
Computer-Aided Design for FPGAs:
Overview and Recent Research Trends

Jason H. Anderson and Tomasz S. Czajkowski

Abstract Computer-aided design (CAD) tools are an integral part of designing with
FPGAs. The tools themselves have a considerable impact on the final FPGA circuit
implementation, affecting circuit speed, logic density and power consumption. In
this chapter, we survey the modern FPGA CAD flow used by most FPGA designers,
giving a top-to-bottom description of the role of each stageof the flow. We also
highlight recent research directions in FPGA CAD and give our thoughts on the
future trends in the area.

1 Introduction

The importance of computer-aided design (CAD) tools for FPGAs cannot be un-
derestimated. In the previous chapters, we have seen that modern FPGAs contain
a fixed fabric of logic blocks, routing, hard IP blocks, and I/O blocks. FPGA CAD
tools take a description of a digital circuit as input, alongwith constraints (e.g. on
speed performance, area or power), and automatically map the circuit into the hard-
ware blocks and routing available in the FPGA. A key point to recognize is that re-
gardless of what features are incorporated into an FPGA, whether it be large blocks
of RAM, processors or analog-to-digital converters, such features are useless unless
they can be taken advantage of, and used effectively by the tools. Furthermore, the
tools significantly affect the speed performance, area and power of circuits imple-
mented in FPGAs. CAD tools alone can affect the speed performance of a circuit
implemented in an FPGA by 30% or more [8]. Using an FPGA means using FPGA

Jason H. Anderson
Dept. of Electrical and Computer Engineering, University of Toronto,
e-mail: janders@eecg.toronto.edu

Tomasz S. Czajkowski
Altera Corporation,
e-mail: tczajkow@altera.com

1

2 Jason H. Anderson and Tomasz S. Czajkowski

CAD tools, and the tools are truly the “face” of the vendor seen by engineers and
designers in the field.

This chapter gives an overview of the CAD flow used by modern FPGA design-
ers, and along the way, highlights the recent developments in FPGA CAD and future
trends in the field. The intent here is not to provide a detailed coverage of algorith-
mic aspects, but rather, to provide a tutorial-like treatment that will be useful to
experienced designers and newcomers alike.

1.1 The Modern FPGA CAD Flow

The largest modern FPGAs contain billions of transistors and implement complete
systems with hundreds of thousands of gates. Owing to the complexity of mapping
a circuit into an FPGA, the CAD flow is broken into manageable steps. Fig. 1 shows
the flow used by most modern FPGA designers. The input to the flow is a circuit
described in either VHDL or Verilog at the register-transfer level (RTL)1. While not
entirely independent of the target FPGA, the early steps of the flow tend to be more
generic, while the later steps are more closely tied to the specific hardware available.
The RTL synthesis step parses the input and transforms the VHDL/Verilog into a
block-level circuit description, usually consisting of large blocks such as multipliers,
adders, multiplexers, state machines, RAMs, and chunks of generic Boolean logic.
Logic synthesis then optimizes the circuit at the level of Boolean equations.

In technology mapping, the circuit is mapped from a generic form into an
equivalent circuit composed of basic logic elements available on the target device,
e.g. LUTs, registers and multiplexers. As described in Chapter X, the logic blocks
in modern FPGAs contain clusters of LUTs, registers and other circuitry. Packing,
also referred to in the literature asclustering, is the step in which elements of the
technology mapped circuit are packed into the logic blocks.The placement stage
decides where each logic block should be located on the two-dimensional FPGA.
Routing forms the desired connections between the placed logic blocks. Finally, the
bitstream is generated for programming the FPGA device.

On the right side of Fig. 1, observe that timing analysis [49]and power analy-
sis [84] feed into all stages of the CAD flow. All stages make decisions that ulti-
mately impact circuit speed and power therefore, the tools must have access to such
analysis data. Exact analysis of timing and power is impossible before routing is
complete, so estimates are used at the earlier phases of the flow [10, 33, 55, 81].
The concept of physical synthesis, shown on the left of Fig. 1, has been developed
to counter inaccuracies in timing estimates. In general, estimates of delay can be
made more accurately at later stages of the flow. In physical synthesis, delay esti-
mates made in placement are used to drive incremental/partial re-execution of earlier
phases of the flow. Literature on physical synthesis has so far been aimed at improv-

1 In RTL, the cycle-by-cycle behavior of the circuit’s functionality is completely specified by the
designer.

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 3

ing speed performance, however, the objective of physical synthesis could equally
well be power, routability or other criteria.

The two largest FPGA vendors, Xilinx and Altera, supply a complete tool flow
from RTL-to-bits, often free-of-charge to their customersand to universities. Alter-
native third-party tools are also available for the initialstages of the flow, such as
the popular Synopsys (Synplicity) and Magma Design Automation tools, and are
known to produce excellent results. Historically, the use of FPGA vendor tools has
been mandatory for the back-end of the flow, beginning with packing, however, that
may be changing as Synplicity now offers a flow encompassing packing, placement
and physical synthesis.

Though not shown in the flow of Fig. 1, simulation, test and verification of the
design can be done at any stage. In practice, many customers simulate their ini-
tial design specification (RTL Verilog or VHDL), and then do not simulate again.
Rather, designers leverage FPGA reconfigurability to accelerate their verification.
After routing, a bitstream is generated for the design, the FPGA is programmed,
and verification is done in the lab using the actual hardware.Such a verification
flow is impossible for custom IC technologies, yet it is feasible for programmable
logic where designs can be modified and devices reconfigured following the discov-
ery of design flaws.

