into a 5-LUT [Virt 03]. Hence, mapping to 5-LUTs is also an important

116

5.4 Experimental Study and Results

problem. The results in Figure 5.7 show that for FlowMap-r + MP-Pack, 5-LUT mapping

solutions actually require more power than the 4-LUT solutions; whereas, for the new algorithm,

the 5-LUT solutions require slightly less power than the 4-LUT solutions. The depth of the

5-LUT mapping solutions is generally smaller than the depth of the 4-LUT mapping solutions.

It appears to be more expensive from the power viewpoint for FlowMap-r to achieve this smaller

depth. Figure 5.7 shows that the improvements offered by the new algorithm over FlowMap-r

are larger for 5-LUTs than 4-LUTs. The larger LUTs can cover a larger portion of the input

network, and thus, appear to offer more potential for power optimization. For one of the

circuits, spla, the depth-optimal 5-LUT solution produced by FlowMap-r + MP-Pack used 7

times more power than the solution produced by the proposed algorithm. Since this circuit

affected the average substantially, it was not included in the data used to create Figure 5.7.

If this circuit is included, the average power of the 5-LUT mapping solutions of FlowMap-r +

MP-Pack increases to nearly 1.5 for the depth optimal case, and 1.16 for the relaxed depth case.

The power results presented above were computed based on the primary inputs of each

circuit being set to have identical switching activities (0.5). A problem that arises frequently in

low-power synthesis is that input switching activities are not known at synthesis time, or the

set of switching activities used during synthesis do not reflect the stimulus applied to a circuit

in actual field operation. To investigate the dependence of the results on switching activities

used during technology mapping, the power for already-mapped circuits was re-computed using

randomly chosen input switching activities. Specifically, the static probability for each primary

input was set to a random number between 0.1 and 0.9, corresponding to a randomly chosen

switching activity between 0.18 and 0.5. The power of two sets of depth-optimal 4-LUT mapping

solutions was re-computed: those produced by the new algorithm, as well as those produced

by FlowMap-r + MP-Pack. The results showed that the improvements offered by the new

algorithm over FlowMap-r + MP-Pack degraded by less than 1%, on average. Thus, the power

benefits remain considerable, even when switching activities deviate from those used during

technology mapping.

117

5 Power-Aware Technology Mapping

When this work was first published in [Ande 02], perhaps the most appropriate existing

algorithm to compare against was PowerMap [Li 01], which, like our algorithm, optimizes depth

and power. Unfortunately, it was not possible to compare directly with PowerMap. However,

the results in the PowerMap paper compare PowerMap with FlowMap for LUTs with 5-inputs,

showing a power improvement of about 15%. The results in Figure 5.6 and 5.7 show that the

proposed approach provides gains over FlowMap that exceed this margin.

5.5 Impact of Research

It is worth mentioning that, since this work was published in [Ande 02], several researchers

have cited it, extended it, and improved slightly on the results presented above.

In the experimental study above, circuit power was estimated based on pre-layout predic-

tions of interconnect capacitance, as no power-aware FPGA layout tools were available with

which to place and route the generated mapping solutions. In [Lamo 03], Lamoureux and

Wilton incorporate the proposed techniques into a complete power-aware CAD flow, including

layout tools. Their results validate the projected power reductions given above, and show that

the power benefits largely do “hold up” when post-layout capacitance data is available.

In [Chen 04b], UCLA researchers cite and apply the activity-based logic replication concept

presented here, and include this in a mapping algorithm for FPGAs with dual supply voltages.

The mapping algorithm they propose is similar to ours, though the cost function used to select

the best cut is simplified. They compared their approach directly with ours, and achieved

additional power reductions of 1-2%.

5.6 Summary

This chapter focused on reducing dynamic power dissipation and presented a new algorithm

for power-aware mapping that allows one to trade-off depth and power. A novel aspect of

the proposed approach is that it takes an activity-aware approach to logic replication, which

118

5.6 Summary

has been shown to significantly affect the power of technology mapped circuits. Experimental

results show the proposed algorithm produces solutions that require less power than competing

techniques. It was also shown that, for a given depth of mapping solution, circuit power can

vary considerably, depending on the technology mapping approach used and the choice of area-

reducing post-processing routine. Results show a clear trade-off between mapping depth and

power. Additional power reductions of 8-10% are possible when the requirement of depth

optimality is relaxed by one logic level.

119

5 Power-Aware Technology Mapping

120

6 Power Prediction Techniques

6.1 Introduction

Designing complex digital systems with millions of gates often involves teams of engineers

and a lengthy design cycle. Power-aware design for large systems requires not only power

optimization techniques, such as those described in the previous chapters, but also requires

efficient estimation tools that can assess power at early design phases. The availability of

accurate, early power estimates will reduce the required number of iterations through the entire

CAD flow, allowing design trade-offs to be evaluated at an abstract level, decreasing design time

and cost.

Recall that the dynamic power consumed by a signal is proportional to the signal’s inter-

connect capacitance, as well as the rate of logic transitions on the signal – the signal’s switching

activity. One can conceive of several different views of switching activity, depending on how cir-

cuit delays are accounted for. First, activity values can be computed assuming logic and routing

delays are zero (zero-delay activity). Second, activity values can be computed considering logic

delays, but not routing delays (logic-delay activity). Third, activity values can be computed

considering complete logic and routing delays (routed-delay activity). Section 2.2 outlined dif-

ferent approaches for computing switching activity and described the notion of glitching, which

leads to increased activity.

An understanding of how switching activity changes when delays are considered is important

for several reasons. First, since FPGA power dissipation is dominated by interconnect, the

consequences of glitching on total power consumption may be more severe in FPGAs versus

121

6 Power Prediction Techniques

ASICs. In addition, due to the presence of programmable switches in the interconnection

network, path delays in FPGAs are generally dominated by interconnect rather than logic

delays, suggesting that the severity of glitching could conceivably be greater in FPGAs than in

ASICs1. Another reason to study switching activity is that low-power synthesis techniques may

perform optimizations on the basis of zero-delay switching activity data [Li 01, Farr 94], with

the assumption that such data correlates well with routed-delay activity data. It is unknown

whether this assumption is valid for FPGA technology.

In addition to switching activity, computing dynamic power using (2.7) (see page 11) requires

the capacitance of each net. Early capacitance prediction for FPGAs is not well-studied and the

pre-fabricated, programmable nature of FPGA interconnect makes the capacitance prediction

problem for FPGAs significantly different from the corresponding problem in ASICs. The

dominant role of interconnect in total FPGA power consumption implies that characterization

and management of net capacitance is a crucial part of a power-aware FPGA CAD flow.

This chapter focuses on estimating the dynamic power consumed by FPGA interconnect,

and specifically, two separate problems in FPGA power estimation are studied: switching ac-

tivity prediction and interconnect capacitance prediction. Models are proposed for predict-

ing these parameters prior to routing completion, using the Xilinx Virtex-II PRO commercial

FPGA [Virt 03] as the investigation vehicle. The proposed models can be applied in a variety of

scenarios, such as low-power synthesis systems, power-aware layout synthesis, and early power

prediction, when accurate routing data is incomplete or unavailable. The chapter is organized

as follows: Section 6.2 provides relevant background and gives an overview of the prediction

methodology. Section 6.3 considers pre-layout switching activity prediction. To motivate the

work, we study switching activity and examine whether zero-delay activity values can be used

reliably as estimates of routed-delay activity. An activity prediction model is presented that

estimates the routed-delay activity of a net using the net’s zero-delay or logic-delay activity, to-

gether with functional and structural properties of a circuit. Section 6.4 deals with interconnect

1Path delays in modern ASICs are also dominated by interconnect delays [Cong 97]. However, this property is
even more pronounced in FPGAs due to the interconnect switch delays and long wire segments.

122

6.2 Background

capacitance prediction at the placement stage. One of the main results here is that capacitance

is not well-approximated by generic parameters, such as a net’s bounding box half-perimeter.

Prediction accuracy is improved significantly when architectural aspects of the FPGA intercon-

nect are considered. An important contribution of this work is the observation of significant

“noise” in both the capacitance and activity of nets. In this context, the term “noise” does not

refer to signal integrity issues, such as crosstalk. Rather, in this chapter, “noise” refers to an

inherent uncertainty in activity and capacitance that imposes limits on the accuracy achievable

by any predictor. A summary is given in Section 6.5.

6.2 Background

6.2.1 Target FPGA Architecture

The Virtex-II PRO FPGA targeted in this study is similar to the Virtex-4 FPGA described in

Section 2.3. Like Virtex-4, Virtex-II PRO consists of a two-dimensional array of programmable

logic and interconnect resources. A Virtex-II PRO logic block (CLB) contains four SLICEs and

is similar to the Virtex-4 CLB depicted in Figure 2.9. A SLICE contains two 4-LUTs, called the

F -LUT and the G-LUT. Virtex-II PRO interconnect is similar to Virtex-4 interconnect, with the

exception that instead of there being length-24 wire segments (as in Virtex-4), Virtex-II PRO

contains wire segments that span the entire length/width of the device.

It is worth mentioning that although the prediction models proposed here are based on

Virtex-II PRO, we believe the techniques are generic and can easily be adapted to other popular

FPGA families. For example, the Altera Stratix FPGA [Stra 03] has logic and routing structures

similar to Virtex-II. A basic tile in Stratix is called a logic array block (LAB), and it contains 10

4-LUT/FF pairs (versus 8 4-LUT/FF pairs in a Virtex-II CLB). Stratix interconnect consists of

variable-length wire segments and buffered routing switches. The LAB LOCAL and DIRECT

interconnect in Stratix correspond to the CLB LOCAL and DIRECT interconnect in Virtex-II.

Furthermore, Stratix has routing resources that span lengths of 4, 8, and 24/16 LAB tiles,

which roughly resemble the DOUBLE, HEX and LONG resources in Virtex-II. Due to such

123

6 Power Prediction Techniques

architectural similarities, we expect the proposed techniques to be widely applicable and not

limited to use with Virtex-II.

6.2.2 Prediction Methodology Overview

One objective of this work is the construction of models for early prediction of a net’s routed-

delay activity and interconnect capacitance, which are referred to as the target parameters. The

proposed prediction models are mathematical functions of a second set of parameters called

prediction parameters, whose values are known prior to routing completion. The prediction

parameters for activity and capacitance prediction are described in subsequent sections. The

following set of steps convey the general methodology taken to build the prediction models:

1. A set of benchmark circuits were selected and mapped into Virtex-II PRO. Circuits were

synthesized from VHDL using Synplicity’s Synplify Pro tool (version 7.0), and then tech-

nology mapped, placed, and routed using Xilinx tools (version M5.2i)2. Each circuit was

mapped into the smallest FPGA device able to accommodate it. Table 6.1 provides detail

on the benchmark circuits.

2. The circuits were arbitrarily divided into two sets, a characterization set and a test set.

Shading in Table 6.1 differentiates the characterization circuits. The characterization

circuits are used to derive models for predicting switching activity and interconnect ca-

pacitance.

3. The characterization circuits were analyzed, and prediction and target parameter values

were extracted.

4. The prediction and target parameter values were fed into the GNU R statistical analysis

framework [GnuR 03]. Multi-variable regression analysis was employed to establish an

empirical relationship between the target and prediction parameter values. Through this

approach, a prediction model was tuned to a particular FPGA device and CAD flow. In
2The placement and routing tools were run at the highest effort level, without performance constraints.

124

6.3 Switching Activity Prediction

Table 6.1: Characteristics of benchmark circuits.
Circuit LUTs SLICEs

misex3 257 131
C3450 638 327
pair 464 240
ex1010 1112 567
spla 229 116
pdc 609 308
apex2 400 204
alu4 500 252
seq 1193 605
apex4 1078 548
ex5p 557 286
cps 524 271
dalu 323 165
C2670 233 123

practice, such model characterization would be done by an FPGA vendor to produce a

prediction model incorporated into CAD tools used by engineers in the field.

5. Following the characterization step (#4), the prediction models were applied to predict

capacitance and routed-delay activity values for nets in the test circuit set. Predicted

values were verified by comparing with actual values (routed-delay activity and routed

interconnect capacitance).

6.3 Switching Activity Prediction

In this study, a simulation-based approach is used to gather switching activity data. The CAD

flow employed is shown in Figure 6.1. The Synopsys VHDL System Simulator (VSS) is used

for simulation. VSS has built-in capabilities for capturing the number of logic transitions on

each net during a simulation, as well as the proportion of time each net spends in the high

and low logic states. Simulation with zeroed or logic delays can be done after the technology

mapping step. Simulation with full routing delays must be done after placement and routing.

