
Area-Efficient FPGA Logic Elements: Architecture and Synthesis

Jason H. Anderson Qiang Wang

Dept. of ECE, University of Toronto Xilinx, Inc.
Toronto, ON Canada San Jose, CA USA

e-mail: janders@eecg.toronto.edu e-mail: qiangw@xilinx.com

Abstract— We consider architecture and synthesis techniques
for FPGA logic elements (function generators) and show that the
LUT-based logic elements in modern commercial FPGAs are over-
engineered. Circuits mapped into traditional LUT-based logic el-
ements have speeds that can be achieved by alternative logic ele-
ments that consume considerably less silicon area. We introduce
the concept of a trimming input to a logic function, which is an
input to a K-variable function about which Shannon decomposi-
tion produces a cofactor having fewer than K − 1 variables. We
show that trimming inputs occur frequently in circuits and we
propose low-cost asymmetric FPGA logic element architectures
that leverage the trimming input concept, as well as some other
properties of a circuit’s AND-inverter graph (AIG) functional rep-
resentation. We describe synthesis techniques for the proposed
architectures that combine a standard cut-based FPGA technol-
ogy mapping algorithm with two straightforward procedures: 1)
Shannon decomposition, and 2) finding non-inverting paths in the
circuit’s AIG. The proposed architectures exhibit improved logic
density versus traditional LUT-based architectures with minimal
impact on circuit speed.

I. INTRODUCTION

Look-up-tables (LUTs) have been the mainstay of FPGA logic
blocks since the invention of FPGAs in the mid-1980s. A K-LUT
is a single-output memory with K address lines that can implement
any Boolean function that uses up to K variables. The earliest FP-
GAs used 4-LUTs, established as the best LUT size to maximize area-
efficiency [1]. State-of-the-art FPGAs are oriented towards speed. In-
terconnect in FPGAs is slow as compared with custom ASICs, due
to the presence of programmable routing switches and the overheads
imposed by programmability. Modern FPGAs therefore use 6-LUTs,
which lead to fewer levels of interconnect and thereby provide higher
speed [2, 3].

Relative to custom ASICs, FPGAs consume up to 35× more sili-
con area for implementing a given function [4]. Higher logic density
is a key goal for FPGAs in pursuit of closing the gap with custom
ASICs. Higher density equates with lower cost, shorter wirelengths
and lower power. A known issue with the use of 6-LUTs in logic
blocks is under-utilization. Many LUT functions in mapped circuits
simply do not require 6 inputs, potentially leading to low logic density.
To counter this, the commercial vendors add extra outputs onto their
LUTs – a straightforward modification due to the nature of a LUT’s
implementation in hardware, which is a tree structure. The LUTs in
modern FPGAs are thus made fracturable into smaller LUTs. LUTs in
the Xilinx Virtex-6 FPGA can implement any single 6-variable logic
function, or any two functions that together use up to 5 distinct vari-
ables [2]. The 6-LUT in Altera’s Stratix IV FPGA offers even more
flexibility, including the ability to implement two separate 4-variable
functions [3].

We explore new FPGA logic element architectures, which can of-
fer improved density over the 6-LUTs present in modern commercial

FPGAs. Our architectures represent a new way of improving logic
density, as compared with the fracturable multi-output LUTs in to-
day’s commercial FPGAs. Our elements contain smaller LUTs and
yet they deliver most if not all of the benefit afforded by larger LUTs,
while retaining the area associated with the smaller LUTs.

The genesis of the proposed architectures is rooted in observa-
tions made about the synthesis netlist, which is an AND-inverter graph
(AIG). In particular, we observe that logic functions in circuits rep-
resented using AIGs frequently have a trimming input: Shannon de-
composition about the input produces a “small” cofactor (uses few
variables). The trimming input property permits the use of low-cost
logic elements that require less silicon area than LUTs. We present
straightforward techniques to map circuits into the proposed architec-
tures. While recent work on technology mapping and logic synthesis
has focused on reducing the number of LUTs needed to implement
circuits [5, 6], our work is unique in that we take an architectural ap-
proach wherein we use logic synthesis concepts to influence the de-
sign of the logic element architecture itself. Our experimental results
demonstrate that with the proposed logic element architectures, silicon
area can be reduced without any appreciable impact to circuit delay –
a result we believe will keenly interest FPGA architects and vendors.

The remainder of this paper is organized as follows: Section II in-
troduces relevant background material on FPGA logic elements, tech-
nology mapping and synthesis techniques for FPGAs. Our logic ele-
ment architectures are described in Section III, as are the approaches
used to map circuits into them. An experimental evaluation is given in
Section IV. Conclusions appear in Section V.

II. BACKGROUND

A. Traditional Logic Element: LUT

The thrust of our work is a new approach for reducing the silicon
area consumed by FPGA logic elements, while at the same time main-
taining functional flexibility and also circuit speed. The LUTs in to-
day’s FPGAs are quite costly, consuming silicon area exponentially
proportional to the number of LUT inputs (K). A K-LUT is a hard-
ware implementation of a truth table and contains 2K SRAM cells
(one SRAM cell for each of the 2K minterms of K Boolean vari-
ables) and 2K−1 2-to-1 multiplexers organized in a tree structure (to
“select” the truth table row and steer an SRAM cell’s content to the
LUT output). A 6-LUT, such as those used in the Xilinx Virtex-6 [2]
FPGA, contains 64 SRAM cells and 63 2-to-1 multiplexers. A 5-LUT,
on the other hand, has only 32 SRAM cells – half the area of a 6-LUT.