RTL Synthesis

Logic Synthesis

Technology Mapping

Packing

Placement

Routing

Bitstream Generation

Physical Synthesis

Timing and

Power Analysis

Design in VHDL or Verilog

Fig. 1 FPGA CAD flow.

Without question, the majority of published research on FPGA CAD has been on
the back-end of the flow, from technology mapping onwards andincluding physical
synthesis. The subsequent sections outline the role of stage of the flow and highlight
recent research results. It is worth mentioning the divide between academic and in-
dustrial research in FPGA CAD. None of the commercial FPGA vendors release the
source code for their tools publicly, and as such, publishedresearch on FPGA CAD
from academia is typically conducted using an entirely different CAD framework.

4 Jason H. Anderson and Tomasz S. Czajkowski

Academic work on synthesis and technolgy mapping has recently been conducted
using the ABC synthesis framework, developed at UC Berkeley[82], while work on
packing, placement and routing has been done using the VPR framework from the
University of Toronto [15, 68]. Compounding the problems associated with using
a different toolset, academic research often targets a simplified FPGA model that
differs considerably from modern commercial FPGAs. The neteffect of this is that
at times, academic research results have not been directly transferrable to industry.
The situation may be changing however, with the introduction of the Quartus Uni-
versity Interface Program (QUIP) from Altera, which permits academic and other
researchers to interface their CAD tools with the Altera flow[30]. We highlight both
academic and industrial FPGA CAD in this chapter.

2 RTL Synthesis

Fig. 2 shows the general approach taken in RTL synthesis. First, the input VHDL
or Verilog design is parsed and analyzed. The circuit is represented internally as
a parse tree. Next is elaboration, where the circuit netlistbegins to take shape.
The elaborated netlist may contain input and output ports, logic gates, registers,
large blocks (e.g. multipliers, adders, RAMs) and state machines. These initial
steps are loosely coupled to the target FPGA. In fact, many FPGA and ASIC ven-
dors use the identical third-party software (Verific) for their front-end HDL pars-
ing/analysis/elaboration [103], despite the fact that vendor architectures differ con-
siderably from one another.

Design in VHDL or Verilog

Parse/Analyze

Elaborate

Inference/Binding

Synthesized Netlist

Fig. 2 Steps in RTL synthesis.

The final step of RTL synthesis, called inferencing/binding, is closely tied to the
target FPGA. The concept here is to “infer” the hardware corresponding to code

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 5

statements in the HDL. For example, a hardware multiplier would be inferred from
the VHDL statement:Z <= A * B. The inputs to the multiplier would be attached
to signalsA andB; the output would be attached toC. Likewise, shifters, adders,
dividers, state machines, other blocks, and generic logic gates would be inferred
from HDL statements accordingly.

A hardware block inferred from HDL description is then configured to perform
a specific function. This is called binding. For example, an inferred multiplier block
might be bound to an implementation by a DSP block in the target FPGA. A shifter
might be bound to a vendor-specific shifter implementation.Small RAMs inferred
from HDL could be bound to LUT-based memories; large RAMs could be bound to
block RAMs in the FPGA fabric.

An end-to-end example illustrating the action of RTL synthesis is shown in
Fig. 3. Fig. 3(a) shows a section of VHDL code to implement a multiply-accumulate
function. Fig. 3(b) shows an RTL netlist, produced by RTL synthesis. Line 1 of the
code indicates that the functionality in lines 2-10 only “executes” when a change
on the clock signalclk happens, i.e. this implements edge triggering. From lines
3-9, an 8-bit positive edge-triggered register file is inferred; the register file’s output
is calledsum. The register file is reset synchronously when thereset signal is
asserted (line 4); otherwise, the value in the register file is updated to the sum of its
prior value and the product of signalsa andb (line 7). For the synchronous reset,
the RTL synthesis tool needs to know whether the flip-flops in the target FPGA have
a built-in synchronous reset pin, or whether the synchronous reset must be imple-
mented using generic logic gates. From line 7, the adder and multiplier blocks are
inferred. The multiplier would likely be bound to a DSP blockin the target FPGA.
The adder would likely be bound to a logic-block implementation, utilizing the fast
carry-chain arithmetic available in the hardware.

1: process(clk)
2: begin
3: if (clk’event and clk = ‘1’) then
4: if (reset = ‘1’) then
5: sum <= “00000000”;
6: else
7: sum <= sum + a*b;
9: end if;
10: end if;
11: end process;

*

+
sum

a

b

clk

reset

a) VHDL code b) RTL netlist

Fig. 3 Example of RTL synthesis.

The key to inferring and binding is awareness of the hardwareblocks available
in the target FPGA and taking advantage of the hardware to meet constraints on
area, speed or power. A recent work explored area/delay tradeoffs in binding for
FPGAs [111]. A paper by Tessier et al. described an approach for binding RAMs to

6 Jason H. Anderson and Tomasz S. Czajkowski

hardware that the minimizes dynamic power consumption, at the cost of increased
area [100]. Tessier’s work is based on the property that block RAMs in FPGAs have
configurable aspect ratio, leading to implementation alternatives having different
area/power tradeoffs. Metzgen and Nancekievill studied the inference and binding
of multiplexers with the objective of reducing area [74].

