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Abstract Computer-aided design (CAD) tools are an integral part sfgieng with
FPGASs. The tools themselves have a considerable impacedindl FPGA circuit
implementation, affecting circuit speed, logic densityl goower consumption. In
this chapter, we survey the modern FPGA CAD flow used by mo&A-&esigners,
giving a top-to-bottom description of the role of each stafi¢he flow. We also
highlight recent research directions in FPGA CAD and give twughts on the
future trends in the area.

1 Introduction

The importance of computer-aided design (CAD) tools for BBGannot be un-
derestimated. In the previous chapters, we have seen tlagrm&PGAs contain
a fixed fabric of logic blocks, routing, hard IP blocks, an@ ldlocks. FPGA CAD
tools take a description of a digital circuit as input, alavith constraints (e.g. on
speed performance, area or power), and automatically neagirttuit into the hard-
ware blocks and routing available in the FPGA. A key pointdoagnize is that re-
gardless of what features are incorporated into an FPGAthehd be large blocks
of RAM, processors or analog-to-digital converters, swgtidres are useless unless
they can be taken advantage of, and used effectively by tis. tBurthermore, the
tools significantly affect the speed performance, area amekbpof circuits imple-
mented in FPGAs. CAD tools alone can affect the speed pedoce of a circuit
implemented in an FPGA by 30% or more [8]. Using an FPGA meamgu-PGA

Jason H. Anderson
Dept. of Electrical and Computer Engineering, Universityoronto,
e-mail: janders@eecg.toronto.edu

Tomasz S. Czajkowski
Altera Corporation,
e-mail: tczajkow@altera.com



2 Jason H. Anderson and Tomasz S. Czajkowski

CAD tools, and the tools are truly the “face” of the vendorrsbg engineers and
designers in the field.

This chapter gives an overview of the CAD flow used by moder@&esign-
ers, and along the way, highlights the recent developmeRBGA CAD and future
trends in the field. The intent here is not to provide a dedail@verage of algorith-
mic aspects, but rather, to provide a tutorial-like treattrtbat will be useful to
experienced designers and newcomers alike.

1.1 The Modern FPGA CAD Flow

The largest modern FPGAs contain billions of transistoisiamplement complete
systems with hundreds of thousands of gates. Owing to thelexity of mapping
a circuitinto an FPGA, the CAD flow is broken into manageahdgs. Fig. 1 shows
the flow used by most modern FPGA designers. The input to theifla circuit
described in either VHDL or Verilog at the register-tram$éwel (RTL).. While not
entirely independent of the target FPGA, the early stepseflow tend to be more
generic, while the later steps are more closely tied to teeifip hardware available.
The RTL synthesis step parses the input and transforms tHaLYArilog into a
block-level circuit description, usually consisting ofga blocks such as multipliers,
adders, multiplexers, state machines, RAMs, and chunksmémc Boolean logic.
Logic synthesis then optimizes the circuit at the level obBan equations.

In technology mapping, the circuit is mapped from a geneoionf into an
equivalent circuit composed of basic logic elements alielan the target device,
e.g. LUTs, registers and multiplexers. As described in @&ra), the logic blocks
in modern FPGAs contain clusters of LUTSs, registers andratieuitry. Packing,
also referred to in the literature akustering is the step in which elements of the
technology mapped circuit are packed into the logic blodke placement stage
decides where each logic block should be located on the tmestsional FPGA.
Routing forms the desired connections between the placgdbdocks. Finally, the
bitstream is generated for programming the FPGA device.

On the right side of Fig. 1, observe that timing analysis [48§l power analy-
sis [84] feed into all stages of the CAD flow. All stages makeisiens that ulti-
mately impact circuit speed and power therefore, the toaistiave access to such
analysis data. Exact analysis of timing and power is imfbsdiefore routing is
complete, so estimates are used at the earlier phases obth§lfd, 33, 55, 81].
The concept of physical synthesis, shown on the left of Fidnak been developed
to counter inaccuracies in timing estimates. In generdineses of delay can be
made more accurately at later stages of the flow. In physjcahssis, delay esti-
mates made in placement are used to drive incrementadp@-texecution of earlier
phases of the flow. Literature on physical synthesis hasrdmefen aimed at improv-

1In RTL, the cycle-by-cycle behavior of the circuit’s furmtiality is completely specified by the
designer.
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ing speed performance, however, the objective of physigathesis could equally
well be power, routability or other criteria.

The two largest FPGA vendors, Xilinx and Altera, supply a ptete tool flow
from RTL-to-bits, often free-of-charge to their customansl to universities. Alter-
native third-party tools are also available for the iniséhges of the flow, such as
the popular Synopsys (Synplicity) and Magma Design Autéonatools, and are
known to produce excellent results. Historically, the uSERRGA vendor tools has
been mandatory for the back-end of the flow, beginning wittkjyey, however, that
may be changing as Synplicity now offers a flow encompassatgipg, placement
and physical synthesis.

Though not shown in the flow of Fig. 1, simulation, test andfigation of the
design can be done at any stage. In practice, many custoinartate their ini-
tial design specification (RTL Verilog or VHDL), and then dotrsimulate again.
Rather, designers leverage FPGA reconfigurability to &catd their verification.
After routing, a bitstream is generated for the design, tR&K is programmed,
and verification is done in the lab using the actual hardw@oeh a verification
flow is impossible for custom IC technologies, yet it is fédsifor programmable
logic where designs can be modified and devices reconfigaheaving the discov-
ery of design flaws.

Design in VHDL or Verilog

RTL Synthesis

Logic Synthesis

Technology Mapping -
Timing and
Power Analysis
Physical Synthesis H Packing }H v
Bitstream Generation

Fig. 1 FPGA CAD flow.

Without question, the majority of published research on RRZAD has been on
the back-end of the flow, from technology mapping onwardsiacidding physical
synthesis. The subsequent sections outline the role af stithe flow and highlight
recent research results. It is worth mentioning the divielsveen academic and in-
dustrial research in FPGA CAD. None of the commercial FPGrAdees release the
source code for their tools publicly, and as such, publiskedarch on FPGA CAD
from academia is typically conducted using an entirelyedtéht CAD framework.
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Academic work on synthesis and technolgy mapping has rigdeeén conducted
using the ABC synthesis framework, developed at UC Berk@a}; while work on
packing, placement and routing has been done using the \@fefwork from the
University of Toronto [15, 68]. Compounding the problemsasated with using
a different toolset, academic research often targets alifimpFPGA model that
differs considerably from modern commercial FPGAs. Thedfietct of this is that
at times, academic research results have not been direstigférrable to industry.
The situation may be changing however, with the introductbthe Quartus Uni-
versity Interface Program (QUIP) from Altera, which pemsréicademic and other
researchers to interface their CAD tools with the Altera f[8@]. We highlight both
academic and industrial FPGA CAD in this chapter.