In all cases, the VHDL simulation netlist was generated using the Xilinx tools, ngdanno and

ngd2vhdl. The netlist is comprised of interconnected physical primitives which correspond

125

6 Power Prediction Techniques

HDL synthesis (Synplify Pro)

Technology mapping

Placement and routing

Zero- or logic-delay simulation (Synopsys VSS)

X
ili

nx
 to

ol
s

HDL circuit

Simulation vectors

Switching activity data

Routed-delay simulation (Synopsys VSS)

Switching activity data

Routed design

Mapped design

Figure 6.1: CAD flow for activity analysis.

to hardware resources in the FPGA, such as 4-input look-up-tables (4-LUTs), flip-flops, and

multiplexers. For the delay-based simulations, an SDF (standard delay format) file, generated

by the Xilinx annotation tool, is provided to VSS.

Circuits were simulated using 10,000 randomly chosen input vectors. Two different vector

sets were generated for each circuit: one representing high input activity and a second repre-

senting low input activity. In the high (low) activity vector set, the probability of an individual

input toggling between successive vectors is 50% (25%).

6.3.1 Activity Analysis

Using the flow of Figure 6.1, it is possible to investigate the amount by which switching activity

changes when delays are considered. Columns 2-5 of Table 6.2 compare the total number of

transitions in the logic-delay and routed-delay simulations of each circuit with the number of

transitions in the zero-delay simulation. Columns 2 and 3 (4 and 5) of the table present data for

the high (low) activity vector set simulations. Each table entry represents, for a given circuit,

126

6.3 Switching Activity Prediction

Table 6.2: Effect of glitching on switching activity.
High activity vector set Low activity vector set High activity vector set

% increase in % increase in % increase in % increase in
transitions for transitions for transitions for transitions for Zero-delay Logic-delay
logic-dly sim routed-dly sim logic-dly sim routed-dly sim net activity net activity

Circuit vs. zero-dly sim vs. zero-dly sim vs. zero-dly sim vs. zero-dly sim µ error (σ) µ error (σ)

misex3 24.3 52.3 12.5 29 38.7 (22.6) 21.6 (15.8)
C3540 20.6 125.2 15.2 93.8 46.3 (24.3) 18.7 (13.7)
pair 15.8 49 9.5 10.9 30.7 (22.8) 14.3 (15.8)
ex1010 60.3 114.9 33.9 60.9 59.7 (19.4) 41.7 (17.3)
spla 21.5 27.6 11.3 15.1 26.2 (19) 19.2 (14.2)
pdc 38.7 75.2 19.8 43.2 45.4 (19.5) 30.1 (15.9)
apex2 17.8 39.1 9.3 21.8 32.2 (19.5) 17.7 (14.1)
alu4 33.4 54.8 17.1 28.8 36.5 (19.3) 25.1 (14.5)
seq 23.5 44.7 11.6 23 35.1 (18.0) 22.4 (14.5)
apex4 40.6 96.3 22.6 51.9 40.0 (19.5) 27.8 (15.5)
ex5p 52.7 131.5 35.3 97.5 45.0 (14.5) 29.5 (11.7)
cps 32.9 50.2 17.4 27.6 34.9 (17.1) 26.6 (14.4)
dalu 24.8 48.3 15.3 31 44.1 (19.4) 24.9 (15.0)
C2670 27.3 51.8 17.1 36.1 43.1 (18.7) 25.3 (15.6)

the percentage increase in the number of transitions in the circuit’s logic-delay or routed-delay

simulation, versus the circuit’s zero-delay simulation. Note that partial glitches were filtered

out of this analysis and do not register as transitions3.

From Table 6.2, it is apparent that there is a significant increase in activity when delays

are considered. For the high activity vector set, when logic delays are used, the percentage

increase in transition count versus the zero-delay simulation ranges from 16% to 60%. When

routing delays are used, overall circuit delay increases and becomes more variable, leading to

more glitching and higher activity. In the routed-delay simulations, the increase in transition

count versus the zero-delay simulations ranges from 28% to 131%. Comparing the data for

the two vector sets, one can see that the increases in activity are somewhat less drastic when

the low activity vector set is used. Specifically, the activity increases are about 1/2 to 2/3 of

that seen with the high activity vector set. In the low activity vector set, fewer inputs switch

simultaneously between successive vectors, which reduces the potential for logic transitions on

3A partial glitch on a net is a glitch of short duration, shorter than the logic delay of the net’s driving gate.

127

6 Power Prediction Techniques

multiple unequal delay paths to a net, leading to reduced glitching.

To investigate whether the increase in activity due to glitching is distributed uniformly

amongst the nets of a circuit, the zero-delay and logic-delay transition count for a net are

viewed as estimates of the net’s routed-delay transition count, allowing the absolute value of

the percentage error in the estimates to be measured. For example, the error in a net n’s

zero-delay activity estimate is:

EZ(n) = 100 ·
|TRz(n) − TRr(n)|

TRr(n)
(6.1)

where TRr(n) and TRz(n) represent the number of transitions on net n in the routed-delay

and zero-delay simulations, respectively.

Error analysis results for the high activity vector set are given in columns 6 and 7 of

Table 6.2, which shows the average and standard deviation of error for each circuit. Note

that for this analysis, the error was ignored on nets that transitioned on fewer than 3% of the

simulation vectors, as the error data for such low activity nets was not considered statistically

significant. Table 6.2 indicates that the mean error (µ) in the zero-delay activity values falls in

the 26-60% range. The mean error in logic-delay activity ranges from 14-42%. Also, observe

that coupled with these large mean errors are large error deviations (σ), ranging from 14-24%

for the zero-delay case, and 12-17% for the logic-delay case. One can therefore conclude that

zero-delay and logic-delay activity values do not necessarily correlate strongly with routed-

delay activity values. Error data for the low activity vector set simulations was also computed.

Smaller errors for this vector set were observed, with the mean and deviation of error for each

circuit being about 1/2 to 2/3 of that observed for the high activity vector set.

The results in Table 6.2 show activity can change considerably when delays are brought into

the picture and motivates the need for early prediction of a net’s routed-delay activity. Prior

to presenting the prediction approach, the noise in the prediction problem is analyzed.

128

6.3 Switching Activity Prediction

LUT0 LUT1

i0 i1 i2 i3 i4

o1o0

LUT127

i127

o127

i0
i1
i2

primary inputs

primary outputs

LUT2

i5

o2

Figure 6.2: Circuit with regularity.

6.3.2 Noise in Switching Activity

In an effort to understand the difficulty of generating accurate pre-layout activity estimates,

the noise in routed-delay activity values is studied by performing an activity analysis on the

circuit shown in Figure 6.2. The circuit is highly regular in terms of structure and functionality

and consists of 128 inputs driving 128 4-input look-up-tables (LUTs), which in turn drive 128

outputs. Each LUT in the circuit is programmed to implement a 4-input logical AND function.

The circuit in Figure 6.2 was mapped into Virtex-II PRO, and then simulated with both

the high and low activity vector sets. The change in activity on the LUT output signals

was examined in the routed-delay simulation versus the zero-delay simulation. Note that the

circuit’s regularity implies that variability in the activity change on the LUT output signals is

largely a result of variable path delays, known only after layout is complete. The results of the

analysis are shown in Figure 6.3. The figure shows the percentage increase in activity on each

LUT output signal for both simulation vector sets. For each vector set, 128 data points are

shown – one point for each LUT output signal. Observe that, despite the circuit’s regularity,

the variability in the activity increase on the LUT output nets is considerable, due to the wide

variety of routing resources and delay paths in the FPGA routing fabric, and the different

delays associated with the four input-to-output paths through a LUT4. For the low activity

4LUT input pins are logically equivalent. The selection of a LUT input pin for a particular LUT fanin signal
is made by the router.

129

6 Power Prediction Techniques

0

20

40

60

80

100

120

0 20 40 60 80 100 120

%
 in

cr
ea

se
 in

 a
ct

iv
ity

LUT output signal

%
 in

cr
ea

se
 in

 a
ct

iv
ity

(z
er

o-
dl

y
si

m
. t

o
ro

ut
ed

-d
ly

 s
im

.)

high activity vector set
low activity vector set

Figure 6.3: Activity change in regular circuit.

vector set, the activity increase for most nets is in the range of 0 to 40%; for the high activity

vector set, the increase ranges from 0 to 90%.

Real circuits are likely to be much less regular than the circuit of Figure 6.2, and therefore,

we conclude it will be difficult to achieve a high degree of accuracy in activity prediction at the

pre-layout stage. Nevertheless, the next section describes a prediction approach that produces

activity values that, in comparison with zero-delay or logic-delay activity values, are superior

estimates of routed-delay activity.

6.3.3 Prediction Model

Section 5.2 (see page 100) described how a digital circuit can be represented by a directed

acyclic graph (DAG) and introduced terminology relevant to a circuit’s DAG representation.

This section uses the same terminology as Section 5.2. Note also that in this section, a DAG

node in a circuit and the net driven by the node are referred to interchangeably; for example,

a node y drives net y.

The proposed prediction approach accepts a technology mapped, Virtex-II PRO circuit as

130

6.3 Switching Activity Prediction

input. At this level of abstraction, internal DAG nodes correspond to the LUTs and other logic

elements in the target FPGA device. In FPGA technology, path depth (# of LUTs) is frequently

used as a predictor of path delay at the pre-layout stage [Cong 94a, Fran 91b]. The reason for

this is that, unlike in ASIC technologies such as standard cell, the logic blocks in FPGAs are

uniform and have equal drive capability. Furthermore, the programmable routing switches in an

FPGA’s routing fabric are typically buffered, making connection delay relatively independent

of fanout. Consequently, without access to more accurate delay information extracted from

physical layout, depth is viewed as a reasonable estimate of delay. This FPGA-specific property

is leveraged in the proposed activity prediction approach, which incorporates delay estimation

into a simple model of net glitching severity.

The approach to activity prediction is analogous to the generate and propagate notion that

defines how carry signal values are assigned in arithmetic circuits. In such circuits, the carry

value for a particular bit may either be generated by the bit, or it may be propagated from a lower-

order bit. For activity prediction, consider a node y with logic function y = f(x1, x2, ..., xn).

Similar to carry signal operation, glitches on y’s output may come from two sources: they may

be propagated from one of y’s inputs, x1, x2, ..., xn, or they may be generated by y itself. A

prediction function that quantifies the severity of glitching on y’s output is defined as follows:

PR(y) = f [GEN(y), PROP (y), D(y)] (6.2)

where f is a function defined below, and GEN(y) and PROP (y) represent the amount of

glitching generated by y and the amount of glitching propagated from y’s inputs, respectively.

PR(y) is the predicted percentage change in the activity of net y due to glitching. The depth

term, D(y), of (6.2) is included to reflect the intuition that glitching severity typically increases

with combinational depth. All things being equal, one can expect that a node with shallow

depth will experience less glitching than a deep node. Note that the prediction values for the

nodes of a circuit are computed in a specific order, from primary inputs to primary outputs.

Prior to defining the generate term of (6.2), we introduce a new parameter. Let PL(y)

131

6 Power Prediction Techniques

y

a b {4,5}{5,6}

{5,6,7}

set of path lengths

Figure 6.4: Finding the set of path lengths for y.

represent the set of different path lengths from a primary input to node y. This parameter can

be computed in linear time by an input-to-output DAG traversal that maintains a set of path

lengths for each node. When a node is traversed, its path length set is populated by taking the

union of incremented path lengths of each of its immediate fanin nodes. More formally:

PL(y) =
⋃

xi ε inputs(y)

{p + 1 | p ε PL(xi)} (6.3)

Observe that a given node may have a larger set of path lengths than any of its immediate

fanins. Consider the example shown in Figure 6.4, in which a node y has two fanin nodes, a

and b. The set of path lengths for each node is shown adjacent to the node. Observe that node

y has three path lengths, whereas its fanins have only two path lengths. It can be said that one

path length is introduced at y. The generate term of (6.2) is defined to be the number of path

lengths introduced at node y:

GEN(y) = min
xi ε inputs(y)

{|PL(y)| − |PL(xi)|} (6.4)

The rationale for incorporating the number of path lengths to a node into the prediction function

is that variable path lengths to a node generally correlate with variable, unequal path delays

to the node, leading to glitching at the node’s output.

The propagate term of (6.2) borrows ideas from the concept of transition density [Najm 93]

132

6.3 Switching Activity Prediction

and uses the notions of Boolean difference and static probability, briefly reviewed here. The

Boolean difference of a function, y = f(x1, x2, ..., xn), with respect to one of its inputs, xi, is

defined as:
∂y

∂xi
= fxi

⊕ fxi
(6.5)

where fxi
(fxi

) is the Boolean function obtained by setting xi = 1 (xi = 0) in f(x1, x2, ..., xn),

and ⊕ denotes the exclusive-OR operation. When the Boolean difference function, ∂y
∂xi

, is true

(logic-1), a transition on xi will cause a transition on y.