Recent work by Howland and Tessier describes a power optimization approach
in FPGA RTL synthesis [50]. A classic “data guarding” approach is taken, shown
in Fig. 4. Select signals on multiplexers can be used to deduce that the outputs
of certain circuit blocks do not affect overall circuit outputs, and hence the inputs
to such blocks can be gated to reduce dynamic power dissipation within the blocks.
Power-aware RTL synthesis for FPGAs is also the basis of a start-up company called
PwrLite [85].

Commerial RTL synthesis tools FPGAs have been available forover 15 years.
Altera and Xilinx currently offer their own RTL synthesis tools, and third-party
tools from Synopsys, Mentor Graphics and Magma are also popular. Despite this,
the industrial work has been kept proprietary and there has been a lack of published
research on RTL synthesis. A robust and modifiable publicly-available RTL syn-
thesis framework has not been available to the research community and there has
also been a lack of RTL benchmark circuits. Recently however, Jamieson and Rose
released a Verilog-based RTL synthesis framework for FPGAsthat correctly infers
multipliers from the input HDL [53]. Jamieson’s framework may well serve as a
launch point for further development of a more comprehensive solution that infers
more varied block types.

a) Before guarding b) After guarding

Fig. 4 Data guarding for power optimization in RTL synthesis (from[50]).

3 Logic Synthesis

The product of RTL Synthesis stage is a complete, though unoptimized, represen-
tation of a logic circuit as shown in Fig. 5. The circuit consists of input and output
ports, inferred blocks such as adders, multipliers, memories and other specialized
components found in the target FPGA device, as well as a clusters of registers and
generic logic gates. The logic synthesis stage focuses on optimizing clusters of logic

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 7

gates and registers in an effort to reduce the area they occupy, delay through the
longest register-to-register path, and their power dissipation.

Cluster of

Logic

*
+ sum

clk

reset

A

B

C

D

Fig. 5 Example output of RTL Synthesis.

In general, logic synthesis consists of two main parts: combinational logic syn-
thesis and sequential optimization. Combinational logic synthesis looks at clusters
of connected logic gates, referred to as logic cones, and applies algorithms that alter
the structure of each logic cone without changing its logic function. Sequential op-
timization further improves the logic circuit by considering registers in the restruc-
turing operations, allowing circuits such as finite state machines to be synthesized
well. In the following, we describe combinational and sequential logic synthesis in
more detail.

3.1 Combinational Logic Synthesis

Combinational logic synthesis is a process of optimizing logic functions in a circuit,
without changing the logical behavior of the circuit. The simplest form of such
optimization is two-level optimization, where a logic expression is implemented
such that any path from the inputs of a logic expression to their outputs contains at
most two gates (not counting including inverters). To illustrate this idea, consider
the example in Fig. 6.

In Fig. 6(a) a logic function is expressed using a Karnaugh map. A Karnaugh map
is a truth table that consists of rows and columns. The rows are indexed by variables
x1x2 and the columns are indexed by variablesx3x4. Both rows and columns are
arranged such that adjacent rows/columns index values differ in exactly one bit po-
sition. This arrangement allows us to create a circuit for a logic function that consists
of AND and OR gates. The AND gates are created by covering adjacent 1s in the
table. For example, notice the encircled terms in column 01 in Fig. 6(b). We can

8 Jason H. Anderson and Tomasz S. Czajkowski

3 4

1 2
00 01 11 10

00 0 0 0 0

01 0 1 1 0

11 0 1 0 0

10 0 0 0 0

x x

x x

3 4

1 2
00 01 11 10

00 0 0 0 0

01 0 1 1 0

11 0 1 0 0

10 0 0 0 0

x x

x x

x1

f

x2 x4 x2 x3 x4

c) Logic networkb) Karnaugh Map

with encircled

product terms

a) Karnaugh Map

Fig. 6 Synthesis example for a simple logic function.

represent this group as a product termx2x3x4, because the logic function assumes a
value of 1 whenx2 = 1, x3 = 0, andx4 = 1. Similarly, the terms in row 01 can be
expressed asx1x2x4. Because the logic function is 1 when either of the two condi-
tions are true, then the function can be synthesized as the logical OR of two AND
gates. We thereby create a two-level representation of a logic function as shown in
Fig. 6(c).

The above example illustrates the notion of taking a description of a logic func-
tion, in this case in a form of a Karnaugh map, and implementing it using logic
gates. Although the example is simple, it shows the essence of logic synthesis. In
practical applications, logic expressions that need to be implemented on an FPGA
contain many more inputs and are much more difficult to synthesize. To address that
problem, a wide array of methods have been developed to automate the process of
implementing logic functions in FPGAs. In general, we distinguish three types of
approaches that address this problem:

1. Tabular
2. Symbolic
3. Graph-based

Each of these approaches achieves the same goal (optimizinga logic function to
minimize area or improve delay), however the approaches differ in how the initial
logic expression is represented and how the optimization steps are performed on
each logic function.