2 RTL Synthesis

Fig. 2 shows the general approach taken in RTL synthesist, flire input VHDL
or Verilog design is parsed and analyzed. The circuit isesgnted internally as
a parse tree. Next is elaboration, where the circuit netiésiins to take shape.
The elaborated netlist may contain input and output pootgicl gates, registers,
large blocks (e.g. multipliers, adders, RAMs) and state himas. These initial
steps are loosely coupled to the target FPGA. In fact, maryA-Bnd ASIC ven-
dors use the identical third-party software (Verific) foeithfront-end HDL pars-
ing/analysis/elaboration [103], despite the fact thatdagrarchitectures differ con-
siderably from one another.

Design in VHDL or Verilog

Parse/Analyze

v

Elaborate

v

Inference/Binding

Synthesized Netlist

Fig. 2 Stepsin RTL synthesis.

The final step of RTL synthesis, called inferencing/bindisglosely tied to the
target FPGA. The concept here is to “infer” the hardware esponding to code
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statements in the HDL. For example, a hardware multiplieuldde inferred from
the VHDL statementZ <= A * B. The inputs to the multiplier would be attached
to signalsA andB; the output would be attached @ Likewise, shifters, adders,
dividers, state machines, other blocks, and generic logiesggwould be inferred
from HDL statements accordingly.

A hardware block inferred from HDL description is then conofigd to perform
a specific function. This is called binding. For example,rderired multiplier block
might be bound to an implementation by a DSP block in the tdfB&A. A shifter
might be bound to a vendor-specific shifter implementatitmall RAMs inferred
from HDL could be bound to LUT-based memories; large RAMslddne bound to
block RAMs in the FPGA fabric.

An end-to-end example illustrating the action of RTL symsikeis shown in
Fig. 3. Fig. 3(a) shows a section of VHDL code to implement dtiply-accumulate
function. Fig. 3(b) shows an RTL netlist, produced by RTL thgsis. Line 1 of the
code indicates that the functionality in lines 2-10 only éextes” when a change
on the clock signatlk happens, i.e. this implements edge triggering. From lines
3-9, an 8-bit positive edge-triggered register file is inéel; the register file’s output
is calledsum. The register file is reset synchronously when teget signal is
asserted (line 4); otherwise, the value in the registerdilgpidated to the sum of its
prior value and the product of signasandb (line 7). For the synchronous reset,
the RTL synthesis tool needs to know whether the flip-floph@target FPGA have
a built-in synchronous reset pin, or whether the synchremeset must be imple-
mented using generic logic gates. From line 7, the adder aritipfier blocks are
inferred. The multiplier would likely be bound to a DSP bldokhe target FPGA.
The adder would likely be bound to a logic-block implemeistatutilizing the fast
carry-chain arithmetic available in the hardware.

. process(clk) a reset

1
2: begin
3: if (clkevent and clk =‘1") then
4: if (reset = ‘1) then
5 sum <= “00000000"; sum
6: else b
7: sum <=sum + a*b;
9: endif;
10: end if;
11: end process;
clk

a) VHDL code b) RTL netlist
Fig. 3 Example of RTL synthesis.

The key to inferring and binding is awareness of the hardwéoeks available
in the target FPGA and taking advantage of the hardware td ooeestraints on
area, speed or power. A recent work explored area/delagdftdin binding for
FPGAs [111]. A paper by Tessier et al. described an appraadfirfiding RAMs to
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hardware that the minimizes dynamic power consumptiorhetost of increased
area [100]. Tessier's work is based on the property thatddoeMs in FPGAs have
configurable aspect ratio, leading to implementation aéttves having different
area/power tradeoffs. Metzgen and Nancekievill studiediifierence and binding
of multiplexers with the objective of reducing area [74].

Recent work by Howland and Tessier describes a power ogtiniz approach
in FPGA RTL synthesis [50]. A classic “data guarding” apptoés taken, shown
in Fig. 4. Select signals on multiplexers can be used to dedoat the outputs
of certain circuit blocks do not affect overall circuit outp, and hence the inputs
to such blocks can be gated to reduce dynamic power dissipatthin the blocks.
Power-aware RTL synthesis for FPGAs is also the basis ofaigbecompany called
PwrLite [85].

Commerial RTL synthesis tools FPGAs have been availablever 15 years.
Altera and Xilinx currently offer their own RTL synthesisdig, and third-party
tools from Synopsys, Mentor Graphics and Magma are alsolpofdespite this,
the industrial work has been kept proprietary and there bas b lack of published
research on RTL synthesis. A robust and modifiable pubbeigiable RTL syn-
thesis framework has not been available to the research coityrand there has
also been a lack of RTL benchmark circuits. Recently howelamieson and Rose
released a Verilog-based RTL synthesis framework for FPtBAscorrectly infers
multipliers from the input HDL [53]. Jamieson’s frameworlaynwell serve as a
launch point for further development of a more comprehensoiution that infers
more varied block types.

Sel Sel

\ 4
X L X Guard
Y ogle Y Circuit
—» Out
Z —— z
/
a) Before guarding b) After guarding

Fig. 4 Data guarding for power optimization in RTL synthesis (fr{s0]).

3 Logic Synthesis

The product of RTL Synthesis stage is a complete, thoughtimzed, represen-
tation of a logic circuit as shown in Fig. 5. The circuit catsiof input and output
ports, inferred blocks such as adders, multipliers, meesaaind other specialized
components found in the target FPGA device, as well as aechist registers and
generic logic gates. The logic synthesis stage focusestimiajng clusters of logic
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gates and registers in an effort to reduce the area they gcdafay through the
longest register-to-register path, and their power d&gip.

reset

Ai
T
= O
)
I
C
9 Cluster of
D Logic
clk T

Fig. 5 Example output of RTL Synthesis.

In general, logic synthesis consists of two main parts: doatiobnal logic syn-
thesis and sequential optimization. Combinational logittisesis looks at clusters
of connected logic gates, referred to as logic cones, aniea@dgorithms that alter
the structure of each logic cone without changing its logitction. Sequential op-
timization further improves the logic circuit by considegiregisters in the restruc-
turing operations, allowing circuits such as finite statehiges to be synthesized
well. In the following, we describe combinational and setig logic synthesis in
more detail.

3.1 Combinational Logic Synthesis

Combinational logic synthesis is a process of optimizirggddunctions in a circuit,
without changing the logical behavior of the circuit. Thenplest form of such
optimization is two-level optimization, where a logic egpsion is implemented
such that any path from the inputs of a logic expression tiv theputs contains at
most two gates (not counting including inverters). To fiitate this idea, consider
the example in Fig. 6.

In Fig. 6(a) a logic function is expressed using a Karnaugp.rA&arnaugh map
is a truth table that consists of rows and columns. The roegaiexed by variables
X1X2 and the columns are indexed by variabkgs,. Both rows and columns are
arranged such that adjacent rows/columns index valuesr diffexactly one bit po-
sition. This arrangement allows us to create a circuit fogid function that consists
of AND and OR gates. The AND gates are created by coveringadfdls in the
table. For example, notice the encircled terms in columnrOEig. 6(b). We can
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X%,

00 01 11 10

X1 X2 X4 X2X3 X4

a) Karnaugh Map b) Karnaugh Map c) Logic network
with encircled
product terms

Fig. 6 Synthesis example for a simple logic function.

represent this group as a product tetsRgXs, because the logic function assumes a
value of 1 whemnx; = 1, x3 = 0, andxyq = 1. Similarly, the terms in row 01 can be
expressed ag; xox4. Because the logic function is 1 when either of the two condi-
tions are true, then the function can be synthesized as tfiealdOR of two AND
gates. We thereby create a two-level representation ofia fogction as shown in
Fig. 6(c).