B. Technology Mapping

For the purpose of technology mapping, the combinational part of
a logic circuit can be represented as a Boolean network, which is a
directed acyclic graph (DAG), G(V, E), where each node, v ∈ V ,
represents a logic function and an edge, e ∈ E, represents a depen-
dency between logic functions. Primary inputs (PIs) of the Boolean

cut1

cut2

cut3

z

x y

s t u

a) Example cuts

a b c
c

a b
b) Logic network and AIG representation

complemented
edge

Fig. 1. Cuts and AND-inverter graph (AIG) representation.

network have an in-degree of 0 (no fanins); primary outputs (POs)
have an out-degree of 0 (no fanouts). The fanin cone of a node v
is the sub-graph of G comprising v and all of its predecessors (both
immediate and transitive predecessors).

Modern FPGA technology mappers are based on the idea of finding
the K-feasible cuts for the nodes of the Boolean network. A cut, C,
for a node v is a partition, (V ,V), of the fanin cone of v such that
v ∈ V and the restriction that no node in V lies in the fanin cone of
any node in V . Fig. 1(a) illustrates three different 3-feasible cuts for
a node z. Taking cut3 as an example, V = {x, y, z}. For any cut C,
we use Inputs(C) to represent the set of nodes in V that drive a node
in V . For cut3 in Fig. 1(a), Inputs(cut3) = {s, t, u}. We say that C
is K-feasible if |Inputs(C)| ≤ K. Since a K-LUT can implement
any K variable function, the logic functionality of V in a K-feasible
cut, C = (V, V), can be realized in a single LUT. There is a one-to-one
correspondence between finding all of the K-feasible cuts for a node
and finding all the K-LUT mappings for the node. Computationally
efficient techniques to compute the set of all K-feasible cuts for all
network nodes are well-known [7, 8].

Given that one can find all K-feasible cuts for each node in the
Boolean network, the high-level technology mapping flow is as fol-
lows: 1) the network is traversed in topological order and a “best” cut
is selected for each node. The best cut is normally selected using a
cost function that ranks cuts according to physical metrics: area, de-
lay, and power consumption. 2) After cut selection, the network is
traversed in reverse topological order: LUTs in the mapped network
are introduced corresponding to the best cut for each node.

C. ABC Framework and the AIG Representation

We conduct our research using the ABC synthesis framework, de-
veloped by Mishchenko at UC Berkeley [9]. In ABC, the Boolean net-
work representation of the circuit contains only 2-input AND gates and
inverters – a data structure known as an AND-inverter graph (AIG).
Fig. 1(b) shows a logic circuit and its AIG representation. Observe
that inverters are not represented explicitly in the AIG, but rather as
attributes on edges between the AND gates. Despite the simplicity of
AIGs, the current best published results on FPGA synthesis and map-
ping have been produced using the synthesis and mapping algorithms
implemented within the ABC framework (e.g. [6, 10]).

The ABC framework incorporates a cut-based FPGA technology
mapper that has been shown to produce results on par with any com-
peting mapper [11]. The mapper uses the notion of priority cuts for
each node of the AIG, where, instead of storing all K-feasible cuts for
each node (as was done in prior mappers), only a limited set of highly
ranked cuts are stored, saving memory and run-time. Despite the prun-
ing of cuts, no appreciable quality degradation was observed [11]. We
use the priority cuts mapper as a comparative baseline in this paper.

z

a b

c

d e

f

z

a b

c

d e

f

logic-0

x
x

a) AIG example b) Shannon 0-cofactor for b

Fig. 2. Finding Shannon cofactors using AIGs.

D. Shannon Decomposition

Our architecture and mapping approach are based on the well-
known Shannon’s decomposition theorem, which we briefly review
here. Using Shannon’s theorem, any Boolean function, g, of n vari-
ables, g = f(x1, x2, ..., xi, ...xn), can be decomposed with respect to
one of its variables, xi, and written as the logical OR of two subfunc-
tions:

g = xi · f(x1, x2, ..., 1, ..., xn) + xi · f(x1, x2, ..., 0, ..., xn) (1)

where f(x1, x2, ..., 1, ..., xn) is called the 1-cofactor of f with respect
to variable xi, and f(x1, x2, ..., 0, ..., xn) is called the 0-cofactor. A
shorthand notation for the 1- and 0-cofactors is gxi and gxi , respec-
tively. In this paper, we use |gxi | to represent the number of variables
in a cofactor (in this case, the 1-cofactor). We refer to this as the size
of the cofactor.