Tabular methods are based on the work of Ashenhurst [13] and Curtis [31]. In
their work, they chose to represent logic functions using a table. A table has rows
indexed by some subset of variables; the remaining variables are assigned to index
the columns. An example table is shown in Fig. 7. The purpose of the table is to
identify compatiblecolumns. Such columns represent a function that could be ex-
tracted from a logic expression, permitting a simplified hardware implementation.
For example, notice that column 001 is identical to columns 000, 010, and 011, save

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 9

for the don’t care entries (shown with ad in the table). We can express the first four
columns of this table as a product of the column function,x1x2, and the selector
function,x3, that determines where this column appears in the truth table. Applying
similar reasoning to the remaining columns, we can implement the given function as
shown in Fig. 8. Many works that followed performed adecompositionof logic ex-
pressions using tables to simplify logic circuits. In each instance, some relationship
between columns was sought. Examples of such works include [52, 108, 32].

x x x

x x

d

d

3 4 5

1 2
000 001 010 011 100 101 110 111

00 0 0 0 0 0 0 1

01 0 0 0 0 0 0 0 0

10 0 dd 0 1 0 1 0

11 1 1 1 1 1 0 1 1

Fig. 7 Example of an Ashenhurst-Curtis decomposition table.

x
1

x
4

x
5

x
1

fx
2

x
5

x
3

x
2

Fig. 8 Synthesized logic circuit for function in Fig. 7.

Symbolic methods focus on optimization of logic expressions. A classical prob-
lem in this context is one of decomposition of a sum-of-products logic expression.
Such problems are addressed in the works onkernel theoryand boolean or algebraic
division, where subexpressions are extracted to simplify the final implementation of

10 Jason H. Anderson and Tomasz S. Czajkowski

the logic function. For example, consider the goal of reducing the complexity of the
following logic expression:

f = x1x2x4 +x1x2x5 +x1x3x4 +x1x3x5 +x6

Using kernel theory, it is possible to process this equationto determine useful subex-
pressions, and implement the logic function asf = x1(x2+x3)(x4+x5)+x6. Exam-
ples of works that take advantage of symbolic manipulation include [90] and [101].

Finally, graph-based methods are techniques that operate on a graph represen-
tation of a logic function. Various graph methods have been proposed, but in all
circumstances the graph consists ofnodesthat represent some logic function, and
edgesthat connect the nodes to form a complete logic function. A seminal work
in graph-based synthesis was that of Bryant [17], where he introduced the concept
of binary decision diagrams (BDDs). Fig. 9 shows an example of a binary decision
diagram.

b

c

a b c

f
f

a) Logic network b) Equivalent Binary Decision Diagram (BDD)

a

10

0

0

0

1

1

1

Fig. 9 Example of a binary decision diagram (BDD).

In this example, a logic functionf is shown in Fig. 9(a). The same logic function
is shown in Fig. 9(b) represented with BDDs. Nodes in a BDD correspond to input
variables. To determine the value of a logic function for a given input pattern, one
starts at the root (top) of the BDD graph, and traverses the graph one node at a time.
At each node, a decision needs to be made as to which path to follow – the 0-path or
the 1-path. This decision depends on the value of the variable the node represents.
When the graph is traversed to one of the terminals (0 or 1 nodes), the function value
can be determined. For example, to determine the value off for the input pattern
abc= 010 in the graph in Fig. 9(b), we proceed as follows. First, webegin at the
root of the graph which is nodec. Since variablec = 0, then we follow the path
along the 0 edge to reach nodeb. Nodeb has a value of 1, which leads us to nodea.
Finally, by following the 0-edge from nodea we reach a terminal node 1. Thus, for
input patternabc= 010, logic function value isf = 1.

There are numerous works which use BDDs to optimize logic functions. For FP-
GAs, and early work was by Lai et al. [58]; more recent works byYang et al. [110],

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 11

Vemuri et al. [102], and Cheng [23] show how BDDs can be utilized to synthesize
various logic functions, finding ways to simplify them and thereby reduce their area.

A more recent work in graph-based techniques is the work of Mishchenko
et al. [77], where AND-inverter graphs (AIGs) are used. In their work, a logic func-
tion is represented as a set of nodes that function as AND gates, connected by in-
vertible edges. Invertible edges can be used to complement alogic expression that
follows. An example of an AND-inverter graph is shown in Fig.10.

a b c d

z

a b c d

z

complemented

edge

a) Logic network b) Equivalent and-inverter graph (AIG)

Fig. 10 Example AND-inverter graph used within the ABC synthesis tool.

Using AIGs, Mishchenko et al. used arewriting technique [34] that can optimize
logic functions rapidly. AIGs and rewriting optimizationsbecame the basis for the
ABC synthesis system, which recently became a popular research framework [82].
AIGs were also used by Ling et al. [65], where they use rewriting techniques to
reduce the depth of a logic circuit in an effort to improve circuit performance, while
maintaining circuit size.

The treatment above is only a basic introduction to logic synthesis of combina-
tional circuits. Over the past decades, a wide array of techniques have been devel-
oped, addressing various types of logic functions. Comprehensive surveys of logic
synthesis and decomposition techniques can be found in [28]and [83].

3.2 Sequential Optimization

Sequential optimization is a field of logic synthesis that deals sequential circuits –
circuits that retain “state”. One class of such circuits is finite state machines (FSMs).
FSMs are used to describe a sequence of events, where each event has a state as-
sociated with it. For example, consider an FSM with inputw and outputz, wherez
becomes high on a clock cycle following a sequence of 110 on input w. The state
diagram for this FSM is shown in Fig. 11.