The above example illustrates the notion of taking a desoripf a logic func-
tion, in this case in a form of a Karnaugh map, and implemenitirusing logic
gates. Although the example is simple, it shows the essehlogic synthesis. In
practical applications, logic expressions that need tari@démented on an FPGA
contain many more inputs and are much more difficult to sysitlee To address that
problem, a wide array of methods have been developed to akatime process of
implementing logic functions in FPGAs. In general, we digtiish three types of
approaches that address this problem:

1. Tabular
2. Symbolic
3. Graph-based

Each of these approaches achieves the same goal (optinaidogjc function to
minimize area or improve delay), however the approachésrdif how the initial
logic expression is represented and how the optimizatiepssare performed on
each logic function.

Tabular methods are based on the work of Ashenhurst [13] amtisG31]. In
their work, they chose to represent logic functions usingtdet A table has rows
indexed by some subset of variables; the remaining vasadrke assigned to index
the columns. An example table is shown in Fig. 7. The purpdsbeotable is to
identify compatiblecolumns. Such columns represent a function that could be ex-
tracted from a logic expression, permitting a simplifieddvearre implementation.
For example, notice that column 001 is identical to colum®®, 010, and 011, save
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for the don't care entries (shown withddn the table). We can express the first four
columns of this table as a product of the column functiaxp, and the selector
function,Xs, that determines where this column appears in the trutle tétgplying
similar reasoning to the remaining columns, we can implértengiven function as
shown in Fig. 8. Many works that followed performedecompositiornf logic ex-
pressions using tables to simplify logic circuits. In eat$tance, some relationship
between columns was sought. Examples of such works inck@el D8, 32].

x}x4xi
xXx, 000 001 010 011 100 101 110 111
0w [0 0 0 4 0 0 1
o0 o o0 0 0 0 0

0

0 0
10 d 0 d 0 1 0 0
0

11 1 1 1 1 1 1 1

Fig. 7 Example of an Ashenhurst-Curtis decomposition table.

X2_
D
X3

Xy |

Xs

Ol )
S ea— ) e

Fig. 8 Synthesized logic circuit for function in Fig. 7.

Symbolic methods focus on optimization of logic expressighclassical prob-
lem in this context is one of decomposition of a sum-of-pidiogic expression.
Such problems are addressed in the workkemel theoryand boolean or algebraic
division, where subexpressions are extracted to simplify the finplementation of
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the logic function. For example, consider the goal of redg¢he complexity of the
following logic expression:

f = XqXoXq + X1XoXs5 + X1X3X4 + X1X3X5 + X5

Using kernel theory, it is possible to process this equdtiatetermine useful subex-
pressions, and implement the logic functionfas x; (X2 + X3) (X4 + X5 ) + X¢. Exam-
ples of works that take advantage of symbolic manipulatiiuide [90] and [101].
Finally, graph-based methods are techniques that openategraph represen-
tation of a logic function. Various graph methods have bempased, but in all
circumstances the graph consistsnofdesthat represent some logic function, and
edgesthat connect the nodes to form a complete logic function. misal work
in graph-based synthesis was that of Bryant [17], where tiednced the concept
of binary decision diagrams (BDDs). Fig. 9 shows an exampé&linary decision
diagram.

a) Logic network  b) Equivalent Binary Decision Diagram (BDD)

Fig. 9 Example of a binary decision diagram (BDD).

In this example, a logic functiofis shown in Fig. 9(a). The same logic function
is shown in Fig. 9(b) represented with BDDs. Nodes in a BDDespond to input
variables. To determine the value of a logic function foregiinput pattern, one
starts at the root (top) of the BDD graph, and traverses thptgone node at a time.
At each node, a decision needs to be made as to which pathdw fethe 0-path or
the 1-path. This decision depends on the value of the variflel node represents.
When the graph is traversed to one of the terminals (0 or 18)othe function value
can be determined. For example, to determine the valuefof the input pattern
abc= 010 in the graph in Fig. 9(b), we proceed as follows. First,b&gin at the
root of the graph which is node Since variablec = 0, then we follow the path
along the 0 edge to reach noldeNodeb has a value of 1, which leads us to nade
Finally, by following the 0-edge from nodewe reach a terminal node 1. Thus, for
input patterrabc= 010, logic function value i$ = 1.

There are numerous works which use BDDs to optimize logictions. For FP-
GAs, and early work was by Lai et al. [58]; more recent works/apg et al. [110],
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Vemuri et al. [102], and Cheng [23] show how BDDs can be giizo synthesize
various logic functions, finding ways to simplify them andtéby reduce their area.

A more recent work in graph-based techniques is the work afhktienko
etal. [77], where AND-inverter graphs (AIGs) are used. leithvork, a logic func-
tion is represented as a set of nodes that function as ANGs gabv@nected by in-
vertible edges. Invertible edges can be used to complemegi@aexpression that
follows. An example of an AND-inverter graph is shown in Fi§.

complemented
&
\\\ edge

ab cd a b c d

a) Logic network  b) Equivalent and-inverter graph (AIG)

Fig. 10 Example AND-inverter graph used within the ABC synthesid.to

Using AlGs, Mishchenko et al. usede@writing technique [34] that can optimize
logic functions rapidly. AIGs and rewriting optimizatiobecame the basis for the
ABC synthesis system, which recently became a popular resé@amework [82].
AIGs were also used by Ling et al. [65], where they use remgitiechniques to
reduce the depth of a logic circuit in an effort to improveait performance, while
maintaining circuit size.

The treatment above is only a basic introduction to logidlsgsis of combina-
tional circuits. Over the past decades, a wide array of tigci®s have been devel-
oped, addressing various types of logic functions. Comgnisive surveys of logic
synthesis and decomposition techniques can be found iraf&B[83].

3.2 Sequential Optimization

Sequential optimization is a field of logic synthesis thatldesequential circuits —
circuits that retain “state”. One class of such circuitsngd state machines (FSMs).
FSMs are used to describe a sequence of events, where eattthase state as-
sociated with it. For example, consider an FSM with inpuand outputz, wherez
becomes high on a clock cycle following a sequence of 110 puatiw. The state
diagram for this FSM is shown in Fig. 11.

Implementing a state machine, such as the one in the abowgpéxas a matter
of selecting an encoding for each state, implementing lagigetermine the state
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w=0

Fig. 11 A simple FSM example.

transitions and generating the output logic. For exampigeichoose an encoding
such thatA = 00,B = 01,C = 10 andD = 11, then the circuit we generate for this
FSMis as shown in Fig. 12(a). However, altering the statedimg) such that =11
andD = 10 results in a smaller circuit, as shown in Fig. 12(b).

Y2
———

-
b o
b o
by "

h

LL

Fig. 12 Two possible implementations for the FSM in Fig. 11.