“Non-inverting paths” in the AIG can be used to compute Shan-
non cofactors of logic functions. Non-inverting paths are chains of
AND gates in the AIG connected through uncomplemented (i.e. “true”)
edges. Fig. 2(a) gives an example AIG for a function: z = (a · b · c) ·
(d · e · f). Suppose that we wish to compute the 0-cofactor about
input b. Setting b to logic-0 propagates up the AIG through non-
inverting edges(s) resulting in AND gate outputs evaluating to logic-0.
In essense, AND gates are “eliminated” from the AIG, namely, those
marked with x in Fig. 2(b), producing a reduced AIG. The 0-cofactor

with respect to b is: zb = (0) · (d · e · f) = f + d · e.

III. LOGIC ELEMENT ARCHITECTURES AND MAPPING

In this section, we first introduce the proposed logic element ar-
chitectures, and then describe technology mapping techniques used to
map circuits into them.

A. Architectures

We introduce our first logic element architecture using the exam-
ple function z of Fig. 2(a). Considering the Shannon decomposition

with respect to variable e, we have cofactors: ze = (a · b · c) · (d · f)
and ze = (a · b · c) · f . Observe that ze is a function of 5 variables,
whereas, ze is a function of only 4 variables, i.e. |ze| = 4. In such
cases, we do not need a full 6-input LUT to implement the logic func-
tion. We can use a considerably smaller block. In particular, instead
of using a 6-LUT, we can implement the logic function in the logic
element shown in Fig. 3(a), containing a 5-LUT, a 4-LUT and a 2-to-1
multiplexer. Carrying on with the example, input i6 of the element in
Fig. 3(a) can be tied to variable e and the 5-LUT can be used to im-
plement ze, while the 4-LUT implements ze. We refer to function z

a) 5+4-LUT

5-LUT

4-LUT

s

i6

i5i4i3i2i1

b) Extended 5-LUT

5-LUT

s

i6

i5i4i3i2i1

s

SRAM cell

Fig. 3. Asymmetric 5+4-LUT and extended 5-LUT logic element
architectures.

y

a b c
d e

f

b) AIG with gating input c

z

a b c d

e f

a) AIG with gating inputs e,f

Fig. 4. AIGs with gating inputs.

as having a trimming input (e) due the presence of the small cofactor.
Shannon decomposition about e produces a cofactor where some input
variables are “trimmed” away. We formally characterize a trimming
input as follows:

Definition: A k-variable logic function, g = f(x1, ..., xk), has a
trimming input xi if Shannon decomposition about xi produces a 0-
or 1-cofactor having fewer than k − 1 variables, i.e., |gxi | < k − 1
and/or |gxi | < k − 1.

Observe that the select input to the multiplexer in Fig. 3(a) has pro-
grammable inversion controlled by an SRAM configuration cell. The
programmable inversion permits handling of cases where either the
0-cofactor or the 1-cofactor is the smaller cofactor. The structure in
Fig. 3(a) uses 32 + 16 + 1 = 49 SRAM configuration cells, as com-
pared with 64 cells for a 6-LUTs – a ∼23% area savings. We refer to
the element in Fig. 3(a) as the 5+4-LUT logic element architecture.

To understand the prevalence of trimming inputs to logic functions
in real circuits, we mapped 5 representative circuits into 6-LUTs us-
ing the priority cuts mapper described in [11]. We then analyzed the
LUTs in the mapping solutions that used all 6 of their inputs; i.e., the
LUTs that implement 6-variable logic functions. Fig. 5(a) illustrates
the extent to which 6-variable logic functions in LUTs have trimming
inputs. The circuit name is shown on the horizontal axis; the per-
centage of 6-LUTs with a trimming input is shown on the vertical
axis. The data shows that overwhelmingly, 6-variable logic functions
in LUT-mapped circuits have at least one trimming input. The full
computational power of a 6-LUT is not needed for the majority of
LUTs in circuits, suggesting it may indeed be possible to reduce logic
element size without compromising mapped depth.

Before introducing the second logic element architecture, we de-
fine the concept of a gating input to a logic function. A gating input
to a logic function is an input whose logic-0 or logic-1 state forces the

20
30
40
50
60
70
80
90

100

%
 o

f 6
-L

U
Ts

20
30
40
50
60
70
80
90

100

%
 o

f 6
-L

U
Ts

a) Fraction of 6-LUTs with trimming input b) Fraction of 6-LUTs with gating input

Fig. 5. Fraction of 6-input LUTs in mapped designs that a) have a trimming
input, or b) have a gating input.

function to evaluate to either logic-0 or logic-1. That is, one of the
two logic states of a gating input has a controlling effect on the overall
function – when the gating input is in a particular logic state, the re-
maining inputs are don’t care. Gating inputs can be identified through
Shannon decomposition:

Definition: A k-variable logic function, g = f(x1, ..., xk), has
a gating input if Shannon decomposition about one of its inputs, xi,
produces either a 0- or 1-cofactor having zero variables, i.e., either
|gxi | = 0 or |gxi | = 0. Input xi is called a gating input to g.

The second logic element architecture we consider is shown in
Fig. 3(b). The element is more restrictive than the 5+4-LUT element
as it requires the presense of a gating input to implement a 6-variable
function. We refer to the element as an extended 5-LUT – a term we
introduced in our prior work [12]. To understand this element, con-
sider the AIG example of Fig. 4(a). Observe that AIG inputs e and
f are gating inputs which have non-inverting paths to the root node.
When either e or f is logic-0, the function is forced to logic-0. The
6-variable function of Fig. 4(a) can be realized in an extended 5-LUT,
where either variable e or f is attached to input i6 and the SRAM
configuraton cell feeding the MUX data input is set to logic-0. The
programmable inversion on the MUX select input allows either state of
a gating input signal to be the “forcing” state.