Implementing a state machine, such as the one in the above example, is a matter
of selecting an encoding for each state, implementing logicto determine the state

12 Jason H. Anderson and Tomasz S. Czajkowski

A/0 B/0

D/1 C/0 w=1

w=1w=1

w=0

w=0

w=1

w=0

w=0

Fig. 11 A simple FSM example.

transitions and generating the output logic. For example, if we choose an encoding
such thatA = 00,B = 01,C = 10 andD = 11, then the circuit we generate for this
FSM is as shown in Fig. 12(a). However, altering the state encoding such thatC= 11
andD = 10 results in a smaller circuit, as shown in Fig. 12(b).

D Q

D Q
y1

y2

w

z

D Q

D Q
y1

y2

w

z

a

b

Fig. 12 Two possible implementations for the FSM in Fig. 11.

The above example highlights a problem with FSM implementation, namely,
how to choose an encoding for each state to obtain the best solution for perfor-
mance, area and power? This not only includes selecting the appropriate number
of flip-flops to represent logic states, but also choosing an encoding of states so as

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 13

to minimize next state and output logic. A recent work in [76]is an example of an
area optimization of sequential circuits that leverages the notion that sequential cir-
cuits contain unreachable states, whereas power-orientedsequential optimizations
are discussed in [78].

In addition to handling FSMs, sequential optimization algorithms also handle
pipelined paths. One of the most popular algorithms is called retiming. Retiming is
an operation that either pushes flip-flops forward or backward through the circuit,
without altering the logical functionality of the circuit.The idea behind this oper-
ation is to allow CAD tools to rebalance path delays, with theultimate objective
being to improve circuit speed. Consider the high-level example in Fig. 13.

*

+

clk

A

x

B

y

= equal

*

+

clk

A

x

B

y

= equal

a) Original circuit b) Retimed circuit

Fig. 13 A high-level example of retiming.

In this example, the circuit performs a check ify= Ax+B and returns a result of
1 if the equation holds. Although it is conceptually easier to first evaluate the right
hand side of the equation and then compare the result toy, as shown in Fig. 13(a), it
is not necessarily the best approach from a performance standpoint. This is because a
multiplier is much slower than an adder or a comparator. We can speed up the circuit
by pushing back flip-flops at the output of the adder, as shown in Fig. 13(b). The
resulting circuit will perform the same operation in the same number of clock cycles,
however, the circuit will now be able to function at a higher clock frequency. The
example demonstrates the concept of retiming. In practice,retiming occurs at the
LUT level, where flip-flops are pushed backwards or forwards through a single LUT,
which can provide a significant improvement in circuit performance [97]. Examples
of works that take advantage of retiming include [96, 97, 29,88, 1, 94]. It is worth
noting that retiming is particularly well-suited for FPGAs, as FPGAs contain many
registers (usually one register per LUT is provided), thereby permitting easy register
insertion.

14 Jason H. Anderson and Tomasz S. Czajkowski

3.3 Remarks

The topic of logic synthesis is one of incredible depth. It has been researched vig-
orously for over 50 years, and despite the wealth of research, new and innovative
approaches are still created today. To interested readers,who wish to explore this
topic further, we recommend the following books: [46, 79, 36, 89].

4 Technology Mapping

Technology mapping transforms the circuit from a network ofgeneric logic ele-
ments/gates into a network of the logic blocks available in the target FPGA. The
majority of literature on FPGA technology mapping relates to mapping the circuit
into look-up-tables (LUTs). Recall that aK-input LUT (K-LUT) can implement
any logic function that uses up toK variables. Therefore, during technology map-
ping we only need be concerned with the number of inputs to each LUT and not
its logic function. As such, most technology mapping algorithms first translate the
circuit into a directed acyclic graph (DAG), and then map it into a network of input
functions, each using no more thanK inputs.

For example, consider a logic network in Fig. 14(a). First, the logic network is
expressed as a DAG Fig. 14(b). The technology mapping task isto “cover” the DAG
with LUTs, as shown in the 4-LUT mapping solution in Fig. 14(c). There are two
LUTs in the mapping solution; observe that each LUT uses no more than 4 variables.

e

d

a b
c

a) Logic network b) Circuit DAG

e

d

a b
c

c) Mapping solution

LUT1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

LUT2

Fig. 14 Logic circuit, DAG and mapping solution.

Research on technology mapping for FPGAs was active in the early 90s with a
wide range of algorithms proposed [39, 41, 40, 25, 26]. Recent technology mappers
are based on the notion of cuts [92, 27], which we delve into here. In the circuit
DAG, G(V,E), each node,z ∈ V, represents a single-output logic function and

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 15

edges between nodes,e ∈ E, represent input/output dependencies between the cor-
responding logic functions. For a nodez in the circuit DAG, letinputs(z) represent
the set of nodes that are fanins ofz. For a subgraph,H, of a DAG, let inputs(H)
represent the set of nodes outside ofH that are fanins of nodes inH. For example,
in Fig. 14(c),inputs(e) = {d,c} andinputs(LUT2) = {d,4,5}.

A nodex is said to be a predecessor of nodez if there exists a directed path in the
graph fromx to z. The subgraph consisting of a nodez and all of its predecessors
is referred to as the subgraphrootedat z. For any nodez in a network, aK-feasible
coneat z, Nz, is defined to be a subgraph consisting ofz and some of its predeces-
sors such that|inputs(Nz)| ≤ K. Consequently, the technology mapping problem for
K-LUTs can be thought of as covering an input Boolean network with K-feasible
cones. Generally, there are manyK-feasible cones for each node in the network,
each having different area, delay, or power characteristics.