The above example highlights a problem with FSM implemémtatnamely,
how to choose an encoding for each state to obtain the bagimoffor perfor-
mance, area and power? This not only includes selectinggheopriate number
of flip-flops to represent logic states, but also choosingramoding of states so as
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to minimize next state and output logic. A recent work in [&&n example of an
area optimization of sequential circuits that leveragesniition that sequential cir-
cuits contain unreachable states, whereas power-orisetagential optimizations
are discussed in [78].

In addition to handling FSMs, sequential optimization aitgpons also handle
pipelined paths. One of the most popular algorithms is da#éming Retiming is
an operation that either pushes flip-flops forward or backivtlarough the circuit,
without altering the logical functionality of the circuithe idea behind this oper-
ation is to allow CAD tools to rebalance path delays, with tittenate objective
being to improve circuit speed. Consider the high-levehaepie in Fig. 13.

a) Original circuit b) Retimed circuit

Fig. 13 A high-level example of retiming.

In this example, the circuit performs a checl ¥ Ax+ B and returns a result of
1 if the equation holds. Although it is conceptually eastefitst evaluate the right
hand side of the equation and then compare the resyle® shown in Fig. 13(a), it
is not necessarily the best approach from a performanceymbant. This is because a
multiplier is much slower than an adder or a comparator. \iespaed up the circuit
by pushing back flip-flops at the output of the adder, as showig. 13(b). The
resulting circuit will perform the same operation in the samimber of clock cycles,
however, the circuit will now be able to function at a highkxok frequency. The
example demonstrates the concept of retiming. In praatéténing occurs at the
LUT level, where flip-flops are pushed backwards or forwalndsugh a single LUT,
which can provide a significant improvementin circuit penfiance [97]. Examples
of works that take advantage of retiming include [96, 97,88,1, 94]. It is worth
noting that retiming is particularly well-suited for FPGAss FPGAs contain many
registers (usually one register per LUT is provided), thgmgermitting easy register
insertion.
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3.3 Remarks

The topic of logic synthesis is one of incredible depth. & baen researched vig-
orously for over 50 years, and despite the wealth of reseamls and innovative
approaches are still created today. To interested readbswish to explore this
topic further, we recommend the following books: [46, 79, 89).

4 Technology Mapping

Technology mapping transforms the circuit from a networlgeheric logic ele-
ments/gates into a network of the logic blocks availablehim target FPGA. The
majority of literature on FPGA technology mapping relatesnapping the circuit
into look-up-tables (LUTs). Recall that le-input LUT (K-LUT) can implement
anylogic function that uses up ti§ variables. Therefore, during technology map-
ping we only need be concerned with the number of inputs tb &aET and not
its logic function. As such, most technology mapping altjoris first translate the
circuit into a directed acyclic graph (DAG), and then mamibia network of input
functions, each using no more thirinputs.

For example, consider a logic network in Fig. 14(a). Fifs¢ logic network is
expressed as a DAG Fig. 14(b). The technology mapping taeKd®ver” the DAG
with LUTSs, as shown in the 4-LUT mapping solution in Fig. 14(Ehere are two
LUTs in the mapping solution; observe that each LUT uses neitt@n 4 variables.

a) Logic network b) Circuit DAG c) Mapping solution

Fig. 14 Logic circuit, DAG and mapping solution.

Research on technology mapping for FPGAs was active in thg 8as with a
wide range of algorithms proposed [39, 41, 40, 25, 26]. Reemhnology mappers
are based on the notion of cuts [92, 27], which we delve inte he the circuit
DAG, G(V,E), each nodez € V, represents a single-output logic function and
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edges between nodesg< E, represent input/output dependencies between the cor-
responding logic functions. For a nodén the circuit DAG, letinputz) represent

the set of nodes that are faninsoffFor a subgraph, of a DAG, letinputgH)
represent the set of nodes outsidéHothat are fanins of nodes id. For example,

in Fig. 14(c),inputge) = {d,c} andinput§LUT2) = {d,4,5}.

A nodex s said to be a predecessor of nadithere exists a directed path in the
graph fromx to z. The subgraph consisting of a nodland all of its predecessors
is referred to as the subgrapdotedat z. For any node in a network, &K-feasible
coneatz N, is defined to be a subgraph consistingg@ind some of its predeces-
sors such thatnput{N;)| < K. Consequently, the technology mapping problem for
K-LUTs can be thought of as covering an input Boolean netwath W-feasible
cones. Generally, there are malyfeasible cones for each node in the network,
each having different area, delay, or power charactesistic

A concept closely related t&-feasible cone is that ok-feasible cut A K-
feasible cut for a nodeis a partition,(X, X), of the nodes in the subgraph rooted at
zsuch thatz € X, and the number of nodes ¥ that fanout to nodes iX is < K.
There is a one-to-one correspondence betweérasible cuts anH -feasible cones.
Given a cut(X, X), theK-feasible cone is simply the subgraph induced by the nodes
in X. The key point to realize is that the problem of finding allgibeK-LUTs that
generate a logic function for nodeis equivalent to the problem of enumerating
all K-feasible cuts for node. To simplify the presentation, for K-feasible cut,

C; = (X,X), for a nodez, NodegC,) is used to represent the €t wherez € X.
SupportC,) is used to represent subset of nodeX ithat fanout to nodes iX. For
example, for consider c@,; in Fig. 15(b),Node$C,1) = {z,a,b} andSuppor{C»)

= {d, e, f}. Finally, Cutgz) is used to represent the set of all feasible cuts for a
nodez

Traversing the circuit DAG in topological order (from ingttib-outputs), the cuts
for each node are generated by merging cuts from its fanin nodes, usingéteod
described in [27, 92] and outlined here. Consider genegydiiaK-feasible cuts for
a nodez with two fanin nodesa andb. The list ofK-feasible cuts fom andb have
already been computed, due to the graph traversal ordethaaypodea has two
K-feasible cutsC,1 andCyp, and nodeb has oneK-feasible cutCy,, as shown in
Figure 15(a). We can merd&; andC, to create a cutC,, for nodez, such that
SupportC,) = SupportCy) USupporfCy,) andNode$Cn) = zUNode$Cy) U
Nodes$Cy) [see Figure 15(b)]. IfSupporfC,1)| > K, the resulting cut is noK-
feasible, and it is therefore discarded. Similarly, onemangeC,, andC, to create
another candidate cu€y, for nodez. This provides a general picture of how the cut
generation procedure works; however, there are severalagdmases to consider,
and the reader is referred to [92] for complete details.

Having computed the set #f-feasible cuts for each node in the DAG, the graph
is traversed in topological order again. During this secwadersal a “best cut” is
chosen for each node. The best cut may be chosen based ornitarig,avhether it
be area, power, delay, routability or a combination of thestechnology mapping,
the depth of the longest path in the mapped network is ofted as a proxy for the
critical path delay. As a concrete example, if optimizing ttepth of the mapped



16 Jason H. Anderson and Tomasz S. Czajkowski

Nodes(Cy) = {b}
Support(Cy) = {e,f}

Nodes(C,;) = {a}

Support(C.y) = {d.e} Nodes(C,,) ={z,a,b}

Support(C,,) ={d.e,f}

e\ Nodes(C,,) = {z,a,b,d}
Support(C) = {c.g.e.f}

Nodes(C,,) = {a,d} C g merfmmn™ \
Support(Cy,) ={c,g.e}

(a) cuts for nodes a and b (b) cuts for node z

Fig. 15 Generating th&-feasible cut sets.

network is desirable, then, for a nodwith aK-feasible cutC,, the cost of the cut
is defined as:

CostC;) =1+ max {CostBestCufv)]} 1)
v € Suppor{C;)

Thus, to compute the depth cost of €t (1) considers the depth cost of the best
cut for each nodey, that fans out to a node INode$C;). The best cut has already
been selected for each of these support nodes, since therkesnbeing traversed
in an input-to-output fashion.