Recall that the static probability of a signal is the fraction of time that the signal is in the

logic-1 state. Thus, the static probability of a Boolean difference function, P (∂y
∂xi

), represents

the probability that a transition on xi will cause a transition on y. Clearly, the ability of glitches

on an input signal, xi, to propagate to y depends on P (∂y
∂xi

). Furthermore, it seems likely that

the influence of a node input on the node’s output will depend partly on the input’s switching

activity. The propagate function is therefore defined as:

PROPy =

∑

xi ε inputs(y) P (∂y
∂xi

) · TRz(xi) · PG(xi)
∑

xi ε inputs(y) P (∂y
∂xi

) · TRz(xi)
(6.6)

The P (∂y
∂xi

) · TRz(xi) in the numerator can be viewed as a weight quantifying the influence of

glitching on xi to glitching on y. PG(xi) is defined as PROP (xi) + GEN(xi) and represents

the amount of glitching on input xi. The denominator of (6.6) normalizes the values computed

by the propagate function so they are relatively independent of the transition counts and prob-

abilities involved. Note that TRz in (6.6) can be replaced with TRl, the logic-delay transition

count, if logic-delay activity data is available. In the experimental study, the probability and

transition data needed to compute (6.6) is extracted from zero-delay or logic-delay circuit simu-

lation (see below). However, such data need not be derived from simulation; it can be computed

efficiently using probabilistic approaches, such as those in [Yeap 98]. Thus, simulation is not a

requirement for the use of the prediction model.

133

6 Power Prediction Techniques

6.3.4 Results and Discussion

Following the methodology outlined in Section 6.2.2, the characterization circuits were used

to derive a model relating the activity change on a net due to glitching to the prediction

function (6.2). In this case, the prediction parameters are the PROP , GEN , and D terms

in (6.2). To begin with, a linear function for f was used, and gradually, its complexity was

increased by adding higher-order terms. Eventually, a quadratic function was settled upon,

having the following form:

PRy = α · GEN(y) + β · GEN(y)2 + γ · PROP (y) + (6.7)

υ · PROP (y)2 + ν · D(y) + ξ · D(y)2 + η · PROP (y) · GEN(y) +

ι · GEN(y) · D(y) + ρ · PROP (y) · D(y) + φ

where α, β, γ, etc. are scalar coefficients whose values are determined through regression anal-

ysis. The use of higher-order models was also considered but were found to not substantially

improve accuracy. Two prediction models were constructed: one that predicts routed-delay

activity from zero-delay activity, and one that predicts routed delay activity from logic-delay

activity. For completeness, Section A.1 of Appendix A gives the details of the regression anal-

ysis, including the parameter coefficients.

Following characterization, to apply the prediction model derived from the characterization

circuits, the model’s value was computed for each net in the test circuits. This yields a predicted

percentage change in activity for each net versus the net’s zero-delay (or logic-delay) activity.

The predicted percentage change is used to compute an estimate of each net’s routed-delay

activity.

The model was evaluated numerically by computing the percentage error in predicted ac-

tivity values relative to routed-delay activity values using (6.1). The error data for the test

circuits is shown in Table 6.3. The table gives the average of the absolute values of percentage

error across all nets for each circuit. Column 2 of the table shows the error results for the

134

6.3 Switching Activity Prediction

Table 6.3: Error in predicted activity values.
Predicted net activity Predicted net activity

mean error (from mean error (from
Circuit zero-dly activity) logic-dly activity)

alu4 17.8 16
seq 23.8 19.8
apex4 21.4 20.2
ex5p 17.1 13.3
cps 19 16.7
dalu 23.9 16.4
C2670 22.9 17.8

model that predicts routed-delay activity from zero-delay activity; column 3 gives results for

the model that predicts routed-delay activity from logic-delay activity. In Section 6.3.1, it was

observed that logic-delay activities are “closer” to routed-delay activities than are zero-delay

activities. Table 6.3 confirms that using logic-delay activities as the basis of a prediction model

yields smaller error values. The error data for each circuit in the table can be compared with

the error data in columns 6 and 7 of Table 6.2. Observe that the average error of the predicted

activities is significantly less than the error of the zero-delay or logic-delay activities; the error

is reduced by a factor of 2 for many of the circuits.

Figures 6.5 (a) and (b) show zero-delay and (zero-delay-based) predicted activity values

versus routed-delay activity values. Each point in these plots corresponds to a net in one of

the test circuits. The vertical axis of Figure 6.5(a) represents zero-delay activity (transition

count); the horizontal axis represents routed-delay activity. The vertical axis of Figure 6.5(b)

represents predicted activity. Observe, in Figure 6.5(a), that the absence of glitching creates a

“ceiling” in the zero-delay activity values at about 5000 transitions. This ceiling is eliminated

in the predicted activity values [Figure 6.5(b)], which more closely resemble the routed-delay

activity values. Figure 6.6 gives analogous plots for logic-delay and (logic-delay-based) predicted

activity values. Both sets of predicted values exhibit a considerable “spread” about the y = x

line shown. This is expected and is in line with the noise analysis in Section 6.3.2.

Figures 6.5 and 6.6 show that, as expected, the errors in the zero-delay and logic-delay

activity values are largely one-sided (under estimation), whereas the errors in the predicted

135

6 Power Prediction Techniques

a) zero- vs. routed-delay activity

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

Z
er

o-
de

la
y

ac
tiv

ity

Routed-delay activity

b) predicted vs. routed-delay activity

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

P
re

di
ct

ed
 a

ct
iv

ity

Routed-delay activity

Figure 6.5: Zero-delay activity and predicted activity versus routed-delay activity.

136

6.3 Switching Activity Prediction

a) logic- vs. routed-delay activity

b) predicted vs. routed-delay activity

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

Lo
gi

c-
de

la
y

ac
tiv

ity

Routed-delay activity

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

P
re

di
ct

ed
 a

ct
iv

ity

Routed-delay activity

Figure 6.6: Logic-delay activity and predicted activity versus routed-delay activity.

137

6 Power Prediction Techniques

activity values are balanced about the y = x line. The use of zero-delay or logic-delay activity

values in power estimation will lead to significant underestimates of circuit power. Conversely,

since the proposed approach under-predicts activity for some nets and over-predicts for others,

we expect that the use of the predicted activity values will produce average power estimates

that are much closer to actual average circuit power. Eliminating the one-sided bias in error is

one of the key advantages of the prediction method, making it attractive for use in applications

such as early power estimation.

To investigate the dependence of the prediction results on the division of benchmarks into

the characterization and test sets, an alternate benchmark division was created by swapping

three of the seven circuits in each set. The prediction models were reconstructed using the new

characterization set and then applied to predict activity values for nets in the new test set. The

average of the absolute values of percentage error in the predicted activity values is shown in

Table 6.4. The columns of the table are analogous to those of Table 6.3. As with the original

benchmark division, the average errors of the predicted activity values are considerably less than

the errors of zero-delay or logic-delay activities (compare with columns 6 and 7 of Table 6.2).

Shading in Table 6.4 is used to show the circuits that are common between the original and

alternate test circuit sets. The error results for these circuits can be compared with the results

in Table 6.3 – the results for the original benchmark division. Observe that, despite the use

of different characterization sets, the prediction errors for these circuits are fairly similar. This

illustrates that the prediction model is not tied to a specific choice of characterization and test

set. We expect that the dependence of the prediction model on the benchmark division can be

reduced further through the use of a larger characterization set, as is available to commercial

FPGA vendors.

The prediction results presented above were based on the simulation data for the high

activity vector set. However, we expect that the prediction method can be applied effectively

for a range of input switching activities. A direction for future work is to augment the prediction

approach to automatically account for various amounts of primary input switching activity.

138

6.4 Interconnect Capacitance Prediction

Table 6.4: Error in predicted activity values for alternate benchmark division.
Predicted net activity Predicted net activity

mean error (from mean error (from
Circuit zero-dly activity) logic-dly activity)

pdc 19.5 14.3
apex2 26.0 15.9
ex1010 22.7 28.5
ex5p 16.1 15.6
cps 18.1 15.1
dalu 23.7 17.0
C2670 22.0 17.8

6.4 Interconnect Capacitance Prediction

We now turn to the second topic of this chapter, namely, interconnect capacitance prediction

at the placement stage. We begin with a brief review of related work.

6.4.1 Related Work

Several papers have considered capacitance estimation in the context of power-aware FPGA

CAD tools. At the technology mapping level (pre-layout), net capacitance has been estimated

using a linear function of fanout [Farr 94, Li 01]. Previous placement-based capacitance esti-

mates have appeared in [Roy 99, Kumt 00b]. At this level, the approach taken has been to

use a combination of a net’s bounding box half-perimeter and its fanout to estimate its routed

capacitance. These prior works use generic, non-architecture-specific parameters to predict

capacitance.

A problem related to capacitance estimation is FPGA delay estimation, which is well-

studied in the literature. The problems differ from each other in that delay estimates are

needed for individual driver/load connections, whereas capacitance estimates are needed for

entire multi-fanout nets. In [Marq 00], a delay estimation model is constructed during place-

ment by executing a pre-routing step in which “dummy” routes having known x and y distances

are made. The dummy routes are used to construct a table that relates delay to distance; table

values are then used as delay estimates during placement. The delay estimation model devel-

139

6 Power Prediction Techniques

opment approach used in [Karn 95, Maid 03] is similar to the one used here. Routed designs

are analyzed and connection delays are correlated with placement parameters, producing an

empirically-derived estimation model. In [Hutt 03], characteristics of a target FPGA’s inter-

connect architecture are used to predict delay within a partitioning-based placement system. In

that case, the FPGA interconnect is hierarchical and the placer’s partitioning levels are chosen

to match the underlying FPGA interconnect hierarchy. As such, the placer has knowledge of

the interconnect resources likely to be used in the routing of nets that are cut and uncut at

a given partitioning level. Like [Hutt 03], the proposed capacitance estimator also considers

architecture-specific criteria to improve estimation accuracy.

6.4.2 Noise in Interconnect Capacitance

To gauge the inherent noise in capacitance estimation, an approach similar to that used

in [Boda 00] is taken. Specifically, each benchmark circuit is placed using Xilinx tools, and

a placed netlist is generated. Then, a copy of the placed netlist is made, and the copy is modi-

fied, reversing the order of the nets but leaving all other aspects of the design intact, including

the placement5. The order of the nets in the netlist is arbitrary and generally not under user-

control. The original placed netlist and the modified netlist for each design are then routed to

produce baseline and alternate routing solutions, respectively. Interconnect capacitance values

for nets are determined by running XPower [XPower 03], the Xilinx power estimation tool,

on the routed circuits6. XPower produces a log file containing the capacitance of each net

in femtofarads (fF). The capacitance values for each net in the two routing solutions can be

compared to assess routing variability, since both routing solutions have the same placement.

Differences in net capacitance between the baseline and alternate routing represent noise that

one cannot correct or account for in estimation. Note, however, that differences in the two

5Netlist modifications were made by reversing the order of instances in each placed design’s XDL (Xilinx Design
Language) ASCII representation.

6FPGA vendors do not provide users with a transistor-level or layout-level FPGA representation. Commercial
capacitance extraction tools, commonly used in custom ASIC design, cannot be applied by FPGA users to
determine capacitance values.

140

6.4 Interconnect Capacitance Prediction

routing solutions for a design generally do not represent problems with the routing tool. The

tool aims to minimize total routing resource usage, which involves trade-offs between the FPGA

resources allocated to each net; such trade-offs may be resolved arbitrarily in some cases.

Figure 6.7 shows the results of the noise analysis. Each point in the figure represents a net

in one of the benchmark circuits. The horizontal axis represents net capacitance in the baseline

routing solution; the vertical axis represents net capacitance in the alternate routing solution.

Ideally, in the absence of variability, all points would lie on the line shown (y = x). However,

Figure 6.7 shows substantial noise in net capacitance. Notice that the results in Figure 6.7

illustrate that one routing solution is unlikely superior to the other: the symmetry in spread

about the y = x line suggests that the number of nets for which net capacitance increased in the

alternate routing solution is approximately equal to the number of nets for which capacitance

decreased. This assertion is also true at the individual circuit level, as evidenced by the data

in Column 3 of Table 6.5. Column 3 shows, for each circuit, the number of nets for which

capacitance increased and decreased (in parentheses) in the alternate routing solution versus

the baseline. The number of increases and decreases are roughly equal for each circuit.