A concept closely related toK-feasible cone is that ofK-feasible cut. A K-
feasible cut for a nodez is a partition,(X,X), of the nodes in the subgraph rooted at
z such thatz∈ X, and the number of nodes inX that fanout to nodes inX is ≤ K.
There is a one-to-one correspondence betweenK-feasible cuts andK-feasible cones.
Given a cut,(X,X), theK-feasible cone is simply the subgraph induced by the nodes
in X. The key point to realize is that the problem of finding all possibleK-LUTs that
generate a logic function for nodez is equivalent to the problem of enumerating
all K-feasible cuts for nodez. To simplify the presentation, for aK-feasible cut,
Cz = (X,X), for a nodez, Nodes(Cz) is used to represent the setX, wherez∈ X.
Support(Cz) is used to represent subset of nodes inX that fanout to nodes inX. For
example, for consider cutCz1 in Fig. 15(b),Nodes(Cz1) = {z,a,b} andSupport(Cz1)
= {d, e, f}. Finally, Cuts(z) is used to represent the set of all feasible cuts for a
nodez.

Traversing the circuit DAG in topological order (from inputs-to-outputs), the cuts
for each nodezare generated by merging cuts from its fanin nodes, using themethod
described in [27, 92] and outlined here. Consider generating theK-feasible cuts for
a nodez with two fanin nodes,a andb. The list ofK-feasible cuts fora andb have
already been computed, due to the graph traversal order. Saythat nodea has two
K-feasible cuts,Ca1 andCa2, and nodeb has oneK-feasible cut,Cb, as shown in
Figure 15(a). We can mergeCa1 andCb to create a cut,Cz1, for nodez, such that
Support(Cz1) = Support(Ca1)∪Support(Cb) andNodes(Cz1) = z∪Nodes(Ca1)∪
Nodes(Cb) [see Figure 15(b)]. If|Support(Cz1)| > K, the resulting cut is notK-
feasible, and it is therefore discarded. Similarly, one canmergeCa2 andCb to create
another candidate cut,Cz2, for nodez. This provides a general picture of how the cut
generation procedure works; however, there are several special cases to consider,
and the reader is referred to [92] for complete details.

Having computed the set ofK-feasible cuts for each node in the DAG, the graph
is traversed in topological order again. During this secondtraversal a “best cut” is
chosen for each node. The best cut may be chosen based on any criteria, whether it
be area, power, delay, routability or a combination of these. In technology mapping,
the depth of the longest path in the mapped network is often used as a proxy for the
critical path delay. As a concrete example, if optimizing the depth of the mapped

16 Jason H. Anderson and Tomasz S. Czajkowski

z

a b

e fd

c g

Ca1

Ca2

Cb

(a) cuts for nodes a and b

z

a b

e fd

c g

Cz1

Cz2

(b) cuts for node z

Nodes(Ca1) = {a}
Support(Ca1) = {d,e}

Nodes(Cb) = {b}
Support(Cb) = {e,f}

Nodes(Ca2) = {a,d}
Support(Ca2) = {c,g,e}

Nodes(Cz1) = {z,a,b}
Support(Cz1) = {d,e,f}

Nodes(Cz2) = {z,a,b,d}
Support(Cz2) = {c,g,e,f}

Fig. 15 Generating theK-feasible cut sets.

network is desirable, then, for a nodez with a K-feasible cut,Cz, the cost of the cut
is defined as:

Cost(Cz) = 1+ max
v ∈ Support(Cz)

{Cost[BestCut(v)]} (1)

Thus, to compute the depth cost of cutCz, (1) considers the depth cost of the best
cut for each node,v, that fans out to a node inNodes(Cz). The best cut has already
been selected for each of these support nodes, since the network is being traversed
in an input-to-output fashion.

The last part of technology mapping is to build the final LUT network. A FIFO
queue is initialized to contain all output nodes in the circuit. A node,v, is removed
from the queue and its best cut,Cv = BestCut(v), is recovered. The subnetwork
corresponding toNodes(Cv) is implemented as a LUT in the mapping solution.
Each node inSupport(Cv) is then added to the end of the FIFO queue, if it is not
already in the queue. The process of removing nodes from the queue, using their
best cuts to establish LUTs in the mapping solution, and adding the support of these
cuts to the end of the queue continues until the queue contains only primary inputs.
When this condition is met, the input Boolean network has been fully mapped into
LUTs.

The beauty of cut-based technology mapping is that any cost function can be
applied to rank the cuts and thus it is relatively easy to adapt cut-based mapping to
optimize for any objective. Only the costing of cuts need be changed; the process
of computing the cuts and generating the final mapped networkremain the same.
Cut-based mapping has been used extensively in many works tooptimize for depth,
power, area and routability [21, 9, 59, 92].

Despite the relative maturity of the topic, there have been anumber of important
breakthroughs in FPGA technology mapping in recent years. As noted in Chapter X,
modern FPGAs contain LUTs with 6-inputs (K = 6). An upper bound on the number
of cuts for a node isO(nK), wheren is the number of nodes in the circuit. Thus,
with K = 6, there can be a large number of cuts per node, increasing algorithm run-

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 17

time and memory consumption. Mishchenko et al. address the cut explosion using
the notion ofpriority cuts [75]. The idea is that instead of storing all possible cuts
for each node, only a subset of “priority cuts” is stored, based on a cost function.
When generating the set of cuts for a node, only the priority cuts of its fanin nodes
are considered for merging. Despite the fact that many cuts are pruned with this
technique, very little quality degradation is observed in practice, and the idea has
been picked up and applied by industry [56].