The last part of technology mapping is to build the final LUTwark. A FIFO
queue is initialized to contain all output nodes in the ditcd node,v, is removed
from the queue and its best c@, = BestCutv), is recovered. The subnetwork
corresponding tiNodegC,) is implemented as a LUT in the mapping solution.
Each node irSuppor{C,) is then added to the end of the FIFO queue, if it is not
already in the queue. The process of removing nodes fromubaey using their
best cuts to establish LUTs in the mapping solution, andragitie support of these
cuts to the end of the queue continues until the queue candaity primary inputs.
When this condition is met, the input Boolean network hastfally mapped into
LUTSs.

The beauty of cut-based technology mapping is that any costtibn can be
applied to rank the cuts and thus it is relatively easy to adapbased mapping to
optimize for any objective. Only the costing of cuts need banged; the process
of computing the cuts and generating the final mapped netweariain the same.
Cut-based mapping has been used extensively in many wodgitoize for depth,
power, area and routability [21, 9, 59, 92].

Despite the relative maturity of the topic, there have beearaber of important
breakthroughsin FPGA technology mapping in recent yeassidded in Chapter X,
modern FPGASs contain LUTs with 6-inputs & 6). An upper bound on the number
of cuts for a node i©(n*), wheren is the number of nodes in the circuit. Thus,
with K = 6, there can be a large number of cuts per node, increasiagtatg run-
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time and memory consumption. Mishchenko et al. addressuthexplosion using
the notion ofpriority cuts[75]. The idea is that instead of storing all possible cuts
for each node, only a subset of “priority cuts” is stored,dahen a cost function.
When generating the set of cuts for a node, only the priotitg of its fanin nodes
are considered for merging. Despite the fact that many a@gprauned with this
technique, very little quality degradation is observed liagtice, and the idea has
been picked up and applied by industry [56].

Another recent concept, calleatea flow was introduced by Manohararajah
et al. and shown to significantly reduce the area (# of LUTshefmapped net-
work [70]. The innovation in area flow is to divide the cost ahalti-fanout LUT
equally across its fanout LUTs. For example, consider a Awith two fanin LUTs
B andC. Furthermore, consider that LUT has some other fanout LUD (besides
LUT A). Area flow recognizes that LUR should not incur the full “charge” for
LUT C, asC also fans out to another LUT. The costing strategy has implica-
tions on how multi-fanout nodes in the DAG are mapped, ultilyampacting area.
Furthermore, in [70], the costing and mapping steps exesaueral times, where
one iteration of costing and mapping uses fanout and defdhniration from the
prior iteration to make better decisions. Manohararajalosk has traction and was
adapted for commercial application by Xilinx to reduce thener of connections
in the mapped network [54].

A recent contribution to technology mapping is the use ofIBap satisfiability
(SAT). Recent developments in SAT solver technology haabked the use of the
concept for practical purposes. An important work on tedbgy mapping for FP-
GAs using boolean satisfiability was published by Ling ef@d]. In their work,
both the functional capabilities of the logic block, as vadla logic expresson to be
potentially implemented in the logic block, are expressed Boolean equation (in
conjunctive normal form). The equation is formulated suwdt if there is a satis-
fying assignment to the variables in the equation (equatigput value is 1) then
the logic expression can indeed be implemented by the |dgakbSAT is used to
determine if there is a satisfying variable assignmentgisimork considered logic
blocks with different LUT configurations, however, the ceptis easily extendible
to target logic elements in commercial architectures, agthe Altera Stratix 11l
logic element shown in Fig. 16. The appeal of using SAT is tageewith which
complex logic block architectures can be described to a SAles, allowing re-
searchers and designers to explore non-trivial mappingieak for arbitrary logic
functions.

5 Packing

Packing, also known adustering is the step wherein the elements of the technol-
ogy mapped circuit are packed into the available FPGA harelwesources. Clus-
ters of LUTs and flip-flops form the basis for logic blocks id&y’s FPGAs, with
fast local interconnect available for intra-logic blockoectivity. Most commonly,



18 Jason H. Anderson and Tomasz S. Czajkowski

shared_arith_in carry_in reg_chain_in

- labclk
Combingtional/Memory ALUTO

> To general or
local routing

dataf0

datae0 6-Input LUT

w10 general or
local routing

adder0

dataa

datab —|

L
LD»~ 5 aQ > To general or

local routing

datad adder1
6-Input LUT

dataet

=
e

dataf1

> To general or
local routing

Combinational/Memory ALUT1 ;

v 4 reg_chain_out

shared_arith_out carry_out

Fig. 16 High-level diagram of the Altera Stratix Il adaptive logiwodule (ALM) [5].

the packing step combines LUTs and flip-flops in a design tegeab form logic
blocks.

Fig. 17 depicts the classic FPGA logic block model used invi& majority
of academic research. It consists of a cluster of LUTs aneflflips, where each
flip-flop can be bypassed for implementing combinationaidopputs to the logic
block come from the FPGA's general interconnect: horizlema vertical channels
of FPGA routing. Local interconnect inside the logic bloskaivailable for realiz-
ing fast paths within the logic block. Observe that each LRF pair drives both
local interconnect, as well as general interconnect. Mostr packing work as-
sumes the local interconnect to be a full crossbar switchixatevery input can
be programmably connected to any output. In this logic blmddel, connections
withinthe logic block are fast, and connectidretweenogic blocks, routed through
the general interconnect, are slow in comparison. The pgcitep decides which
LUTSs to put together into a single logic block, and theref@acking has a signifi-
cant impact on circuit speed. The model of Fig. 17 is repriedgise of early Altera
FLEX FPGAs [2], however, it has become out-of-step with thgid blocks present
in modern Xilinx and Altera FPGAs. Modern logic blocks presa more complex
packing problem, new optimization opportunities and ingd#ferent constraints.