The absolute value of the percentage change in capacitance for each net was computed in the

alternate routing versus the baseline. Column 2 of Table 6.5 shows the average change for each

circuit. The average change across all circuits is 22%. Certainly, the baseline and alternate

routing solutions represent just two of the possible routing solutions for a given placement.

Different net orderings could be used to produce additional routing solutions. The capacitance

of a given net in such routing solutions may differ from its capacitance in the baseline and

alternate routing solutions. Thus, the noise results presented above represent a statistical lower

bound on the error in capacitance prediction; prediction accuracy cannot be improved beyond

this noise floor error limit.

141

6 Power Prediction Techniques

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

C
ap

ac
ita

nc
e

(p
F

)
(n

et
s

re
-o

rd
er

ed
)

Capacitance (pF) (baseline)

Figure 6.7: Noise in interconnect capacitance.

Table 6.5: Noise in individual circuits.
Circuit Avg. absolute % # of nets with

change in cap. cap increase (decrease)

misex3 14.9 27 (38)
C3540 18.2 115 (117)
pair 19.1 112 (103)
ex1010 23.7 234 (255)
spla 22.8 33 (28)
pdc 23.4 146 (112)
apex2 23.7 77 (95)
alu4 20.0 97 (86)
seq 23.1 246 (259)
apex4 23.7 226 (235)
ex5p 24.0 124 (128)
cps 23.1 88 (78)
dalu 23.0 72 (65)
C2670 22.8 49 (65)

Average: 21.8

142

6.4 Interconnect Capacitance Prediction

6.4.3 Prediction Model

Having analyzed the noise in capacitance, we now introduce the prediction model. In com-

parison with prediction at the pre-layout stage, a larger number of prediction parameters are

available for prediction at the placement stage, for example, physical design data. Consequently,

a slightly different approach to capacitance prediction is taken as compared with that taken for

activity prediction. First, a set of candidate prediction parameters for the model are defined.

Following this, the rationale for why the chosen parameters may correlate with interconnect

capacitance is explained. Section 6.4.4 presents experimental results showing which of the

parameters are best for use in a capacitance prediction model.

CAD applications such as power-aware placement and early power planning require that

capacitance estimates be produced quickly, as they are typically needed within the inner loop of

design optimization. With this in mind, the focus here is on parameters with low computational

requirements. Considering a net n, the following are known at the placement stage:

• FO(n): The fanout of net n.

• BB(n): The half-perimeter of net n’s bounding box, as measured in CLB tiles.

• XS(n), Y S(n): The span of net n in the x and y-dimensions, respectively.

• NT (n): The number of CLB (or I/O) tiles in which net n has at least 1 pin.

• X6(n), Y 6(n): Defined as XS(n) mod 6 and Y S(n) mod 6, respectively.

• FP (n), GP (n): The number of load pins on net n that are F -LUT and G-LUT inputs,

respectively.

• CG(n): The average estimated routing congestion in net n’s bounding box.

143

6 Power Prediction Techniques

CLB

SLICE

LUT FF
net

Figure 6.8: Illustration of parameter NT .

The fanout and bounding box of net n are generic parameters, frequently used to predict

capacitance in the ASIC domain. Breaking the bounding box into its x and y spans through

XS(n) and Y S(n) allows one to evaluate whether there is a capacitance bias associated with

the use of horizontal versus vertical routing resources.

In contrast to the fanout and distance terms, parameters NT (n), X6(n), Y 6(n), FP (n),

and GP (n) are specific to the Virtex-II PRO FPGA. As mentioned in Section 6.2.1, the FPGA

contains an array of CLB tiles. Most of the interconnect resources connect CLB tiles to one

another, with the exception of the LOCAL interconnect that is internal to a CLB. A CLB

contains 4 SLICEs (8 LUTs/FFs) and therefore, a net n may have multiple pins placed in a

single CLB. In such cases, some of the net’s routing between CLBs may be shared by the net’s

pins within in a single CLB. The sharing of routing resources amongst pins may influence net

capacitance, and the NT (n) term aims to account for this possibility. To illustrate, Figure 6.8

shows a net with 5 pins, but spanning only 3 CLB tiles (NT = 3).

An important routing resource in the FPGA interconnect is the HEX wires spanning 6 CLB

tiles. Long nets may be routed using a sequence of HEXes, with the “left over” distance being

composed of the shorter DOUBLE, DIRECT, or LOCAL resources. HEX resources likely have

different capacitance than shorter resources. X6(n) and Y 6(n) represent the left over distance

144

6.4 Interconnect Capacitance Prediction

in the x and y dimensions, respectively, and roughly correspond to the number of short resources

needed for a net. Similarly, the different types of pins on logic and I/O blocks will likely have

different capacitance values associated with them. The FP (n) and GP (n) parameters allow

the F and G-LUT input pins (see Section 6.2.1) to be differentiated from other types of pins.

Routing congestion may lead to nets with long circuitous paths and excess capacitance.

The congestion for a net n, CG(n), is estimated using a probabilistic method similar to that

described in [Lou 02], chosen for its simplicity and computational efficiency. The approach is

summarized here; the interested reader is referred to [Lou 02] for details. Nets are first converted

into a set of two-pin connections by finding their minimum spanning tree using Prim’s algorithm.

The routing demand of a two-pin connection is then computed probabilistically, considering its

potential routing topologies. An example for a two-pin connection with a 3-by-3 CLB tile

bounding box is shown in Figure 6.9. As illustrated, only routing topologies that have at most

two jogs are included. There are 4 possible route options for the connection. Generally, the

number of route options for a connection having a bounding box with c columns and r rows is:

Nroute opt =

{

c + r − 2, for c > 1, r > 1,

1, otherwise.
(6.8)

Similarly, the number of a connection’s route options that cross a specific CLB tile edge can be

expressed analytically. Dividing the number of a connection’s route options that cross a specific

CLB tile edge by the total number of route options for the connection yields the probability

that the connection’s route will traverse the CLB tile edge. This probability can be viewed as

the demand exerted by the connection on a tile edge (see Figure 6.9). The routing demands

contributed by each two-pin connection in each net are tallied to produce a total routing demand

on each CLB tile. The CG(n) term represents the average routing demand across all CLB tile

edges within net n’s bounding box.

The capacitance of nets in the characterization circuit set were fit to a mathematical function

of the parameters described above. The result is a mathematical model that may be applied

to predict capacitance values of nets in the test circuit set. Separate estimation models were

145

6 Power Prediction Techniques

demand = 2/4

pin

CLB tile

Figure 6.9: Routing congestion estimation.

developed for high-fanout nets (> 10 loads) and low-fanout nets (≤ 10 loads), and each model

was applied accordingly in the experimental study (in the next section). A range of models were

evaluated and the labels lin, quad, and cubic are used to represent linear, quadratic, and cubic

functions, respectively. Models are specified using a function type, followed by a parameter list

in parentheses. Using this terminology, a model specified as lin(FO,BB) would predict the

capacitance of a net n, C(n), using a linear function of the net’s fanout and its bounding box

half-perimeter:

lin(FO,BB) : C(n) = α · FO(n) + β · BB(n) + γ (6.9)

where α, β, and γ are scalar coefficients with values determined through regression analysis.

Note that cross-variable terms [e.g., FF (n) · BB(n)] are omitted, unless explicitly included in

the parameter list.

6.4.4 Results and Discussion

Figure 6.10 gives error results for some of the estimation models evaluated in this study. The

vertical axis gives the average error in capacitance estimate for a given estimation model, shown

on the horizontal axis. The error for a model was computed by averaging the absolute values

of percentage estimation errors of all nets in the test circuit set. Models are labeled from M1

146

6.4 Interconnect Capacitance Prediction

to M10, in order of increasing complexity.

Model M1 estimates capacitance using a linear function of fanout, yielding an error of about

84%. This represents the error one could expect in capacitance estimation at the pre-layout

stage. M2 incorporates physical data, namely, bounding box half-perimeter, and reduces error

to 66%. In M3, the bounding box parameter is partitioned into separate x and y domains.

Estimation accuracy is not improved and, therefore, there is evidently very little directional

bias in Virtex-II: the capacitance “cost” of using horizontal routes is approximately equal to

that of vertical routes. Previous work on FPGA capacitance estimation, such as [Roy 99], used

models equivalent to M2 or M3.

Beginning with M4, architecture-specific parameters are inserted into the model. M4 in-

cludes NT (n), which is the number of CLB tiles in which a net n has pins. Incorporating this

parameter reduces error from 66% to 54%. In model M5, the X6(n) and Y 6(n) parameters are

brought in (related to the HEX resources in the interconnect) and error is further reduced, to

about 50%. M6 considers the pin types on a net [through FP (n) and GP (n)] and yields an

average error of 46%. Comparing the results for M6 to those for M3, the considerable benefits

of tying model parameters to the underlying FPGA interconnect architecture are apparent.

In model M7, congestion is introduced and surprisingly, very little benefit to error reduction

is observed. There are a number of potential explanations for this. First, it is possible that there

are sufficient routing resources in Virtex-II PRO such that routing congestion is not a problem

and circuitous routes are not needed to achieve routability. This is a probable explanation, as

the routing stress imposed by the MCNC circuits is likely relatively low in comparison with

modern industrial designs. A second possibility is that the congestion metric employed does not

accurately reflect routing congestion in Virtex-II PRO. The impact of congestion on routing

in commercial FPGAs is not well-studied and is likely to be highly architecture dependent.

Interestingly, a very recent paper by Jariwala and Lillis considered the accuracy of known

congestion prediction techniques in ASICs and FPGAs [Jari 04]. Considerable shortcomings

were discovered in the ability of the techniques to accurately predict congested “hot spots”.

147

6
P
o
w

er
P

red
ictio

n
T
ech

n
iq

u
es

20 30 40 50 60 70 80 90

M1:lin(FO)

M2:lin(FO,BB)

M3:lin(FO,XS,YS)

M4:lin(FO,BB,NT)

M5:lin(FO,BB,NT,X6,Y6)

M6:lin(FO,BB,NT,X6,Y6,FP,GP)

M7:lin(FO,BB,NT,X6,Y6,FP,GP,C)

M8:lin(FO,BB,NT,X6,Y6,FP,GP,XS*YS)

M9:quad(FO,BB,NT,X6,Y6,FP,GP,XS*YS)

M10:cubic(FO,BB,NT,X6,Y6,FP,GP,XS*YS)

Avg absolute error (%)

F
igu

re
6.10:

A
verage

error
for

a
variety

of
p
red

iction
m

o
d
els.

148

6.4 Interconnect Capacitance Prediction

Model M8 includes a cross term, the x-span of a net multiplied by its y-span [XS(n)·Y S(n)].

The intuition behind this is to differentiate between nets that span both dimensions from those

that span only a single dimension. With this parameter included, error is reduced somewhat,

from 46% to 42%. Models M9 and M10 have the same parameter set as M8, but estimate

capacitance using quadratic and cubic functions, respectively. Observe that using a quadratic

function (M9) reduces error to about 36%. The benefits of moving to a cubic function (M10)

are minimal. Higher-order models were also investigated but found to not significantly improve

estimation accuracy. The regression analysis details for model M10 are given in Section A.2 of

Appendix A.

Model M10 yields average error values of about 35%. Error results for the individual test

circuits are shown in column 2 of Table 6.6. Table 6.5 shows that the noise floor errors for

these circuits fall in the 20-24% range. The difference between the prediction and noise floor

errors limits the potential for improvement in prediction accuracy. Given the range of routing

resource types available in the FPGA, we consider the prediction accuracy to be quite good.

Figure 6.11 plots the predicted (vertical axis) and actual (horizontal axis) capacitance values

for all nets in the test circuit set, as predicted using model M10. Observe that capacitance is

under-predicted for some nets and over-predicted for others, leading to under and overestimates

of a net’s power. The under and over-predictions are roughly equally distributed, and conse-

quently, it is expected that average power estimates made using the proposed model will be

close to actual power values. Note also the similarity between the estimation results and noise

results (Figures 6.11 and 6.7), which is quite interesting as the noise error cannot be resolved

in estimation.

As with activity prediction, the dependence of the capacitance prediction model on the

division of benchmarks into the characterization and test circuit sets was investigated. The

model was reconstructed using the alternate benchmark division described in Section 6.3.4.

Column 3 of Table 6.6 lists the benchmarks in alternate test set. Shading is used to show

the benchmarks that are common to the two test sets. Column 4 gives error results for the

149

6 Power Prediction Techniques

Table 6.6: Errors for individual circuits; results for alternate characterization/test benchmark
division).