Another recent concept, calledarea flow, was introduced by Manohararajah
et al. and shown to significantly reduce the area (# of LUTs) ofthe mapped net-
work [70]. The innovation in area flow is to divide the cost of amulti-fanout LUT
equally across its fanout LUTs. For example, consider a LUTA with two fanin LUTs
B andC. Furthermore, consider that LUTC has some other fanout LUTD (besides
LUT A). Area flow recognizes that LUTA should not incur the full “charge” for
LUT C, asC also fans out to another LUT,D. The costing strategy has implica-
tions on how multi-fanout nodes in the DAG are mapped, ultimately impacting area.
Furthermore, in [70], the costing and mapping steps executeseveral times, where
one iteration of costing and mapping uses fanout and depth information from the
prior iteration to make better decisions. Manohararajah’swork has traction and was
adapted for commercial application by Xilinx to reduce the number of connections
in the mapped network [54].

A recent contribution to technology mapping is the use of Boolean satisfiability
(SAT). Recent developments in SAT solver technology have enabled the use of the
concept for practical purposes. An important work on technology mapping for FP-
GAs using boolean satisfiability was published by Ling et al.[64]. In their work,
both the functional capabilities of the logic block, as wellas a logic expresson to be
potentially implemented in the logic block, are expressed as a Boolean equation (in
conjunctive normal form). The equation is formulated such that if there is a satis-
fying assignment to the variables in the equation (equationoutput value is 1) then
the logic expression can indeed be implemented by the logic block. SAT is used to
determine if there is a satisfying variable assignment. Ling’s work considered logic
blocks with different LUT configurations, however, the concept is easily extendible
to target logic elements in commercial architectures, suchas the Altera Stratix III
logic element shown in Fig. 16. The appeal of using SAT is the ease with which
complex logic block architectures can be described to a SAT solver, allowing re-
searchers and designers to explore non-trivial mapping solutions for arbitrary logic
functions.

5 Packing

Packing, also known asclustering, is the step wherein the elements of the technol-
ogy mapped circuit are packed into the available FPGA hardware resources. Clus-
ters of LUTs and flip-flops form the basis for logic blocks in today’s FPGAs, with
fast local interconnect available for intra-logic block connectivity. Most commonly,

18 Jason H. Anderson and Tomasz S. Czajkowski

D Q
To general or

local routing

reg0

To general or

local routing

datae0

dataf0

reg_chain_in

reg_chain_out

adder0

dataa

datab

datac

datad

datae1

dataf1

D Q
To general or

local routing

reg1

To general or

local routing

adder1

carry_in

carry_out

Combinational/Memory ALUT0

6-Input LUT

6-Input LUT

shared_arith_out

shared_arith_in

Combinational/Memory ALUT1

labclk

Fig. 16 High-level diagram of the Altera Stratix III adaptive logicmodule (ALM) [5].

the packing step combines LUTs and flip-flops in a design together to form logic
blocks.

Fig. 17 depicts the classic FPGA logic block model used in thevast majority
of academic research. It consists of a cluster of LUTs and flip-flops, where each
flip-flop can be bypassed for implementing combinational logic. Inputs to the logic
block come from the FPGA’s general interconnect: horizontal and vertical channels
of FPGA routing. Local interconnect inside the logic block is available for realiz-
ing fast paths within the logic block. Observe that each LUT/FF pair drives both
local interconnect, as well as general interconnect. Most prior packing work as-
sumes the local interconnect to be a full crossbar switch matrix – every input can
be programmably connected to any output. In this logic blockmodel, connections
within the logic block are fast, and connectionsbetweenlogic blocks, routed through
the general interconnect, are slow in comparison. The packing step decides which
LUTs to put together into a single logic block, and therefore, packing has a signifi-
cant impact on circuit speed. The model of Fig. 17 is representative of early Altera
FLEX FPGAs [2], however, it has become out-of-step with the logic blocks present
in modern Xilinx and Altera FPGAs. Modern logic blocks present a more complex
packing problem, new optimization opportunities and impose different constraints.

Much research has been published on packing for the logic block in Fig. 17. Per-
haps the most cited work is that of Betz and Rose who proposed an area-driven pack-
ing algorithm, and showed that the number of inputs to a logicblock can be much
smaller than the total number of LUT inputs within a cluster,due inherent locality
in circuits [14]. In particular, for a logic block withN 4-input LUTs, [14] showed
that only 2N+2 inputs to the cluster are needed – a number much smaller than4N.
Marquardt extended the work to perform timing-driven packing and demonstrated
the impact of packing on critical path delay [71].

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 19

LUT FF

LUT FF

LUT FF

LUT FF

local interconnect

to
 g

en
er

al
 in

te
rc

on
ne

ct

fr
om

 g
en

er
al

 in
te

rc
on

ne
ct

Fig. 17 Classic FPGA logic block targeted by most academic research.