A different style of gating input example is given in Fig. 4(b). In

this case, the logic function of the AIG is: y = (a · b · c · d · e) ·
(c · d · e · f). Applying De Morgan’s theorem to the clauses yields:
y = (a + b + c + d · e) · (c + d · e + f). The literal c appears in both
clauses and therefore, input c is a gating input that causes the function
to evaluate to logic-1 (when c is logic-0). The 0-cofactor with respect
to c is: yc = 1 and therefore: |yc| = 0. Note that the extended 5-
LUT here has broader application versus that described in our prior
work [12]; the prior work only considered gating inputs that force a
function to logic-0.

We analyzed the pervasiveness of gating inputs in LUT-mapped cir-
cuits. Taking the same approach as above, examining 6-input LUTs
in mapping solutions produced by [11], Fig. 5(b) shows the fraction
of 6-LUTs that have a gating input for the same circuits considered
in Fig. 5(a). For two of the five circuits, about 80% of 6-LUTs have
a gating input. Comparing Fig. 5(a) with Fig. 5(b), we see that as
expected, LUTs with gating inputs are not as common as LUTs with
trimming inputs. While LUTs with gating inputs must by definition
have a trimming input, the converse is not true. LUTs with a trimming
input do not necessarily have a gating input. Nevertheless, Fig. 5(b)
illustrates that 6-input LUTs implementing logic functions with gating
inputs are common in some circuits.

With Shannon decomposition in hand as a tool to easily identify
logic functions with trimming inputs and gating inputs in AIGs, we
can target a variety of low-cost logic element architectures that are

a) Two extended 4-LUTs

4-LUT

i4i3i2i1

4-LUT

s

i5

s

s

i6

b) Extended 4-LUT + extended 3-LUT

3-LUT

i4i3i2i1

4-LUT

s

i5

s

s

i6

3-LUT

s

3-LUT

i4i3i2i1

4-LUT

s

i5

s

i6

3-LUT

s

c) Extended 4+3-LUT

M1

M2

M3

M1

M2

M3

M1

M2

Fig. 6. Low-cost logic element architectures.

TABLE I
NUMBER OF SRAM CONFIG. CELLS IN LOGIC ELEMENT ARCHITECTURES.

Architecture SRAM cells Ratio vs. 6-LUTs

6-LUT 64 1.00
5-LUT 32 0.50
5+4-LUT 49 0.77
Extended 5-LUT 34 0.53
Two extended 4-LUTs 35 0.55
Extended 4-LUT + extended 3-LUT 28 0.44
Extended 4+3-LUT 27 0.42

alternatives to 6-LUTs. Fig. 3 and Fig. 6 show the logic element ar-
chitectures considered in this paper. All of the elements use 6 inputs,
making them interchangeable in a fixed FPGA routing architecture.
The elements in Fig. 3 were explained above. Fig. 6(a) shows a third
element we call two extended 4-LUTs, which comprises two extended
4-LUTs feeding the data inputs of a 2-to-1 multiplexer (M3). Pro-
grammable inversion is not needed on the select input, i6, to the mul-
tiplexer since its data inputs are fed by symmetric logic structures.

Fig. 6(b) depicts an even lower-cost architecture: an extended 4-
LUT + extended 3-LUT. It is similar to the architecture in Fig. 6(a),
with the main change being that one of the extended 4-LUTs has been
exchanged with an extended 3-LUT. In Fig. 6(b), programmable in-
version is required for input i6, as it drives the select input of a MUX
(M3) fed by asymmetric logic structures. Observe that in Figs. 6(a)
and 6(b) either the true or inverted form of input signal i5 is used to
drive the select inputs of both multiplexers: M1 and M2. We evaluated
the utility of independent polarity control for the select signals on M1
and M2 (which requires an extra MUX and SRAM configuration cell),
however, the extra flexibility did not affect the results significantly.

Finally, Fig. 6(c) shows the extended 4+3-LUT logic element archi-
tecture. In this architecture, a 4-LUT and a 3-LUT drive a MUX (M1)
whose select input is received from i5, which in turn drives a second
(deeper) MUX (M2) whose select input is received from i6. One of the
data inputs of the deep MUX is fed by an SRAM configuration cell.
Table I shows the number of SRAM configuration cells in the logic
element architectures considered, as well as the ratio of the number
of SRAM cells versus 6-LUTs. The number of SRAM configuration
cells is a reasonable proxy for the silicon area cost of each architec-
ture. The smallest logic element architecture uses nearly 60% fewer
SRAM cells than a 6-LUT.

B. Technology Mapper Implementation

Despite the complexity and variety of logic element architectures,
it is straightforward to technology map circuits into them using the
concepts above, namely, Shannon decomposition and gating inputs.
Consider a K-feasible cut C and let g represent the Boolean function
corresponding to the cut. Depending on which of the logic element
architectures in Fig. 3 and Fig. 6 is being targeted, we qualify C using
the requirements below. A cut C that does not meet the requirements
for the target architecture is discarded.