Mean absolute Mean absolute
prediction Alternate prediction

Circuit error (%) test circuit error (%)

alu4 32.9 pdc 37.4
seq 34.4 apex2 34.6
apex4 33.1 ex1010 34.9
ex5p 34.1 ex5p 33.9
cps 39.4 cps 39.3
dalu 32.2 dalu 33.6
C2670 38.8 C2670 38.9

Average: 35.0 36.1

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

C
ap

ac
ita

nc
e

(p
F

)
(e

st
im

at
ed

)

Capacitance (pF) (actual)

Figure 6.11: Estimated versus actual values (approx. 4000 points in ellipse).

150

6.5 Summary

alternate test circuit set. The error data for the common circuits can be compared with that in

column 2 of the table. Observe that the error results for these circuits are similar, even though

the characterization sets used for model construction differ. This provides evidence that the

prediction model is robust and not strongly dependent on the benchmark division.

6.5 Summary

The dominance of interconnect in overall FPGA power consumption implies that understanding

and managing activity and capacitance is a crucial part of power-aware FPGA CAD. This

chapter considered activity and capacitance prediction for FPGAs and proposed models for the

early prediction of these parameters. The activity prediction approach estimates the routed-

delay activity value for a net using its zero-delay or logic-delay activity value, as well as circuit

functional and structural properties. The proposed capacitance prediction model uses generic

parameters, such as fanout and bounding box length, as well as parameters that are specific to

the underlying FPGA routing fabric. A noise analysis was conducted and limits were established

on the potential accuracy achievable in prediction. The prediction models work well given the

noise limitations. We expect that the models will be useful in applications such as low-power

synthesis, early power estimation, and power-aware layout.

151

6 Power Prediction Techniques

152

7 Conclusions

7.1 Summary and Contributions

Trends in technology scaling imply a drastic increase in leakage power and a steady increase

in dynamic power with each successive process generation. Field-programmable gate arrays

(FPGAs) require considerable hardware overhead to offer programmability, making them less

power-efficient than custom ASICs for implementing a given logic circuit. The huge number of

transistors on the largest FPGA chips suggest that the power trends associated with scaling

may impact FPGAs more severely than custom ASICs. Despite this, until recently, the majority

of published research on FPGA CAD and architecture, as well as the focus of the commercial

vendors, has been on improving FPGA speed and density. Power management in FPGAs will

be mandatory at the 65nm technology node and beyond to ensure correct functionality, provide

high reliability, and to reduce packaging costs. Furthermore, lower power is needed if FPGAs

are to be a viable alternative to ASICs in low-power applications, such as battery-powered

electronics.

This dissertation has contributed new computed-aided design (CAD) and circuit-level tech-

niques for the optimization and prediction of FPGA power consumption:

• Chapter 3 looked at active leakage power and proposed two novel “no cost” CAD tech-

niques for active leakage reduction. The first technique involves changing the polarity

of logic signals to place hardware structures into their low leakage states as much as

possible. The second technique alters the routing step of the CAD flow, with the aim

of encouraging more frequent use of routing resources that consume less leakage. Com-

bined, the two techniques provide an average leakage power reduction of 30%, across a

153

7 Conclusions

suite of benchmark circuits. The proposed techniques have been published in [Ande 04f]

and [Ande 05a]. To the author’s knowledge, this represents the first published work on

active leakage reduction in FPGAs.

• Previous work on FPGA power characterization has shown that the majority of an

FPGA’s dynamic and static power is dissipated in the interconnect. To address this, Chap-

ter 4 considered the circuit-level design of low-power FPGA interconnect. Several new

routing switch designs were proposed. The designs are programmable to operate in one

of three modes: high-speed, low-power, or sleep mode. In high-speed mode, switch power

and performance are similar to that of a traditional routing switch. In low-power mode,

dynamic and leakage power are reduced versus high-speed mode, albeit at the expense of

speed. Sleep mode is a low leakage state suitable for unused routing switches. Each of the

different proposed designs offers a different area/speed/power trade-off. All of the designs

involve only minor changes to a traditional routing switch, and have minimal impact on

CAD complexity, making them straightforward to incorporate into current FPGAs. A

portion of this work has been published in [Ande 04c], [Ande 04d], and [Ande 05b].

• Chapter 5 presented a new power-aware technology mapping algorithm for FPGAs that

permits trade-offs between power and performance (mapped circuit depth). An important

aspect of this work is its recognition of the consequences of logic replication on power, and

notably, that logic replication is usually undesirable from the power viewpoint. Based on

this, an activity-conscious approach to logic replication is taken during technology map-

ping. An experimental study showed that different publicly-available mapping approaches

produce solutions with widely varying power characteristics, and that the proposed al-

gorithm yields solutions with considerably less power than competing techniques. This

work has been published in [Ande 02].

• Finally, Chapter 6 dealt with predicting the dynamic power consumed in FPGA intercon-

nect, and specifically, with the early prediction of interconnect capacitance and switching

154

7.2 Future Work

activity. Empirical estimation models were developed for these parameters. The models

have many applications; for example, they could be applied within an early power planning

framework, during low-power synthesis, power-aware layout, or in other instances where

power estimates are required but final routing data is incomplete or unavailable. A noise

analysis showed there to be considerable variability in both the activity and capacitance of

nets that cannot be accounted for in estimation. The proposed estimation models perform

well given the noise limitations. This work has been published in [Ande 03], [Ande 04b],

and [Ande 04e].

7.2 Future Work

There are several promising power-related FPGA research directions. Some of these are exten-

sions of the work appearing in the preceding chapters, while others are not specifically linked

to the work presented here. Suggestions of both types are highlighted below.

7.2.1 Extensions of this Research Work

One of the techniques proposed for leakage power reduction in Chapter 3 is to change the

polarity of logic signals with low static probability (≤ 0.5), thus placing circuit structures into

low leakage states. This optimization relies on knowledge of the static probability of all design

signals. A direction for future research is to alter upstream CAD tools to make them “static

probability-aware”. It was observed, in Section 3.3.1, that the polarity selection optimization

is more effective in some circuits versus others, and that this is partly due to the distribution

of static probabilities amongst circuit signals. Low leakage is achieved when many signals

have static probability close to 0 or 1. The synthesis steps in the FPGA CAD flow could be

adapted to produce mapping solutions such that signals between LUTs have static probabilities

favourable to low leakage hardware states.

Leakage-aware routing (Section 3.4) reduces active leakage by discouraging the use of routing

resources with high leakage power consumptions. A future research direction is to investigate

155

7 Conclusions

the impact of applying this idea earlier in the CAD flow. Since most leakage is consumed in

the interconnect, reducing overall interconnect usage may benefit leakage. Interconnect usage

is strongly impacted by decisions made during front-end synthesis and technology mapping.

Interconnect usage optimization has been previously considered in the context of routability

enhancement for early FPGAs [Schl 94], which had very limited routing flexibility. Perhaps such

techniques should be revisited and evaluated in the leakage optimization context. Similarly, the

leakage benefits of interconnect-driven clustering techniques (e.g, [Sing 02]) should be evaluated.

Many extensions of the routing circuitry design work in Chapter 4 are possible. A downside

of the proposed switch designs is the area overhead needed to provide the programmable mode,

which involves extra SRAM configuration cells and relatively large sleep transistors. This

overhead can be addressed in a number of ways. One option is to look at sharing sleep transistors

between two or more routing switches, instead of there being sleep transistors for each individual

switch. It is possible that there are pairs of routing switches in the interconnect fabric that are

never used or never transition concurrently. Such switches would be candidates for sharing sleep

transistors. Likewise, the SRAM cell(s) needed to control the programmable mode selection

could be shared amongst multiple switches.

A second option to mitigate the area overhead is to not make all routing switches “fully

programmable”. The results in Section 4.4 indicate that most routing switches can be slowed

down and operated in low-power mode. Given this, one might design the interconnect such that

most switches can only operate in low-power or sleep mode, with a limited number of switches

able to operate in all three modes. Clearly, this idea would increase routing complexity, since

the router would need to allocate the fully programmable switches to delay-critical connections.

Placer complexity may also increase, as the placement solution should provide an adequate

supply of fully programmable switches in the vicinity of delay-critical connections. Finally,

another research direction is to extend the programmable mode concept into the FPGA logic

blocks. A design trade-off here would involve appropriately partitioning logic blocks into sub-

blocks, each having a separate programmable mode.

156

7.2 Future Work

With regard to early power prediction, future work may include deploying the techniques

proposed in Chapter 6 into power-aware FPGA CAD tools, and examining the power reduction

benefits of basing CAD trade-offs on more accurate early power estimates. A second direction

is to look at early leakage power estimation, which will likely become important as leakage dom-

inance rises due to technology scaling. Since FPGAs contain a fixed number of pre-fabricated

blocks, leakage power models for such blocks could be developed and used to gauge leakage

early in the design flow.

The power optimization techniques proposed here were each described and evaluated inde-

pendently. A future research direction is to combine all of the proposed techniques and examine

their total benefit to dynamic and leakage power. It is unknown whether the benefits offered

by each approach in isolation are cumulative when all approaches are applied simultaneously,

or whether one given technique weakens the ability of another technique to reduce power.

7.2.2 Additional Power-Related Research Directions

The routing switch designs proposed in Chapter 4 offer a sleep mode that is suitable for unused

routing switches. In the ASIC domain, sleep states are applied to reduce leakage in temporarily

inactive circuitry, rather than in unused circuitry, as proposed here. The ASIC sleep concept

could be applied to FPGAs, with portions of used FPGA circuitry being put to sleep when

inactive. The sleep mode of the proposed switch designs could be selected/invoked via a sleep

signal. Certainly, supplying a separate sleep signal to each routing switch would be impractical.

Instead, one sleep signal could control all routing switches in a given FPGA region. The

appropriate granularity of the sleep regions would need to be studied. Placement would need

to be adapted to be conscious of the sleep regions. A related idea involves the selection of low-

power mode via a control signal, instead of through configuration SRAM cells, as was assumed

in Chapter 4. The “selectable” low-power mode could then be invoked when system workload

requirements are low enough to permit slowing down the FPGA, as is done with frequency

throttling in custom ASICs.

157

7 Conclusions

There likely exists significant potential for power reduction at early stages of the FPGA

design flow, namely, in front-end synthesis or technology mapping. The unique, pre-fabricated

features of FPGAs can be leveraged for power reduction. As a concrete example, consider that,

in addition to LUTs and flip-flops, commercial FPGAs contain large blocks of SRAM. Previous

work has examined the area and speed consequences of implementing combinational logic in

an FPGA’s SRAM blocks versus in LUTs (e.g., [Wilt 00]). The effect of this optimization on

power-efficiency has not yet been examined. However, it holds promise since it may be possible

to realize high activity logic in the SRAMs, thus avoiding the need to route some high activity

signals through the power-dominant FPGA interconnect.

7.3 Closing Remarks

In summary, we believe that power optimization and prediction for FPGAs will be an active

research area in the years ahead. The techniques proposed in this dissertation provide power

reductions on the order of tens of percent, and this is certainly a good start. However, further

improvements of the same or even larger magnitude will be needed if FPGAs are to truly

compete with ASICs from the power perspective. The future research directions noted above

leave us optimistic that there remains considerable room for improving FPGA power, thereby

increasing the competitiveness of FPGAs relative to custom ASICs.

158

A Power Estimation Model Regression Analysis Results

A.1 Switching Activity Prediction

Table A.1 shows the prediction model and regression details. Shading is used to differentiate

the logic-delay activity-based prediction model from the (separate) zero-delay activity-based

prediction model. Column 1 of the table lists the parameters used in each model. Observe that

all of the terms of (6.7) are not present for each model – the step function in R was used to prune

(6.7) to contain only the required, significant terms [GnuR 03]. Column 2 presents the coefficient

values for each parameter. Column 3 of the table gives the P-value for each parameter, which is

a frequently-used significance metric in regression analysis. It represents, for a given parameter,

the probability that the parameter’s actual coefficient is zero rather than the value specified

in the model. Thus, low P-values are generally associated with high parameter significance.

Column 4 of the table gives the 95% confidence bounds for each parameter’s coefficient.

A.2 Capacitance Prediction

The parameter coefficients for model M10 and other regression analysis data are provided in

Table A.2. The unshaded portion of the table shows the low-fanout net prediction model (≤ 10

loads); the shaded portion of the table corresponds to the prediction model used for high-

fanout nets. About 5% of the nets in the circuits are high-fanout. The columns of the table

are analogous to those of Table A.1. Observe that a very simple model suffices for predicting

the capacitance of high-fanout nets. Only the net’s fanout, bounding box, the number of CLB

tiles, and pin types are included. Further, the P-value for the bounding box term implies a

159

A Power Estimation Model Regression Analysis Results

Table A.1: Prediction model and regression analysis details (zero-delay activity and logic-delay
activity-based prediction models).