Much research has been published on packing for the logakitoFig. 17. Per-
haps the most cited work is that of Betz and Rose who propasatka-driven pack-
ing algorithm, and showed that the number of inputs to a lbfpck can be much
smaller than the total number of LUT inputs within a clustkre inherent locality
in circuits [14]. In particular, for a logic block witN 4-input LUTs, [14] showed
that only 2N + 2 inputs to the cluster are needed — a number much smalledbhan
Marquardt extended the work to perform timing-driven pagkand demonstrated
the impact of packing on critical path delay [71].
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Fig. 17 Classic FPGA logic block targeted by most academic research

Packing affects power consumption as intra-logic blockneamtions will have
lower capacitance than inter-logic block connections. fura approach is to at-
tempt to keep nets with high switching activity containedhivi logic blocks, as
was proposed in [59]. An entirely different approach for powdriven packing was
shown in [95], where Rent’s rule was used to establish a praée for how many
logic block inputs should be used during packing, leadingweer overall intercon-
nect usage, capacitance and power. Although not yet aletaimmercially, dual-
Vpp FPGAs have been proposed by academia, where the idea isgapnmably
allow logic blocks to operate at reduced supply voltagewslobut lower power).
Researchers at UCLA developed a complete CAD flow for a preghasialvpp
FPGA, including new packing techniques [22]. The aim of paghn this context
is to pack LUTs based on their timing-criticality, placingmcritical LUTs together
into logic blocks that will be operated at Iovisp. The work in [48] dealt with pack-
ing for a low-power FPGA having logic blocks that when idlande placed into a
low leakage sleep state.

On the speed axis, more recent work includes [35] which usRserd’s rule-
based algorithm, and prevents loosely connected, or uatglaUTs from being
packed together. Other papers tie together packing witbrgithases of the FPGA
CAD flow. For example, [91] looked at packing in the contextagic replication
for performance; a subset of LUTs are deliberately left gnipytthe packer to ac-
comodate later LUT replications during placement. An iesting recent work by
Lin et al. brought together packing and technology mappimyshowed that higher
speed can be attained using a unified algorithm for conctjpasking and technol-
ogy mapping [62].

Relative to the block in Fig. 17, modern FPGAs have more cerjolgic blocks
containing multi-output fracturable LUTs, multiplexeigates, carry chains, and
configurable registers. Little has been published on packincommercial chips.
To illustrate, Fig. 18 shows a quarter of a logic block (ch#eSLICE) in the Xilinx
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Virtex-5 FPGA. A recent work by Ahmed et al. considered pagKbr Virtex-5 [3].
Observe in Fig. 18 that the LUTSs in Virtex-5 have six inputsl &wo outputs, and
can implement a single 6-input logic function or any two fiiowes that together use
no more than 5 inputs. The authors pack LUTs into the dughdutUT during
an integrated packing/placement phase, improving logisitiein the FPGA while
maintaining speed performance.
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Fig. 18 Quarter of logic block (SLICE) in Xilinx Virtex-5 FPGA.

6 Placement

The result of technology mapping is a network of logic blothat are ready to
be located on the target two-dimensional FPGA device. Thegetwo popular
approaches to FPGA placement: one is based on the simukatingaling algo-
rithm, and the other uses analytical placement technigllesbriefly outline both
approaches here.

Simulated annealing is an optimization strategy that hasepr effective for
FPGA placement, owing to its flexibility to incorporate vally any objective or
constraint. Annealing is used in the VPR placer [15, 72], emthe Altera com-
mercial placer, as well as in prior academic work . In anmggbased placement,
an initial placement is first constructed, possibly randoifhe entire placement is
assigned a numerical cost, reflecting estimated wirelesgied performance and
other criteria:

C=a -WL+p-PERF+y-OTHER (2)

where the wirelength and performance co®¥, and PERF, must be estimated,
as precise routes are unavailable. The weight8 andy, are chosen to reflect the
importance of each term. The advantage of simulated amggialithatOT HERIn

(2) can be designed to represent any other objective eitear example, it could
represent the chip power or legality constraints on thegutent. As a concrete
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example, in VPR, the wirelength cost is:

Nnets

WL=3 () [bbi(n) + by () ©

wherebby(n) and bby(n) represent the span of natin the x andy dimensions,
respectively, and thg(n) factor is 1 for nets with 3 or fewer terminals, and increases
to 2.79 for nets with 50 terminals. Thgn) factor addresses the problem that the
sum of a net'sc andy span is an underestimate of its total wirelength for neth wit
many terminals. The performance cost is:

PERF= Z d(conn) - crit (conn)® (4)
conreCircuit

whereconnis a connection in the circuid(conn is the estimated delay of the
connection andrit (conn) is the connection’s timing criticality in the range of O to 1,
with 1 meaning the connection is on the critical path, and @mireg the connection
is non-critical. Parametexin (4) is a tuning parameter.

Given an initial placement and a cost function, an annedbaged placer at-
tempts random perturbations to the placement, and for etdeimt, a change in
cost,AC, is computed. A random perturbation typically comprisevimg a single
logic block to a new location or swapping one logic block wéthother. Perturba-
tions that improve the cosAC < 0) are always accepted, while perturbations that
worsen costnaybe accepted with a probability:

P(Accep) =e T (5)

whereT is a parameter calle@mperaturehat decreases throughout the placement
process. Initially, withT high, perturbations that worsen the placement are more
likely to be accepted. Many perturbations are attemptedett &emperature (thou-
sands or tens of thousands at each temperature is not unagmhsd is gradually
decreased, perturbations that increase cost becomeHleBsth be accepted. The
value of accepting some perturbations that worsen costawhrmshill climbing; in
essence, there exist scenarios where taking a few “bad’l{umploves can lead to

a lower overall cost later in placement. Fig. 19(a) plotsf@®several temperatures.
Fig. 19(b) shows how the wirelength cost value in the VPR @gnlahanges across
the placement iterations, where one iteration corresptmdse temperature. Ob-
serve that from the initial random placement, a 2/3 reduadti@stimated wirelength

is observed. Altering the initial placement, temperatorehe rate of temperature
decrease has a drastic effect on the run-time and qualitpregaling-based place-
ment [87].

An alternative to annealing is to use analytical placemeciiques, as in the
Xilinx commercial placer. Analytical placement normallydins with a fixed place-
ment of the I/O objects. A placement for the core objects mmpated mathemati-
cally, such the squared wirelength is minimized:
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Fig. 19 Annealing cost function and placement cost progression.

NLogicBIocks NLogicBIocks

?- J; i; wij - [06=))%+ (i = Y1)’ (6)

wherew; j is a positive weight if logic block connects to logic block, and is zero

if i andj are not connected to one another. The variaklaady; represent the and

y positions of logic block in the placement. The general approach is to find values
for the x;, y; variables such thab is minimized. Since (6) is a quadratic function,

it can be minimized by solving a linear system with standaldess. Placement is
done in the real-valued domain, and therefore placemeunttsemust besnapped
onto the FPGA grid.

(1,3)
Logic block

x fixed (x,y) position
1/0
\
(x1,¥4) (X2,Y,)
(0,1)

Fig. 20 Toy analytical placement example.

The approach is best illustrated by an example. Considecithgit shown in
Fig. 20, with two logic blocks and two I/O blocks (whose plaant is fixed). We
assume the edge weights drén this example. The optimization functiom®, can
be broken into separateandy components that can be minimized separately to find
the values of unknowns, xo, y1, andys,:

D=1 (x— 0%+ 1 (x1—X%)°+1-(x2—2)° (7)
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and
Gy =1-(y1—1)%+1-(y1—¥2)*+1-(y2—3) (8)
To minimize these equations, we need to solve two lineaesyst

2 -1| [x 0 2 -1| |y»n 1
R H L R H - F
These systems can be solved using standard techniqguessGauss-Siedel or the
conjugate gradient method [44].