1. 5+4-LUT [Fig. 3(a)]:

(a) If |Inputs(C)| ≤ 5, C is qualified.

(b) If |Inputs(C)| = 6, C is qualified iff ∃ i ∈ Inputs(C)
such that |gi| ≤ 4 or |gi| ≤ 4.

2. Extended 5-LUT [Fig. 3(b)]:

(a) If |Inputs(C)| ≤ 5, C is qualified.

(b) If |Inputs(C)| = 6, C is qualified iff ∃ i ∈ Inputs(C)
such that i is a gating input (i.e. |gi| = 0 or |gi| = 0).

3. Two extended 4-LUTs [Fig. 6(a)]:

(a) If |Inputs(C)| ≤ 5, C is qualified.

(b) If |Inputs(C)| = 6, C is qualified iff ∃ i ∈ Inputs(C)
such that: 1) the number of distinct variables shared by
both gi and gi is ≤ 4; or, 2) ∃ j ∈ Inputs(C), where
j �= i and j is a gating input to functions gi and gi.

4. Extended 4-LUT + extended 3-LUT [Fig. 6(b)]:

(a) If |Inputs(C)| ≤ 4, C is qualified.

(b) If |Inputs(C)| = 5, C is qualified iff ∃ i ∈ Inputs(C)
such that |gi| ≤ 3 or |gi| ≤ 3.

(c) If |Inputs(C)| = 6, C is qualified iff ∃ i ∈ Inputs(C)
such that: 1) the number of distinct variables shared by
both gi and gi is ≤ 4 and where |gi| ≤ 3 or |gi| ≤ 3; or,
2) ∃ j ∈ Inputs(C), where j �= i and j is a gating input
to both gi and gi, and where |gi| ≤ 4 or |gi| ≤ 4.

5. Extended 4+3-LUT [Fig. 6(c)]:

(a) If |Inputs(C)| ≤ 4, C is qualified.

(b) If |Inputs(C)| = 5, C is qualified iff ∃ i ∈ Inputs(C)
such that |gi| ≤ 3 or |gi| ≤ 3.

(c) If |Inputs(C)| = 6, C is qualified iff ∃ i ∈ Inputs(C)
such that: 1) the number of distinct variables shared by
both gi and gi is ≤ 4, and where |gi| ≤ 3 or |gi| ≤ 3;
or, 2) i is a gating input to g, and if h represents the non-
constant cofactor of g about i1, then ∃ j ∈ Inputs(C),
where j �= i, and where |hj | ≤ 3 or |hj | ≤ 3.

We altered the priority cuts mapping algorithm in ABC to honor
the requirements above when targeting a circuit into the correspond-
ing architecture. Illegal cuts were discarded during the cut generation
phase. ABC also provides area-reducing post-mapping routines based
on the area-flow concept [13], which we customized to target the new
architectures.

The logic element architectures in Figs. 3 and 6 have 6-inputs. Such
elements could be directly interchanged with the 6-LUTs in a mod-
ern commercial architecture (such as Xilinx Virtex-6), without any
changes to the routing architecture2. Hence, by analyzing these ar-
chitectures, we aim to answer the question: Can logic density be im-
proved through a change to the logic element architecture within an
existing routing fabric (i.e. a fabric designed to handle 6-input ele-
ments)?

Beyond 6-input logic element architectures, we also study analo-
gous 7-input architectures. For example, the 7-input logic element
architecture analogous to the 5+4-LUT architecture above is a 6+5-
LUT architecture. 7-LUTs will certainly deliver improved depth vs. 6-
LUTs, at a higher area cost. With the 7-input logic element architec-
ture investigation, we seek to answer the question: Can the perfor-
mance of 7-LUTs be achieved using logic element architectures that
require the silicon area of 6-LUTs or even less?

IV. EXPERIMENTAL STUDY

We evaluate logic element architectures according to two metrics:
1) the number of logic elements needed to implement a circuit, and
2) the depth of the mapping (number of logic elements on the longest
combinational path). Metric #1 can be combined with the data in Ta-
ble I to estimate the relative logic density of each architecture. Metric
#2 is a proxy for circuit speed.

We use two sets of benchmark circuits. The first set is the “stan-
dard” 20 benchmarks that are widely used in FPGA CAD and archi-
tecture research. The second set are the 13 largest circuits from the
popular VPR 5.0 FPGA placement, routing, and architecture evalu-
ation framework [14]. The VPR 5.0 circuits were synthesized from
Verilog to BLIF using Altera’s Quartus 9.1 tool. Altera’s QUIP (Quar-
tus University Interface Program) flow was used to produce BLIF after
HDL elaboration and technology independent optimization.

We use ABC’s resyn2 script for technology independent opti-
mization prior to technology mapping. We also experimented with
other technology independent optimization scripts that come pack-
aged with ABC, however, we found they produced slightly worse
depth results, on average. For each circuit, resyn2 followed by tech-
nology mapping was run 6 times, and the best result achieved across
all runs was taken as the data point for the circuit, where mapped depth
was the primary ranking criteria and the number of logic elements was
the secondary critera. The priority cuts mapper [11] used as the base-
line was executed in depth mode; it optimizes area (number of logic
elements) on non-critical paths as a secondary criteria.