Parameter Coeff P-value Lower 95% / Upper 95%

int 35.909 <2E-16 31.330 / 40.488
PROP 37.413 <2E-16 33.184 / 41.642
GEN -3.653 0.129 -8.369 / 1.064
D 3.214 <2E-16 2.866 / 3.563
PROP 2 -0.728 0.135 -1.683 / 0.227
GEN2 -0.950 0.109 -2.113 / 0.212
PROP · D -0.484 <2E-16 -0.593 / -0.374
GEN · D 0.313 0.0033 0.104 / 0.523

int 48.875 <2E-16 46.008 / 51.742
PROP 21.361 <2E-16 18.014 / 24.709
GEN -4.165 8.613E-05 -6.241 / -2.088
D -2.276 <2E-16 -2.630 / -1.921
PROP 2 0.974 6.905E-04 0.412 / 1.536
D2 0.042 <2E-16 0.034 / 0.050
PROP · D -0.452 3.1E-13 -0.573 / -0.331
PROP · GEN 1.193 0.08697 -0.173 / 2.559

fairly weak significance. The effect of dropping this term was investigated and only a small

decrease in prediction accuracy was observed (<1%). The use of more complex models for the

high-fanout nets was found to result in “overfitting” to the characterization circuits that led

to lower prediction accuracy in the test circuits. This is likely due to a greater noise presence

in high-fanout versus low-fanout nets. The overfitting phenomenon was not observed for the

low-fanout net modeling: better fitting during characterization for such nets resulted in better

prediction accuracy.

160

A.2 Capacitance Prediction

Table A.2: Prediction model and regression analysis details (low-fanout and high-fanout pre-
diction models).

Parameter Coeff P-Value Lower 95% / Upper 95%

int -544.425 <2E-16 -662.320 / -426.530
FO 359.435 1.48E-13 264.419 / 454.452
BB 53.297 6.72E-10 36.412 / 70.182
NT 521.498 3.39E-15 392.219 / 650.777
GP -177.252 1.23E-9 -234.301 / -120.202
X6 74.155 2.5E-4 34.537 / 113.774
Y 6 52.402 0.00903 13.073 / 91.731
XS · Y S -10.159 6.66E-6 -14.574 / -5.743
FO2 22.694 0.09255 -3.751 / 49.139
BB2 -1.222 0.01139 -2.168 / -0.276
NT 2 -69.444 2.25E-5 -101.536 / -37.352
FP 2 -44.168 0.00323 -73.551 / -14.785
GP 2 -53.275 0.00272 -88.097 / -18.453
X62 -9.777 0.02367 -18.246 / -1.308
Y 62 -9.391 0.02421 -17.558 / -1.225
(XS · Y S)2 0.053 0.00088 0.022 / 0.085
FO3 -1.703 0.06502 -3.513 / 0.106
NT 3 4.638 7.92E-5 2.337 / 6.940
FP 3 3.862 0.01468 0.761 / 6.964
GP 3 5.335 0.00387 1.716 / 8.954

int 2012.409 9.96E-5 1011.598 / 3013.220
FO 67.576 0.04597 1.218 / 133.934
BB -42.029 0.18612 -104.479 / 20.422
NT 182.588 0.00087 75.991 / 289.184
FP 216.387 5.01E-6 125.225 / 307.548

161

A Power Estimation Model Regression Analysis Results

162

References

[Abdo 02] A. Abdollahi, F. Fallah, and M. Pedram. “Runtime Mechanisms for Leakage
Current Reduction in CMOS VLSI Circuits”. In: ACM/IEEE International
Symposium on Low-Power Electronics and Design, pp. 213–218, Monterey,
CA, 2002.

[Agar 04] A. Agarwal, C. Kim, S. Mukhopadhyay, and K. Roy. “Leakage in Nano-
Scale Technologies: Mechanisms, Impact and Design Considerations”. In:
ACM/IEEE Design Automation Conference, pp. 6–11, San Diego, CA, 2004.

[Ahme 02] E. Ahmed and J. Rose. “The Effect of LUT and Cluster Size on Deep-
Submicron FPGA Performance and Density”. In: ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 85–94, Monterey,
CA, 2002.

[Amer 98] E. Amersaekera and F. Najm. Failure Mechanisms in Semiconductor De-
vices. John Wiley and Sons, Toronto, 1998.

[Ande 02] J. Anderson and F. Najm. “Power-Aware Technology Mapping for LUT-
Based FPGAs”. In: IEEE International Conference on Field-Programmable
Technology, pp. 211–218, Hong Kong, 2002.

[Ande 03] J. Anderson and F. Najm. “Switching Activity Analysis and Pre-Layout
Activity Prediction for FPGAs”. In: ACM/IEEE International Workshop
on System-Level Interconnect Prediction, pp. 15–21, Monterey, CA, 2003.

[Ande 04a] J. Anderson, S. Nag, K. Chaudhary, S. Kalman, C. Madabhushi, and
P. Cheng. “Run-Time-Conscious Automatic Timing-Driven FPGA Layout
Synthesis”. In: International Conference on Field-Programmable Logic and
Applications, pp. 168–178, Antwerp, Belgium, 2004.

[Ande 04b] J. Anderson and F. Najm. “Interconnect Capacitance Estimation for FP-
GAs”. In: IEEE/ACM Asia and South Pacific Design Automation Confer-
ence, pp. 713–718, Yokohama, Japan, 2004.

[Ande 04c] J. Anderson and F. Najm. “Low-Power Programmable FPGA Routing Cir-
cuitry”. In: IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 602–609, San Jose, CA, 2004.

163

References

[Ande 04d] J. Anderson and F. Najm. “A Novel Low-Power FPGA Routing Switch”.
In: IEEE Custom Integrated Circuits Conference, pp. 719–722, Orlando, FL,
2004.

[Ande 04e] J. Anderson and F. Najm. “Power Estimation Techniques for FPGAs”.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12,
No. 10, pp. 1015–1027, Oct. 2004.

[Ande 04f] J. Anderson, F. Najm, and T. Tuan. “Active Leakage Power Optimiza-
tion for FPGAs”. In: ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, pp. 33–41, Monterey, CA, 2004.

[Ande 05a] J. Anderson and F. Najm. “Active Leakage Power Optimization for FP-
GAs”. Accepted to appear in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2005.

[Ande 05b] J. Anderson and F. Najm. “Low-Power Programmable FPGA Routing Cir-
cuitry”. Submitted to IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (under review), 2005.

[Anis 02] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry. “Dynamic and Leakage
Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate
Clustering Technique”. In: ACM/IEEE Design Automation Conference,
pp. 480–485, New Orleans, LA, 2002.

[Aziz 04] N. Azizi and F. Najm. “An Asymmetric SRAM Cell to Lower Gate Leakage”.
In: IEEE International Symposium on Quality Electronic Design, pp. 534–
539, San Jose, CA, 2004.

[Basu 04] A. Basu, S.-C. Lin, V. Wason, A. Mehrotra, and K. Banerjee. “Simultaneous
Optimization of Supply and Threshold Voltages for Low-Power and High-
Performance Circuits in the Leakage Dominant Era”. In: ACM/IEEE Design
Automation Conference, pp. 884–887, San Diego, CA, 2004.

[Berk 04] Berkeley Predictive Technology Model (http://www.device.eecs.berkeley.edu/∼ptm/).
University of California, Berkeley, 2004.

[Betz 96] V. Betz and J. Rose. “Directional Bias and Non-Uniformity in FPGA Global
Routing”. In: IEEE/ACM International Conference on Computer-Aided
Design, pp. 652–659, San Jose, CA, 1996.

[Betz 97a] V. Betz and J. Rose. “Cluster-Based Logic Blocks for FPGAs: Area-
Efficiency vs. Input Sharing and Size”. In: IEEE Custom Integrated Circuits
Conference, pp. 551–554, Santa Clara, CA, 1997.

164

References

[Betz 97b] V. Betz and J. Rose. “VPR: A New Packing, Placement and Routing Tool
for FPGA Research”. In: International Workshop on Field-Programmable
Logic and Applications, pp. 213–222, London, UK, 1997.

[Betz 98] V. Betz. “Architecture and CAD for the Speed and Area Optimization
of FPGAs”. In: Ph.D. Thesis, Department of Electrical and Computer
Engineering, University of Toronto, Tornto, Ontario, Canada, 1998.

[Betz 99a] V. Betz and J. Rose. “FPGA Routing Architecture: Segmentation and
Buffering to Optimize Speed and Density”. In: ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 140–149, Monterey,
CA, 1999.

[Betz 99b] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Boston, MA, 1999.

[Boda 00] S. Bodapati and F. N. Najm. “Pre-Layout Estimation of Individual Wire
Lengths”. In: ACM International Workshop on System-Level Interconnect
Prediction, pp. 91–96, San Diego, CA, 2000.

[Bork 99] S. Borkar. “Design Challenges of Technology Scaling”. IEEE Micro, Vol. 19,
No. 4, pp. 23–29, 1999.

[Brow 90] S. Brown, J. Rose, and Z. Vranesic. “A Detailed Router for Field Pro-
grammable Gate Arrays”. In: IEEE International Conference on Computer-
Aided Design, pp. 382–385, San Jose, CA, 1990.

[BSIM4 04] UC Berkeley MOSFET Simulation Model. University of California, Berkeley,
2004.

[Calh 03] B. Calhoun, F. Honore, and A. Chandrakasan. “Design Methodology for
Fine-Grained Leakage Control in MTCMOS”. In: ACM/IEEE International
Symposium on Low-Power Electronics and Design, pp. 104–109, Seoul, Ko-
rea, 2003.

[Chan 92] A. Chandrakasan, S. Sheng, and R. Brodersen. “Low-Power CMOS Digital
Design”. IEEE Journal of Solid State Circuits, Vol. 27, No. 4, pp. 473–484,
Apr. 1992.

[Chen 03] D. Chen, J. Cong, and Y. Fan. “Low-Power High-Level Synthesis for FPGA
Architectures”. In: ACM/IEEE International Symposium on Low-Power
Electronics and Design, pp. 134–139, Seoul, Korea, 2003.

[Chen 04a] D. Chen and J. Cong. “Register Binding and Port Assignment for Multi-
plexer Optimization”. In: IEEE/ACM Asia and South Pacific Design Au-
tomation Conference, pp. 68–73, Yokohama, Japan, 2004.

165

References

[Chen 04b] D. Chen, J. Cong, F. Li, and L. He. “Low-Power Technology Mapping
for FPGA Architectures with Dual Supply Voltages”. In: ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp. 109–117,
Monterey, CA, 2004.

[Chen 92] K. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar. “DAG-Map: Graph-
Based FPGA Technology Mapping for Delay Optimization”. IEEE Design
and Test of Computers, pp. 13–26, Sep. 1992.

[Chou 97] T.-L. Chou and K. Roy. “Statistical Estimation of Combinational and Se-
quential CMOS Digital Circuit Activity Considering Uncertainty of Gate
Delays”. IEICE (Japan) Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, pp. 95–100, 1997.

[Cicc 04] L. Ciccarelli, A. Lodi, and R. Canegallo. “Low Leakage Circuit Design for
FPGAs”. In: IEEE Custom Integrated Circuits Conference, pp. 715–718,
Orlando, FL, 2004.

[Ciri 87] M. Cirit. “Estimating Dynamic Power Consumption of CMOS Circuits”.
In: IEEE International Conference on Computer-Aided Design, pp. 534–
537, San Jose, CA, 1987.

[Clar 02] L. Clark, S. Demmons, N. Deutscher, and F. Ricci. “Standby Power Manage-
ment for a 0.18um Microprocessor”. In: ACM/IEEE International Sympo-
sium on Low-Power Electronics and Design, pp. 7–12, Monterey, CA, 2002.

[Cong 94a] J. Cong and Y. Ding. “FlowMap: An Optimal Technology Mapping Al-
gorithm for Delay Optimization in Look-up-Table Based FPGA Designs”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 13, No. 1, pp. 1–12, 1994.

[Cong 94b] J. Cong and Y. Ding. “On Area/Depth Trade-Off in LUT-Based FPGA
Technology Mapping”. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 2, No. 2, pp. 137–148, 1994.

[Cong 97] J. Cong, Z. Pan, L. He, C.-K. Koh, and K.-Y. Khoo. “Interconnect Design
for Deep Submicron ICs”. In: IEEE/ACM International Conference on
Computer-Aided Design, pp. 478–485, San Jose, CA, 1997.

[Cong 99] J. Cong, C. Wu, and E. Ding. “Cut Ranking and Pruning: Enabling a
General And Efficient FPGA Mapping Solution”. In: ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 29–35, Monterey,
CA, 1999.