Observe that the formulation described above does notcate constraints
that prohibit logic blocks from overlapping with one anathideed, analytical
placement initially produces an overlapped, infeasibkceinent. Fig. 21 shows
an example of initial analytical placement results for awit. The figure shows 1/O
blocks, placed on the periphery, surrounding an overlapsezEment of core logic
blocks. Based on the initial placement, the formulation exdified to reduce over-
laps, while at the same time keeping connected blocks ctbead another. Much
research has been published on how best to modify the fotimoavith popular ap-
proaches being [104, 105, 106, 38]. The revised formulasidinen re-solved and a
new placement is produced. The process of solving, re-ftating, and re-solving
progresses iteratively, gradually reducing the numbenveflaps, eventually pro-
ducing a placement of logic blocks that is fairly free of daes. Finally, the logic
blocks are snapped onto the discrete placement slots bleada the target FPGA
grid.

Fig. 21 Initial analytical placement of a circuit.

Following placement with either simulated annealing orlyizal techniques,
a greedy optimization is typically executed. Pairwise ssvaplogic blocks are at-
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tempted and accepted if the placement is improved. Thismgdtion can be done
in a windowed fashion, where, within a window of the placetragea, all possible
logic block swaps are considered. Subsequently, the wiridahifted to another
region on the chip.

Placement and routing are the most time consuming phasbke @AD flow, re-
quiring hours or even days for the largest commercial dasigasearch on run-time
reduction is therefore paramount, and a promising diraggdhrough paralleliza-
tion of placement algorithms. Chan and Schlag consideredlpbizing VPR across
a network of computers [19], showing considerable speediAape recently, Altera
released a parallel placer targeted to modern multi-cooeapiocessors [67]. One
core proposes the moves (perturbations), while the othesavaluate moves con-
currently. Backtracking is required in some cases to mairtaterministic results.
This happens when moves evaluated concurrently are ingendient, e.g. thAC
value for then™ move depends on th&C value for then — 1" move.

Another important direction in FPGA placement researchoissaeration of
architecture-specific placement constraints. I/O objed&*GAs are organized into
banks, with constraints on the I/O signaling standards neagléaced together in a
single bank. The constrained I/O placement problem has baerdled through a
new term in simulated annealing-based placement [12] awdthiough integer lin-
ear programming techniques [69]. Recently, the importafoecognizing the struc-
ture of the pre-fabricated clock network in placement haststown [60, 107, 109].
The logic blocks in modern FPGAs are partitioned into claagions where blocks
in a region have access to the same set of clock signals. Ronsumption can be
reduced by limiting the number of regions spanned by theclbipcks belonging
to a single clock domain. Power consumption can also be etling incorporating
signal capacitance estimation into the placer, and inolygower estimates into the
annealing cost function [86, 59, 45].

7 Routing

The role of the router is to form the desired electrical catioas between the logic
blocks in a placed design. FPGA routing differs consideré&bim routing in custom
ICs. In custom ICs, wires, vias and repeaters (buffers) neajobated anywhere
by the router, as allowed by layout design rules. In FPGAsydwver, the metal
routing wires are fixed, as are the repeaters and routinglsast Programmable
switches permit wires to be programmably connected to oathanand permit pins
on logic blocks to be connected to wires. The router’s jobltisnately to decide
which switches to turn on to make the desired connectionsd®at logic blocks,
while meeting speed and power constraints.

An example of a simplified programmable routing network isvgh in Fig. 22.
The figure shows 4 logic blocks, each with 4 pins. Each pin @aprbgrammably
connected to two neighboring wires, illustratedXin the figure. Metal wires can
also be connected to other metal wires, using switch bldetsclarity, in Fig. 22,
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Fig. 22 Abstract FPGA routing fabric.

programmable connections are shown in only one of the svaitotks, illustrated
using dashed lines. A search-based algorithm is used in FB@&Ars to route a load
pin on a signal. Beginning with the signal’s source pin, adsesearch algorithm,
similar to Dijkstra’s algorithm [37], is used to traversetinterconnect network to-
wards the load pin. In this search, each of the routing ressufwires, pins and
switches) is assigned a cost corresponding to delay, dapaej, length or other
criteria. The router’s objective is to find a low-cost path éach load pin. Fig. 23
shows an example routing solution for 3 connections. Fomgt@, one of the con-
nections is between pin 4 on the logic block at (1,2), whichraets to pin 3 on the
logic block at (1,1). Modern FPGAs contain metal wire segtsefivaried lengths,
allowing long distance connections to be made using fewagnammable switches,
reducing interconnect delay. Routers must also handle-famibut signals, where
it is normally advantageous to share partial routing patitaveen loads, reducing
overall capacitance and power.

While FPGA routing research has been active since the e8894d (e.g., [16,
61, 4]), a breakthrough occured in 1995, with the publicatbthe PathFinder al-
gorithm [73] by McMurchie and Ebeling, based partly on primrk in the ASIC
domain by Nair [80]. Nair noted that given a set of conneditmroute, the first
connections routed create blockages for the later corores;timaking routing solu-
tions dependent on connection order. His innovation wasdace order dependence
by routing all connections multiple times, in the same ar@@msider a scenario
where there ara connections to route. After routing all connections oncsgeond
pass begins wherein the first connection is ripped-up amduted; however, in this
second pass, while routing the first connection, the coiore?— n are seen as
blockages.
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Fig. 23 Example routing solution for 3 connections.

PathFinder borrows Nair’s iterative routing concept argbadllows intercon-
nect resources (i.e. wires, pins and sets of wires) tovee-subscribedh the early
steps of routing. This means, for example, that a single Inméta segment can be
shared by multiple different signals. Such signal shortsprmitted initially, and
then removed gradually by a rip-up and re-route mechanigenteally producing
a feasible short-free routing.

Fig. 24 gives the flow of the PathFinder algorithm. Initigdlly signals are routed
in the best-possible manner, without concern for shorte/éen signals. Timing-
critical signals will be routed with low-delay; non-timingitical signals will be
routed to minimize resource usage. Since shorts are igmuitedly, the initial rout-
ing solution will be independent of the order in which sigrale routed. After initial
routing, assuming the presence of shorts, some or all sigmalselected, ripped-up
and re-routed. The penalties for creating new shorts areitteeeased. In essence,
signals that are shorted together on a wiegotiateamong themselves for that wire;
hence, the label applied to the algorithnegotiated congestion routinghe pro-
cess continues iteratively, until either the routing issfbie, or else a fixed number
of loop iterations is exceeded and the design is deemed taireuPathFinder has
proven to be robust in practice and it produces good routdigtisns. The two
largest FPGAs vendors, Xilinx and Altera, both use variaiof PathFinder in their
commercial routers.

Many improvements to PathFinder have appeared in thetlilersSwartz et al. en-
hanced PathFinder from the run-time viewpoint, by prunireggrouter’s search when
routing a signal load pin [99]. Two pruning techniques arepmsed: 1) instead of
applying a breadth-first exploration of the interconnactietwork, a directed search
toward the load pin is used, and 2) when routing a load pin,umbimg rectangle
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Fig. 24 Flow of PathFinder algorithm.

is drawn, encompassing the load and the signal’s sourcapihonly those routing
resources falling within the rectangle are considered r@ise are pruned). Several
researchers have attempted to parallelize PathFindeg usiltple CPUs to route
different sets of signals [18, 20] concurrently; howeviee, parallelization research
was conducted in a distributed computing framework and ndhe multi-core pro-
cessors available today.