Table II gives results for 6-input architectures and 5-LUTs (for
comparison). The top-half of the table presents results for the stan-
dard 20 benchmarks; the bottom-half of the table gives results for the
VPR 5.0 circuits. The bottom rows of the table give the average data
across all circuits, and the ratios relative to 6-LUTs. Let us begin with

1h = gi if |gi| > 0, else h = gi.
2In fact, FPGA tile die size and routing wire lengths (and delay) can be

reduced through the use of logic elements with lower silicon area.

the right-most column of the table, for 5-LUTs, we see that depth is
14.3% higher than 6-LUTs, on average, and element count is 15%
higher. The depth gap between 5 and 6-LUTs is considerable, which
explains the vendors’ motivation for moving to 6-LUTs. Observe that
the depth gap is wider for the VPR 5.0 circuits (18%), than for the
standard 20 circuits (12%). We observed such differences between
the two circuit sets for all architectures considered.

Moving on to the proposed 5+4-LUT architecture (column labeled
5+4-LUT), results show that both depth and element count are virtu-
ally identical to 6-LUTs. Element count is less than 1% higher when
5+4-LUT elements are used vs. 6-LUTs. The 5+4-LUT architecture
uses only 49 SRAM cells vs. 64 cells in a 6-LUT – a considerable
reduction in silicon area. The data in Table II suggests that such area
savings can be realized without significant increase to depth or ele-
ment count. Prior work has shown that when circuits are mapped to
6-LUTs, less than 40% of the LUTs in the mapping solutions use all
6 inputs [15]; the balance are small LUTs that are straightforward to
map into the proposed 5+4-LUT architecture. The data in Table II
shows that the full functional flexibility (and silicon cost) of LUTs
is not required for the majority of functions in logic circuits – LUTs
appear to be over-engineered for their intended purpose.

Continuing from left-to-right in Table II, we next consider the ex-
tended 5-LUT architecture. On average, across all circuits, depth and
element count are increased by 6% and 8% vs. 6-LUTs, respectively.
Extended 5-LUTs have roughly the same silicon area as a 5-LUT, and
yet they deliver most of the depth benefit of 6-LUTs. The next archi-
tecture, two extended 4-LUTs, appears to be superior to the extended
5-LUT architecture and the two use roughly the same silicon area.
With the two extended 4-LUTs architecture, depth and element count
are within ∼5-6% of 6-LUTs. The two extended 4-LUTs architecture
offers reasonably good depth, while using only about half the silicon
area of a 6-LUT.

Examining the results for the two low-cost logic element architec-
tures that combine a 4-LUT and a 3-LUT, the two element architec-
tures appear to be similar from both the depth and logic element count
perspectives. The extended 4+3-LUT requires just 42% of the SRAM
cells of a 6-LUT, yet circuits mapped into the architecture have just
6% higher depth than a 6-LUT. We believe the logic element architec-
ture may be especially useful in low-cost product lines, where silicon
area and cost is a primary factor, and a slight performance degradation
is tolerable.

Table III gives a summary of results for 7-input logic element ar-
chitectures and 6-LUTs (for comparison). The individual circuit-by-
circuit results could not be included, due to page limitations. Table III
gives, for each architecture, the normalized geometric mean of depth
and element count, across all benchmark circuits. The right-most col-
umn gives the number of SRAM configuration cells in each logic
element architecture. Normalization is with respect to 7-LUTs. In
general, the architectural trends are the same as those observed with
6-input architectures. Note, however, that the difference in mapped
depth is more pronounced between 6 and 7-LUTs versus 5 and 6-
LUTs. 6-LUT mappings have 22% more depth than 7-LUT mappings;
whereas, 5-LUT mappings have 14% more depth than 6-LUT map-
pings. Also observe that the 6+5-LUT architecture results in 5% more
depth vs. 7-LUTs; however, the analogous 6-input architectures were
equivalent from the depth angle. Broadly, we observe that the ma-
jority of the depth benefit associated with a move to 7-LUTs can be
achieved using a logic element architecture such as extended 5-LUT
+ extended 4-LUT that is in fact smaller than the 6-LUTs deployed in
FPGAs today.

A “back-of-the-envelope” approach can be used to estimate the
overall logic density of the 6-input architectures. We approximate the
area of each element architecture by its number of SRAM configura-

TABLE II
LOGIC ELEMENT COUNT AND DEPTH RESULTS FOR 6-INPUT LOGIC ELEMENT ARCHITECTURES AND 5-LUTS.