[Dona 81] W. Donath. “Wire Length Distribution for Placement of Computer Logic”.
IBM Journal of Research and Development, Vol. 25, No. 152, 1981.

166

References

[Doyl 02] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros,
A. Murthy, and R. Chau. “Transistor Elements for 30nm Physical Gate
Lengths and Beyond”. Intel Technology Journal, Vol. 6, No. 2, pp. 42–54,
May 16 2002.

[Farr 94] A. H. Farrahi and M. Sarrafzadeh. “FPGA Technology Mapping for Power
Minimization”. In: International Workshop on Field-Programmable Logic
and Applications, pp. 167–174, Prague, Czech Republic, 1994.

[Fran 02] D. Frank. “Power-Constrained CMOS Scaling Limits”. IBM Journal of
Research and Development, Vol. 46, No. 2/3, pp. 235–244, March 2002.

[Fran 90] R. Francis, J. Rose, and K. Chung. “Chortle: A Technology Mapping
Program for Lookup Table-Based Field Programmable Gate Arrays”. In:
ACM/IEEE Design Automation Conference, pp. 613–619, Orlando, FL,
1990.

[Fran 91a] R. Francis, J. Rose, and Z. Vranesic. “Chortle-crf: Fast Technology Map-
ping for Lookup Table-Based FPGAs”. In: ACM/IEEE Design Automation
Conference, pp. 227–233, San Francisco, CA, June 1991.

[Fran 91b] R. Francis, J. Rose, and Z. Vranesic. “Technology Mapping for Lookup
Table-Based FPGAs for Performance”. In: IEEE International Conference
on Computer-Aided Design, pp. 568–571, 1991.

[Full 04] B. Fuller. “IC Vendors Lock Horns Over Design Approaches”. EE Times,
February 11 2004.

[Gaya 04a] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Irwin, and T. Tuan.
“A Dual-Vdd Low Power FPGA Architecture”. In: International Confer-
ence on Field-Programmable Logic and Applications, pp. 145–157, Antwerp,
Belgium, 2004.

[Gaya 04b] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin, and
T. Tuan. “Reducing Leakage Energy in FPGAs Using Region-Constrained
Placement”. In: ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, pp. 51–58, Monterey, CA, 2004.

[Geor 01] V. George and J. Rabaey. Low-Energy FPGAs: Architecture and Design.
Kluwer Academic Publishers, Boston, MA, 2001.

[Geor 99] V. George, H. Zhang, and J. Rabaey. “The Design of a Low Energy FPGA”.
In: ACM International Symposium on Low Power Electronics and Design,
pp. 188–193, San Diego, CA, 1999.

167

References

[GnuR 03] The R Project for Statistical Computing (http://www.r-project.org). GNU,
2003.

[Guin 03] R. Guindi and F. Najm. “Design Techniques for Gate-Leakage Reduction in
CMOS Circuits”. In: IEEE International Symposium on Quality Electronic
Design, pp. 61–65, San Jose, CA, 2003.

[Halt 97] J. Halter and F. Najm. “A Gate-level Leakage Power Reduction Method
for Ultra-Low-Power CMOS Circuits”. In: IEEE Custom Integrated Circuits
Conference, pp. 475–478, Santa Clara, CA, 1997.

[Hawk 03] D. Hawk and K. Kolwicz. “Design Your Own ASIC”. Advanced Packaging
Magazine, Sep. 2003.

[Hutt 02] M. Hutton, V. Chan, P. Kazarian, V. Maruri, T. Ngai, J. Park, R. Patel,
B. Pedersen, J. Schleicher, and S. Shumarayev. “Interconnect Enhancements
for a High-Speed PLD Architecture”. In: ACM/SIGDA International Sym-
posium on FPGAs, pp. 3–10, Monterey, CA, 2002.

[Hutt 03] M. Hutton, K. Adibsamii, and A. Leaver. “Adaptive Delay Estimation for
Partitioning-Driven PLD Placement”. IEEE Transactions on Very Large
Scale Integration Systems, Vol. 11, No. 1, pp. 60–63, Feb. 2003.

[Hwan 98] J.-M. Hwang, F.-Y. Chiang, and T.-T. Hwang. “A Re-Engineering Approach
to Low Power FPGA Design Using SPFD”. In: ACM/IEEE Design Automa-
tion Conference, pp. 167–174, San Francisco, CA, 1998.

[Inte 02] International Technology Roadmap for Semiconductors (ITRS).
http://www.itrs.org, 2002.

[Jari 04] D. Jariwala and J. Lillis. “On the Interactions Between Routing and Detailed
Placement”. In: IEEE/ACM International Conference on Computer-Aided
Design, pp. 387–393, San Jose, CA, 2004.

[Jian 02] W. Jiang, V. Tiwari, E. de la Iglesia, and A. Sinha. “Topological Analysis for
Leakage Prediction of Digital Circuits”. In: IEEE International Conference
on VLSI Design, pp. 39–44, Bangalore, India, 2002.

[John 02] M. Johnson, D. Somasekhar, L.-Y. Choiu, and K. Roy. “Leakage Control
with Efficient Use of Transistor Stacks in Single Threshold CMOS”. IEEE
Transactions on Very Large Scale Integared (VLSI) Systems, Vol. 10, No. 1,
pp. 1–5, Feb. 2002.

[Juan 01] J. Juan-Chico, M. Bellido, P. R. de Clavijo, C. Baena, C. Jimenez, and
M. Valencia. “Switching Activity Evaluation of CMOS Digital Circuits Using

168

References

Logic Timing Simulation”. IEEE Electronics Letters, Vol. 37, No. 9, pp. 555–
557, April 26 2001.

[Kao 02] J. Kao, S. Narendra, and A. Chandrakasan. “Subthreshold Leakage Modeling
and Reduction Techniques”. In: IEEE/ACM International Conference on
Computer-Aided Design, pp. 141–148, San Jose, CA, 2002.

[Karn 95] T. Karnik and S.-M. Kang. “An Empirical Model for Accurate Estima-
tion of Routing Delay in FPGAs”. In: IEEE International Conference on
Computer-Aided Design, pp. 328–331, 1995.

[Kesh 01] A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani,
S. Borkar, and V. De. “Effectiveness of Reverse Body Bias for Leakage Con-
trol in Scaled Dual Vt CMOS ICs”. In: ACM/IEEE International Sympo-
sium on Low Power Electronics and Design, pp. 207–211, Huntington Beach,
CA, 2001.

[Kim 02] C. Kim and K. Roy. “Dynamic Vth Scaling Scheme for Active Leakage Power
Reduction”. In: IEEE Design, Automation and Test in Europe Conference,
pp. 163–167, Paris, France, 2002.

[Kim 03] C. Kim, J.-J. Kim, S. Mukhopadhyay, and K. Roy. “A Forward Body-Biased
Low-Leakage SRAM Cache: Device and Architecture Considerations”. In:
ACM/IEEE International Symposium on Low-Power Electronics and De-
sign, pp. 6–9, Seoul, Korea, 2003.

[Kris 02] R. Krishnamurthy, A. Alvandpour, V. De., and S. Borkar. “High-
Performance and Low-Power Challenges for Sub-70nm Microprocessor Cir-
cuits”. In: IEEE Custom Integrated Circuits Conference, pp. 125–128, San
Jose, CA, 2002.

[Kuma 98] K. Kumagai, H. Iwaki, H. Yoshida, H. Suzuki, T. Yamada, and S. Kurosawa.
“A Novel Powering-Down Scheme for Low Vt CMOS Circuits”. In: IEEE
Symposium on VLSI Circuits, pp. 44–45, Honolulu, HI, 1998.

[Kumt 00a] B. Kumthekar, L. Benini, E. Macii, and F. Somenzi. “Power Optimisation in
FPGA-based Design Without Rewiring”. IEE Proc. Comput. Digit. Tech.,
Vol. 147, No. 3, pp. 167–174, May 2000.

[Kumt 00b] B. Kumthekar and F. Somenzi. “Power and Delay Reduction via Simultane-
ous Logic and Placement Optimization in FPGAs”. In: ACM/IEEE Design,
Automation and Test in Europe Conference, pp. 202–207, 2000.

[Kuss 98] E. Kusse and J. Rabaey. “Low-Energy Embedded FPGA Structures”. In:
ACM/IEEE International Symposium on Low-Power Electronics Design,
pp. 155–160, Monterey, CA, 1998.

169

References

[Lamm 03] D. Lammers. “Chip Industry Growing, But Experts Wonder For How Long”.
EE Times, December 2003.

[Lamo 03] J. Lamoureux and S. Wilton. “On the Interaction Between Power-Aware
FPGA CAD Algorithms”. In: IEEE/ACM International Conference on
Computer-Aided Design, pp. 701–708, San Jose, CA, 2003.

[Lee 03] D. Lee and D. Blaauw. “Static Leakage Reduction Through Simultaneous
Threshold Voltage and State Assignment”. In: ACM/IEEE Design Automa-
tion Conference, pp. 191–194, Anaheim, CA, 2003.

[Lee 04] D. Lee, D. Blaauw, and D. Sylvester. “Gate Oxide Leakage Current Analysis
and Reduction for VLSI Circuits”. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 12, No. 2, pp. 155–166, Feb. 2004.

[Lemi 02] G. Lemieux and D. Lewis. “Circuit Design of Routing Switches”. In:
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, pp. 19–28, Monterey, CA, 2002.

[Lemi 03] G. Lemieux. “Routing Architecture for Field-Programmable Gate Arrays”.
In: Ph.D. Thesis, Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, Ontario, Canada, 2003.

[Lemi 04] G. Lemieux. “Directional and Single-Driver Wires in FPGA Intercon-
nect”. In: IEEE International Conference on Field-Programmable Tech-
nology, pp. 41–48, Brisbane, Australia, 2004.

[Lemi 93] G. Lemieux and S. Brown. “A Detailed Router for Allocating Wire Segments
in FPGAs”. In: ACM/SIGDA Physical Design Workshop, pp. 215–226, Lake
Arrowhead, CA, 1993.

[Lewi 03] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt,
C. McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and
J. Rose. “The Stratix Routing and Logic Architecture”. In: ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp. 12–20,
Monterey, CA, 2003.

[Li 01] H. Li, W.-K. Mak, and S. Katkoori. “LUT-Based FPGA Technology Map-
ping for Power Minimization with Optimal Depth”. In: IEEE Computer
Society Workshop on VLSI, pp. 123–128, Orlando, FL, 2001.

[Li 03] F. Li, D. Chen, L. He, and J. Cong. “Architecture Evaluation for Power-
Efficient FPGAs”. In: ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, pp. 175–184, Monterey, CA, 2003.

170

References

[Li 04a] F. Li and L.He. “Vdd Programmability to Reduce FPGA Interconnect
Power”. In: IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 760–765, San Jose, CA, 2004.

[Li 04b] F. Li, Y. Lin, and L. He. “FPGA Power Reduction Using Configurable
Dual-Vdd”. In: ACM/IEEE Design Automation Conference, pp. 735–740,
San Diego, CA, 2004.

[Li 04c] F. Li, Y. Lin, L. He, and J. Cong. “Low-Power FPGA Using Pre-Defined
Dual-Vdd/Dual-Vt Fabrics”. In: ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 42–50, Monterey, CA, 2004.

[Liu 02] Y. Liu and Z. Gao. “Timing Analysis of Transistor Stack for Leakage Power
Saving”. In: IEEE International Conference on Electronics, Circuits and
Systems, pp. 41–44, Dubrovnik, Croatia, 2002.

[Lou 02] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng. “Estimating Routing
Congestion Using Probabilistic Analysis”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 21, No. 1, pp. 32–41,
Jan. 2002.

[Maid 03] P. Maidee, C. Ababei, and K. Bazargan. “Fast Timing-driven Partitioning-
based Placement for Island Style FPGAs”. In: ACM/IEEE Design Automa-
tion Conference, pp. 598–603, Anaheim, CA, 2003.

[Marc 98] R. Marculescu, D. Marculescu, and M. Pedram. “Probabilistic Modeling of
Dependencies During Switching Activity Analysis”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No. 2,
pp. 73–83, Feb. 1998.

[Marq 00] A. Marquardt, V. Betz, and J. Rose. “Timing-Driven Placement for FP-
GAs”. In: ACM International Symposium on Field-Programmable Gate Ar-
rays, pp. 203–213, Monterey, CA, 2000.

[Marq 99] A. Marquardt, V. Betz, and J. Rose. “Using Cluster Based Logic Blocks
and Timing-Driven Packing to Improve FPGA Speed and Density”. In:
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, pp. 37–46, Monterey, CA, 1999.