Timing-driven routing has typically meant minimizing theldy of the longest
critical path, however, modern routers must also handlet¢keario where paths are
too fast. Interconnect delays in FPGASs are decreasing digehmology scaling and
architectural improvements, making hold time violatiom®acern, leading to mini-
mum delay constraints on connections. Altera tackled thblpm of handling short
and long path constraints within a PathFinder-based frae3]: given short
and long path delay constraints, a maximum and a minimunyaela be computed
for each connection [42], yielding an acceptable delay wimdThe router’s cost
function is adapted to have a “valley” shape, where the lo\{l@sst) cost (base of
valley) corresponds to the center of the delay window, arstl escalates as connec-
tion delay becomes either too short or too long.

Growing device sizes necessitate concentration on thatstigl of CAD algo-
rithms. Several recent works deal with router memory corgion. Sharma and
Hauck used a clustering approach to reduce the size of tihe lialding cost esti-
mates for router search pruning [93]. Chin and Wilton notext since the FPGA's
interconnection fabric is regular, a data model represgrttie entire interconnec-
tion network need not be kept in memory at once [24]. Rattner,fabric can be
computed “on the fly” during the routing of an individual pwith special handling
for irregularities in the FPGA fabric, e.g. routing on thegedf the chip [24].
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8 Physical Synthesis

Following routing, the circuit can be implemented on an FPGAwever, recent
research has shown that a logic circuit implementation GHis significantly im-
proved post-routing. The main reason for such improvensahiit complete design
implementation data is only available post-routing. Aitfons can utilize this data
to further improve the circuit. In physical synthesis, adleack loop is introduced
into the FPGA CAD flow. The feedback starts after routing (eraps placement)
and leads back to any of the earlier stages in the flow. Theideads provide phys-
ical information, primarily delay information, back to &ar phases of the flow, to
allow better optimizations to be applied based on more ateunformation. Both
Altera and Xilinx CAD tools incorporate physical synthesfgimizations.

Within the physical synthesis flow, we can distinguish selelifferent ap-
proaches. The first type applies synthesis, technology mgmnd placement in
an iterative process. The second type uses the synthesispetify to the placer
where to place logic elements. This enables the placer terha@tderstand the de-
cisions made by the synthesizer, and possibly to accommadam. A third type
permits the placer to consider several alternative logippirays for placement.

An example of the iterative approach was proposed by Lin.€68&]. During
each iteration, the mapping algorithm takes some of thesdaten one LUT and
places them in another, basing its decisions on net delaygba the gates. The
new mapping is then placed again, using the prior placenteatquide. The work
of Singh and Brown [96] proposes that the placer be providitd &n incentive to
situate logic elements in a specific location on the deviteiTapproach starts by
executing the normal CAD flow to obtain a synthesized andgulamplementation.
Then, placement-driven optimization techniques are indoto reduce the delay
on critical paths. Each new logic element (LUT) created snfihocess is assigned a
location that aims to minimize the disruption to the entigit circuit. The key con-
tribution of the work is that the synthesizer communicabethé placer the intended
location of synthesized logic elements, allowing the placegespond accordingly.

The approach proposed by Lou et al. [66] relies on the syigliesl to aid the
placer by providing several mapping solutions for eachddginction. Based on the
performance of the circuit, the placer may choose one ofraéseapping solutions
to use during placement. Since it is easier to estimate itidalay during place-
ment, each mapping solution can be better examined and shavslable mapping
solution is used.

Physical synthesis has also received a lot of attention fvoth Altera and Xil-
inx, in their respective commercial tools. Altera’'s CAD aclude physical syn-
thesis techniques such as the ones described by Singh 88hlIPjpst-technology
mapping optimizations consider logic restructuring at arse granularity, but re-
quire accurate timing models. For timing critical pathgs ppossible to attain reason-
able delay estimates, because these paths have priorig st routing resources.
However, for non-critical paths it is not always possibletedict the wiring delay.
Once the post-technology mapping optimizations have begleal, post-placement
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optimization techniques in [98] can fine-tune the circuiplementation to provide
a good final solution.

The commercial tools from Xilinx incorporate physical dyasis to improve
speed performance, where the idea is to identify connestiothe design that are
on timing-critical paths not meeting user performance trairgs [7, 6]. The de-
sign objects on this connections are incrementally requi@nd the design is incre-
mentally re-routed. The incremental changes take coradidtietess time than a full
placementand routing. If the new incrementally-geners¢dation has superior per-
formance, it is accepted, otherwise, the tools revert bathe previously-observed
best-performance solution.

Itis also possible to improve the power consumption of tiheuii implementa-
tion without “touching” the placement and routing soluti@ne idea has been to
use the concept of SPFDsSets of Pairs of Functions to be Distinguishedhich is
an approach for computing the don’t-cares in logic fundifsi, 57]. Some LUT
functions can be changed in ways that do not affect the tisduinctional correct-
ness, yet may reduce toggling on the connections betweers  {i&reby reducing
power. While SPFDs have been used to reduce power on sigetsteén LUTSs, the
work in [45] shows how to reduce poweiithin LUTS.

Leakage power reduction also can be reduced at the postgatage by recog-
nizing that FPGA routing hardware consumes more leakage wigeals are in the
logic-0 state versus the logic-1 stat@he work in [11] inverts the logic functions
implemented by LUTs so that the signals produced by the LUbEnd more time
in the low-leakage (logic-1) state.

9 Future Trends

Research on power optimization has been vigorous in re@arsyand is likely to
continue to be active, given technology scaling trends hadlesire of the commer-
cial vendors to broaden the usage of FPGASs in low-power raahérkets. CAD
techniques for dealing with process variations and rdltghivhile well-studied for
custom ICs, are largely unexplored for FPGAs and will be sihd importance in
the future.

Looking forward, one way to expand the usage and market ajrpromable
hardware is for FPGAs to be adopted by the software developaoenmunity and
used for computing applications. Today’s FPGA CAD toolsrespnt perhaps the
most significant obstacle to achieving that goal. Firstytimetime of the CAD tools
is simply too long, taking hours or days for the largest disctMore scalable CAD
algorithms for FPGAs need to be developed. Run-times nebé tarought closer
to those required for compiling software programs, pertihpsugh parallelization
of CAD algorithms to take advantage of multi-core CPUs. Ohpgs, new FPGA

2 The dependence of leakage power on logic state has beeritesdtar power in the custom IC
domain [47]
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architectures specifically designed to allow fast tool tinme could be devised. Sec-
ond, the complexity of the CAD tools is an insurmountableieafor many soft-
ware programmers. Needed are tools which allow designespeaate at a higher
level of abstraction, writing code in variants of C or stréagnlanguages. With-
out these, FPGAs may well lose out to other computing platfocoming onto the
market today, such as Graphics Processing Units (GPUS) my+t@re computers.
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