6-LUTS 5+4-LUT Ext. 5-LUT Two ext. 4-LUTs Ext. 4 + Ext. 3 Ext. 4+3-LUT 5-LUTs

CIRCUIT DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs
alu4 5 774 5 774 6 751 6 760 6 734 6 751 6 866
apex2 6 868 6 868 6 906 6 906 6 901 6 906 7 990
apex4 5 752 5 752 5 766 5 769 5 762 5 766 6 840
bigkey 3 579 3 579 3 691 3 689 3 691 3 692 3 806
clma 10 2795 10 2767 10 3231 10 2917 10 3044 10 3237 12 3179
des 4 691 4 725 5 848 5 819 5 867 5 845 5 948
diffeq 8 636 8 643 9 722 9 723 9 733 9 730 9 757
dsip 3 689 3 691 3 691 3 691 3 694 3 692 3 692
elliptic 10 1797 10 1797 11 1828 11 1832 11 1843 11 1842 12 1873
ex1010 6 2452 6 2456 6 2505 6 2517 6 2500 6 2505 7 2755
ex5p 5 504 5 468 5 497 5 518 5 512 5 517 5 594
frisc 13 1735 13 1740 13 1832 13 1834 13 1835 13 1835 14 1842
misex3 5 723 5 723 5 745 5 746 5 741 5 751 6 811
pdc 7 1948 7 1980 7 2025 7 2071 7 2035 7 2025 7 2495
s298 8 641 8 641 8 665 8 648 8 663 8 666 9 731
s38417 7 2567 7 2551 7 2998 7 2917 7 3076 7 3024 8 3068
s38584.1 6 2287 6 2287 6 2553 6 2431 6 2509 6 2554 7 2688
seq 5 780 5 786 5 813 5 812 5 809 5 805 5 908
spla 6 1670 6 1698 7 1671 6 1804 7 1689 6 1800 7 1906
tseng 8 647 8 651 8 680 8 679 8 703 8 703 9 692

GEOMEAN (STD 20 CIRCUITS): 6.08 1075.16 6.08 1076.38 6.32 1143.29 6.27 1138.85 6.32 1144.99 6.27 1153.47 6.82 1241.43
RATIO VS 6-LUTS: 1.000 1.001 1.039 1.063 1.031 1.059 1.039 1.065 1.031 1.073 1.123 1.155

cf cordic v 18 18 18 9 3822 9 3866 10 4203 10 4114 10 4593 10 4585 11 4461
cf fir 24 16 16 18 10929 18 10452 18 11843 18 11793 18 13605 18 13630 18 11668
des perf 3 3264 3 4019 4 4314 4 4081 4 5044 4 4881 4 4959
mac1 17 1959 17 2019 18 2166 18 2108 18 2487 18 2481 21 2215
mac2 31 6906 31 7116 32 7396 32 7267 32 8406 32 8415 39 7491
oc54 22 2393 22 2385 22 2600 22 2523 22 2761 22 2780 24 2726
paj boundtop hierarchy no mem 4 1294 4 1294 4 1371 4 1327 4 1371 4 1371 6 1376
paj raygentop hierarchy no mem 16 6314 16 6193 17 6693 17 6518 17 7276 17 7281 17 6677
paj top hierarchy no mem 33 32967 33 31614 34 35196 34 33758 34 39470 34 39440 34 35016
rs decoder 2 11 1649 12 1751 13 1919 12 1870 14 2043 14 1989 14 2265
sv chip0 hierarchy no mem 5 12615 5 12684 6 12970 6 12909 6 13728 6 13727 6 12955
sv chip1 hierarchy no mem 8 25473 8 24831 9 26984 9 26425 9 29564 9 29564 9 26882
sv chip2 hierarchy no mem 18 46440 19 48099 19 50062 19 50070 21 55333 21 55443 19 50104

GEOMEAN (VPR 5.0 CIRCUITS): 11.88 6384.02 12.01 6505.71 12.93 7001.29 12.85 6837.28 13.10 7689.56 13.10 7658.75 13.98 7233.55
RATIO VS 6-LUTS: 1.011 1.019 1.088 1.097 1.081 1.071 1.102 1.205 1.102 1.200 1.176 1.133

GEOMEAN (ALL CIRCUITS): 7.92 2168.87 7.95 2186.57 8.38 2334.51 8.32 2307.36 8.42 2424.54 8.38 2431.56 9.05 2485.73
RATIO VS 6-LUTS: 1.004 1.008 1.058 1.076 1.051 1.064 1.064 1.118 1.059 1.121 1.143 1.146

0.75

0.8

0.85

0.9

0.95

1

1.05

6-
LU

T

5+
4-

LU
T

Ex
t.

 5
-L

U
T

Tw
o

ex
t.

 4
-L

U
Ts

Ex
t.

 4
-L

U
T

+
ex

t.
 3

-L
U

T

Ex
t.

 4
+3

-L
U

T

5-
LU

T

N
or

m
al

iz
ed

 a
re

a
/

ar
ea

 x
 d

ep
th

Area

Area x depth

Fig. 7. Approximate area and area-depth product for 6-input logic element
architectures.

TABLE III
SUMMARY OF RESULTS FOR 7-INPUT ARCHITECTURES AND 6-LUTS.

GEOMEAN RESULTS ACROSS ALL CIRCUITS, NORMALIZED TO 7-LUTS.