[Mart 02] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. “Combined Dynamic
Voltage Scaling and Adaptive Body Biasing for Lower Power Microproces-
sors under Dynamic Workloads”. In: IEEE International Conference on
Computer-Aided Design, pp. 721–725, San Jose, CA, 2002.

171

References

[McMu 95] L. McMurchie and C. Ebeling. “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs”. In: ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 111–117, Monterey,
CA, 1995.

[Meht 95] H. Mehta, M. Borah, R. M. Owens, and M. J. Irwin. “Accurate Estimation
of Combinational Circuit Activity”. In: ACM/IEEE Design Automation
Conference, pp. 618–622, San Francisco, CA, 1995.

[Mont 93] J. Monterio, S. Devadas, and A. Ghosh. “Retiming Sequential Circuits for
Low Power”. In: IEEE International Conference on Computer-Aided Design,
pp. 398–402, San Jose, CA, 1993.

[Najm 93] F. Najm. “Transition Density: A New Measure of Activity in Digital Cir-
cuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 12, pp. 310–323, Feb. 1993.

[Najm 94] F. N. Najm. “A Survey of Power Estimation Techniques in VLSI Circuits”.
IEEE Transactions on Very-Large Scale Integration (VLSI) Systems, Vol. 2,
No. 4, pp. 446–455, Dec. 1994.

[Nare 01] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan.
“Scaling of Stack Effect and its Application for Leakage Reduction”. In:
ACM/IEEE International Symposium on Low Power Electronics and De-
sign, pp. 195–200, Huntington Beach, CA, 2001.

[Nema 96] M. Nemani and F. N. Najm. “Towards a High-Level Power Estimation
Capability”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 16, No. 6, pp. 588–598, June 1996.

[Nema 99] M. Nemani and F. N. Najm. “High-Level Area and Power Estimation for
VLSI Circuits”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 18, No. 6, pp. 697–713, June 1999.

[Nguy 03] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and
K. Keutzer. “Minimization of Dynamic and Static Power Through Joint As-
signment of Threshold Voltages and Sizing Optimization”. In: ACM/IEEE
International Symposium on Low Power Electronics and Design, pp. 158–
163, Seoul, Korea, 2003.

[Nowa 02] E. Nowak. “Maintaining the Benefits of CMOS Scaling when Scaling Bogs
Down”. IBM Journal of Research and Development, Vol. 46, No. 2/3,
pp. 169–180, March 2002.

172

References

[Poon 02a] K. Poon. “Power Estimation for Field Programmable Gate Arrays”. In:
M.A.Sc. Thesis, Department of Electrical and Computer Engineering, Uni-
versity of British Columbia, Vancouver, British Columbia, Canada, 2002.

[Poon 02b] K. Poon, A. Yan, and S. J. E. Wilton. “A Flexible Power Model for FPGAs”.
In: International Conference on Field-Programmable Logic and Applications,
pp. 312–321, Montpellier, France, 2002.

[Rahm 04] A. Rahman and V. Polavarapuv. “Evaluation of Low-Leakage Design Tech-
niques for Field-Programmable Gate Arrays”. In: ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 23–30, Monterey,
CA, 2004.

[Rose 89] J. Rose, R. Francis, P. Chow, and D. Lewis. “The Effect of Logic Block
Complexity on Area of Programmable Gate Arrays”. In: IEEE Custom
Integrated Circuits Conference, pp. 5.3.1–5.3.5, San Diego, CA, 1989.

[Rose 91] J. Rose and S. Brown. “Flexibility of Interconnection Structures for Field-
Programmable Gate Arrays”. IEEE Journal of Solid State Circuits, Vol. 26,
No. 3, pp. 277–282, 1991.

[Roy 03] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. “Leakage Cur-
rent Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer
CMOS Circuits”. In: Proceedings of the IEEE, pp. 305–327, Feb. 2003.

[Roy 99] K. Roy. “Power-Dissipation Driven FPGA Place and Route Under Timing
Constraints”. IEEE Transactions On Circuits and Systems, Vol. 46, No. 5,
pp. 634–637, May 1999.

[Saku 02] T. Sakurai. “Minimizing Power Across Multiple Technology and Design
Levels”. In: IEEE International Conference on Computer-Aided Design,
pp. 24–27, San Jose, CA, 2002.

[Sant 03] M. Santarini. “Are Structured ASICs a Dead End for EDA?”. EE Times,
June 23 2003.

[Schl 94] M. Schlag, J. Kong, and P. Chan. “Routability-Driven Technology Mapping
for Lookup Table-Based FPGAs”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No. 1, pp. 13–26, 1994.

[Sedr 97] A. Sedra and K. Smith. Microelectronic Circuits. Oxford University Press,
Toronto, fourth Ed., 1997.

[Sent 92] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. “SIS: A

173

References

System for Sequential Circuit Synthesis”. University of California at Berke-
ley, Memorandum No. UCB/ERL M92/41, 1992.

[Shan 02] L. Shang, A. Kaviani, and K. Bathala. “Dynamic Power Consumption in
the Virtex-II FPGA Family”. In: ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pp. 157–164, Monterey, CA, 2002.

[Shen 92] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. “On Average Power Dis-
sipation and Random Pattern Testability of CMOS Combinational Logic
Networks”. In: IEEE International Conference on Computer-Aided Design,
pp. 402–407, Santa Clara, CA, 1992.

[Sing 02] A. Singh and M. Marek-Sadowska. “Efficient Circuit Clustering for Area and
Power Reduction in FPGAs”. In: ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pp. 59–66, Monterey, CA, Feb. 2002.

[Sing 90] S. Singh, J. Rose, D. Lewis, K. Chung, and P. Chow. “Optimization of
Field-Programmable Gate Array Logic Block Architecture for Speed”. In:
IEEE Custom Integrated Circuits Conference, pp. 6.1.1–6.1.6, Boston, MA,
1990.

[Siri 02] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw. “Duet: An
Accurate Leakage Estimation and Optimization Tool for Dual-Vt Circuits”.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10,
No. 2, pp. 79–90, Apr. 2002.

[Soel 00] H. Soeleman, K. Roy, and T.-L. Chou. “Estimating Circuit Activity in Com-
binational CMOS Digital Circuits”. IEEE Design and Test of Computers,
pp. 112–119, April-June 2000.

[Spar 04] Spartan-3 FPGA Data Sheet. Xilinx, Inc., San Jose, CA, 2004.

[Sriv 04a] A. Srivastava, D. Sylvester, and D. Blaauw. “Power Minimization Us-
ing Simultaneous Gate Sizing, Dual-Vdd and Dual-Vth Assignment”. In:
ACM/IEEE Design Automation Conference, pp. 783–787, San Diego, CA,
2004.

[Sriv 04b] A. Srivastava, D. Sylvester, and D. Blaauw. “Statistical Optimization of
Leakage Power Considering Process Variations using Dual-Vth Sizing”. In:
ACM/IEEE Design Automation Conference, pp. 773–778, San Diego, CA,
2004.

[Stok 03] L. Stok and J. Cohn. “There is Life Left in ASICs”. In: ACM/IEEE Inter-
national Symposium on Physical Design, pp. 48–50, Monterey, CA, 2003.

[Stra 03] Stratix FPGA Device Handbook. Altera Corp., San Jose, CA, 2003.

174

References

[Stra 04] Stratix-II FPGA Data Sheet. Altera Corp., San Jose, CA, 2004.

[Sult 04] A. Sultania, D. Sylvester, and S. Sapatnekar. “Tradeoffs between Gate Oxide
Leakage and Delay for Dual Tox Circuits”. In: ACM/IEEE Design Automa-
tion Conference, pp. 761–766, San Diego, CA, 2004.

[Swar 98] J. Swartz, V. Betz, and J. Rose. “A Fast Routability-Driven Router for FP-
GAs”. In: ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 140–149, Monterey, CA, 1998.

[Synopsys 04] Synopsys Design Compiler Reference Manual: Contraints and Timing. Syn-
opsys, Inc., 2004.

[Taur 02] Y. Taur. “CMOS Design Near the Limit of Scaling”. IBM Journal of Re-
search and Development, Vol. 46, No. 2/3, pp. 213–222, March 2002.

[Thom 98] S. Thompson, P. Packan, and M. Bohr. “MOS Scaling: Transistor Challenges
for the 21st Century”. Intel Technology Journal, Vol. Q3’98, 1998.

[Toga 98] N. Togawa, K. Ukai, M. Yanagisawa, and T. Ohtsuki. “A Simultaneous
Placement and Global Routing Algorithm for FPGAs with Power Optimiza-
tion”. In: IEEE Asia-Pacific Conference on Circuits and Systems, pp. 125–
128, Chiangmai, Thailand, 1998.

[TSMCPROC 02] 0.18um Process Models. Taiwan Semiconductor Manufacturing Corporation,
2002.

[Tuan 03] T. Tuan and B. Lai. “Leakage Power Analysis of a 90nm FPGA”. In: IEEE
Custom Integrated Circuits Conference, pp. 57–60, San Jose, CA, 2003.

[Usam 02] K. Usami, N. Kawabe, M. Koizumi, K. Seta, and T. Furusawa. “Auto-
mated Selective Multi-Threshold Design for Ultra-Low Standby Applica-
tions”. In: IEEE International Conference on Low-Power Electronics and
Design, pp. 202–206, Monterey, CA, 2002.

[Virt 03] Virtex II PRO FPGA Data Sheet. Xilinx, Inc., San Jose, CA, 2003.

[Virt 04] Virtex-4 FPGA Data Sheet. Xilinx, Inc., San Jose, CA, 2004.

[Wang 01] Z.-H. H. Wang, E.-C. Liu, J. Lai, and T.-C. Wang. “Power Minimiza-
tion in LUT-Based FPGA Technology Mapping”. In: ACM/IEEE Asia
and South Pacific Design Automation Conference, pp. 635–640, Yokohama,
Japan, 2001.

175

References

[Wang 02] Q. Wang and S. B. K. Vrudhula. “Algorithms for Minimizaing Standby
Power in Deep Submicrometer, Dual-Vt CMOS Circuits”. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21,
No. 3, pp. 306–318, March 2002.

[Wang 97] C.-C. Wang and C.-P. Kwan. “Low Power Technology Mapping by Hiding
High-Transition Paths in Invisible Edges for LUT-Based FPGAs”. In: IEEE
International Symposium On Circuits and Systems, pp. 1536–1539, Hong
Kong, 1997.

[Wilt 00] S. Wilton. “Heterogeneous Technology Mapping for Area Reduction in FP-
GAs with Embedded Memory Arrays”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 19, No. 1, pp. 56–68,
Jan. 2000.

[Wilt 04] S. Wilton, S.-S. Ang, and W. Luk. “The Impact of Pipelining on Energy per
Operation in Field-Programmable Gate Arrays”. In: International Confer-
ence on Field Programmable Logic and Applications, pp. 719–728, Antwerp,
Belgium, 2004.

[Wrig 00] R. L. Wright and M. A. Shanblatt. “Improved Switching Activity Estimation
for Behavioral and Gate Level Designs”. In: IEEE Midwest Symposium on
Circuits and Systems, pp. 172–175, Lansing, MI, 2000.

[X4K 02] XC4000XLA FPGA Data Sheet. Xilinx, Inc., San Jose, CA, 2002.

[XilinxCh 04] Xilinx ChipScope Pro (http://www.xilinx.com/ise/verification/chipscope pro.htm).
Xilinx, Inc., 2004.

[XPower 03] Xilinx Power Tools (http://www.xilinx.com/ise/power tools). Xilinx, Inc.,
2003.

[Ye 04] A. Ye, J. Rose, and D. Lewis. “Using Multi-Bit Logic Blocks and Au-
tomated Packing to Improve Field-Programmable Gate Array Density for
Implementing Datapath Circuits”. In: IEEE International Conference on
Field-Programmable Technology, pp. 129–136, Brisbane, Australia, 2004.

[Yeap 98] G. Yeap. Practical Low Power Digital VLSI Design. Kluwer Academic
Publishers, Boston, MA, 1998.

[Yu 00] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin. “Limits of Gate-
Oxide Scaling in Nano-Transistors”. In: IEEE Symposium on VLSI Tech-
nology, pp. 90–91, Honolulu, Hawaii, 2000.

176

References

[Zeit 04] P. Zeitzoff. “MOSFET Scaling Trends and Challenges Through the End of
the Roadmap”. In: IEEE Custom Integrated Circuits Conference, pp. 233–
240, Orlando, FL, 2004.

[Zuch 02] P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, and B. Troxel.
“A Hybrid ASIC and FPGA Architecture”. In: IEEE International Confer-
ence on Computer-Aided Design, pp. 187–194, San Jose, CA, 2002.

177