ARCHITECTURE DEPTH #LEs SRAM cells

7-LUTs 1.00 1.00 128
6+5-LUT 1.05 1.03 97
Extended 6-LUT 1.07 1.07 66
Two extended 5-LUTs 1.07 1.06 67
Extended 5-LUT + extended 4-LUT 1.08 1.09 52
Extended 5+4-LUT 1.08 1.08 51
6-LUTs 1.22 1.09 64

tion cells (see Table I)3. We combine the SRAM cell count with the
element count data in Table II. We estimate that in a modern archi-
tecture, such as Xilinx Virtex-6, LUTs consume 25% of the core tile
area, with the balance being interconnect (∼50%), registers and other
logic (∼25%). If we take a baseline 6-LUT architecture to have a tile
area of 1 unit2, the relative tile area of any 6-input architecture can be
computed as: f × (75% + 25%× s), where f is the ratio of the num-
ber of logic elements required to implement circuits vs. 6-LUTs (from
Table II), and s is the ratio of the number of SRAM configuration cells
in the logic element architecture vs. a 6-LUT (column 3 of Table I).
Fig. 7 shows normalized area and area-depth product for 6-input logic

3Estimating area using the number of 2-to-1 multiplexers in each logic ele-
ment architecture produces similar results.

element architectures. Considering area alone, the smallest architec-
tures (containing a 4-LUT and a 3-LUT) provide 14% higher logic
density vs. 6-LUTs. The 5+4-LUT and two extended 4-LUTs logic
element architectures offer the best area-depth product – an ∼5% win
over the baseline 6-LUT architecture.

V. CONCLUSIONS AND FUTURE WORK

Silicon area-efficiency, speed, and power are three metrics where
there remains a significant gap between FPGAs and ASICs. In this
paper, we described new FPGA logic element architectures, and as-
sociated synthesis methods, that deliver improved area-efficiency rel-
ative to the LUTs present in commercial FPGAs today, with minimal
impact on speed, and most likely a positive impact on power. A key
contribution of this work is the observation that the logic functions
implemented by LUTs in circuits frequently have trimming inputs –
Shannon decomposition about such an input produces a small cofac-
tor with fewer variables. The trimming input property of logic func-
tions was used to inspire the design of new logic element architectures,
many of which provide superior area-efficiency to the LUTs in today’s
commercial FPGAs. As an example, while a 6-LUT uses 64 SRAM
configuration cells, one of our architectures (5+4-LUT) uses only 49
SRAM cells, and yet, produces mapping solutions of equal depth to
6-LUTs, and also equal element count.

A direction for future work is to combine our architecture/CAD
techniques with the recent work on don’t care-based FPGA technol-
ogy mapping [6]. Leveraging don’t cares in mapping has been proven
to offer considerable reductions in the number of LUTs needed to im-
plement circuits. It is unknown whether LUTs produced by the don’t
care-based mapping methods also exhibit the trimming input property
we used in designing our area-efficient logic element architectures. It
is worth exploring the extent to which the area-efficiency gains pro-
duced by the two different approaches are additive.

REFERENCES

[1] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: the effect of logic block functionality on area
efficiency,” IEEE JSSC, vol. 25, no. 5, pp. 1217–1225, Oct 1990.

[2] Virtex-6 FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2010.

[3] Stratix-IV FPGA Family Data Sheet, Altera, Corp., San Jose, CA, 2010.

[4] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. On Computer Aided Design, vol. 26, no. 2, pp. 203–215,
Feb. 2007.

[5] D. Chen and J. Cong, “DaoMap: a depth-optimal area optimization map-
ping algorithm for FPGA designs,” in IEEE Int’l Conf. on Computer
Aided Design, 2004, pp. 752–759.

[6] A. Mishchenko, R. Brayton, J. Jiang, and S. Jang, “Scalable don’t care
based logic optimization and resynthesis,” in ACM Int’l Symposium on
Field Programmable Gate Arrays, Monterey, CA, 2009, pp. 151–160.

[7] M. Schlag, J. Kong, and P. Chan, “Routability-driven technology map-
ping for lookup table-based FPGAs,” IEEE Transactions on CAD,
vol. 13, no. 1, pp. 13–26, 1994.

[8] J. Cong, C. Wu, and E. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in ACM Int’l Symposium
on FPGAs, 1999, pp. 29–35.

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewrit-
ing: A fresh look at combinational logic synthesis,” in ACM DAC, 2006,
pp. 532–536.

[10] A. Mishchenko, R. Brayton, and S. Jang, “Global delay optimization
using structural choices,” in ACM/SIGDA Int’l Symp. on FPGAs, Mon-
terey, CA, 2010, pp. 181–184.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in IEEE Int’l Conf. on Com-
puter Aided Design, 2007, pp. 354–361.

[12] J. Anderson, and Q. Wang, “Improving logic density through synthesis-
inspired architecture,” in IEEE Int’l Conf. on Field Programmable Logic
and Applications, 2009, pp. 105–111.

[13] V. Manohararajah, S. Brown, and Z. Vranesic, “Heuristics for area min-
imization in LUT-based FPGAs,” in Int’l Workshop on Logic and Syn-
thesis, 2004, pp. 14–21.

[14] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang, and J. Rose,
“VPR 5.0: FPGA CAD and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,” in ACM Int’l Symp.
on Field Programmable Gate Arrays, 2009, pp. 133–142.

[15] S. Jang, B. Chan, K. Chung, and A. Mishchenko, “WireMap: FPGA
technology mapping for improved routability,” in AMC Int’l Symp. on
Field Programmable Gate Arrays, 2008, pp. 47–55.