Packing affects power consumption as intra-logic block connections will have
lower capacitance than inter-logic block connections. A natural approach is to at-
tempt to keep nets with high switching activity contained within logic blocks, as
was proposed in [59]. An entirely different approach for power-driven packing was
shown in [95], where Rent’s rule was used to establish a preference for how many
logic block inputs should be used during packing, leading tolower overall intercon-
nect usage, capacitance and power. Although not yet available commercially, dual-
VDD FPGAs have been proposed by academia, where the idea is to programmably
allow logic blocks to operate at reduced supply voltage (slower but lower power).
Researchers at UCLA developed a complete CAD flow for a proposed dual-VDD

FPGA, including new packing techniques [22]. The aim of packing in this context
is to pack LUTs based on their timing-criticality, placing non-critical LUTs together
into logic blocks that will be operated at lowVDD. The work in [48] dealt with pack-
ing for a low-power FPGA having logic blocks that when idle, can be placed into a
low leakage sleep state.

On the speed axis, more recent work includes [35] which uses aRent’s rule-
based algorithm, and prevents loosely connected, or unrelated, LUTs from being
packed together. Other papers tie together packing with other phases of the FPGA
CAD flow. For example, [91] looked at packing in the context oflogic replication
for performance; a subset of LUTs are deliberately left empty by the packer to ac-
comodate later LUT replications during placement. An interesting recent work by
Lin et al. brought together packing and technology mapping and showed that higher
speed can be attained using a unified algorithm for concurrent packing and technol-
ogy mapping [62].

Relative to the block in Fig. 17, modern FPGAs have more complex logic blocks
containing multi-output fracturable LUTs, multiplexers,gates, carry chains, and
configurable registers. Little has been published on packing for commercial chips.
To illustrate, Fig. 18 shows a quarter of a logic block (called a SLICE) in the Xilinx

20 Jason H. Anderson and Tomasz S. Czajkowski

Virtex-5 FPGA. A recent work by Ahmed et al. considered packing for Virtex-5 [3].
Observe in Fig. 18 that the LUTs in Virtex-5 have six inputs and two outputs, and
can implement a single 6-input logic function or any two functions that together use
no more than 5 inputs. The authors pack LUTs into the dual-output LUT during
an integrated packing/placement phase, improving logic density in the FPGA while
maintaining speed performance.

�� �
�� �
���� ����� 	

	

��

�
���������

	�� ��� ��������
FF or
LATCH

Fig. 18 Quarter of logic block (SLICE) in Xilinx Virtex-5 FPGA.

6 Placement

The result of technology mapping is a network of logic blocksthat are ready to
be located on the target two-dimensional FPGA device. Thereare two popular
approaches to FPGA placement: one is based on the simulatingannealing algo-
rithm, and the other uses analytical placement techniques.We briefly outline both
approaches here.

Simulated annealing is an optimization strategy that has proven effective for
FPGA placement, owing to its flexibility to incorporate virtually any objective or
constraint. Annealing is used in the VPR placer [15, 72], andin the Altera com-
mercial placer, as well as in prior academic work . In annealing-based placement,
an initial placement is first constructed, possibly randomly. The entire placement is
assigned a numerical cost, reflecting estimated wirelength, speed performance and
other criteria:

C = α ·WL+ β ·PERF+ γ ·OTHER (2)

where the wirelength and performance costs,WL andPERF, must be estimated,
as precise routes are unavailable. The weightsα, β andγ, are chosen to reflect the
importance of each term. The advantage of simulated annealing is thatOTHERin
(2) can be designed to represent any other objective criteria. For example, it could
represent the chip power or legality constraints on the placement. As a concrete

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 21

example, in VPR, the wirelength cost is:

WL=
Nnets

∑
n=1

q(n) · [bbx(n)+bby(n)] (3)

wherebbx(n) and bby(n) represent the span of netn in the x and y dimensions,
respectively, and theq(n) factor is 1 for nets with 3 or fewer terminals, and increases
to 2.79 for nets with 50 terminals. Theq(n) factor addresses the problem that the
sum of a net’sx andy span is an underestimate of its total wirelength for nets with
many terminals. The performance cost is:

PERF= ∑
conn∈Circuit

d(conn) ·crit (conn)e (4)

whereconn is a connection in the circuit,d(conn) is the estimated delay of the
connection andcrit (conn) is the connection’s timing criticality in the range of 0 to 1,
with 1 meaning the connection is on the critical path, and 0 meaning the connection
is non-critical. Parametere in (4) is a tuning parameter.

Given an initial placement and a cost function, an annealing-based placer at-
tempts random perturbations to the placement, and for each attempt, a change in
cost,∆C, is computed. A random perturbation typically comprises moving a single
logic block to a new location or swapping one logic block withanother. Perturba-
tions that improve the cost (∆C < 0) are always accepted, while perturbations that
worsen costmaybe accepted with a probability:

P(Accept) = e
−∆C

T (5)

whereT is a parameter calledtemperaturethat decreases throughout the placement
process. Initially, withT high, perturbations that worsen the placement are more
likely to be accepted. Many perturbations are attempted at each temperature (thou-
sands or tens of thousands at each temperature is not uncommon). AsT is gradually
decreased, perturbations that increase cost become less likely to be accepted. The
value of accepting some perturbations that worsen cost is known ashill climbing; in
essence, there exist scenarios where taking a few “bad” (uphill) moves can lead to
a lower overall cost later in placement. Fig. 19(a) plots (5)for several temperatures.
Fig. 19(b) shows how the wirelength cost value in the VPR placer changes across
the placement iterations, where one iteration correspondsto one temperature. Ob-
serve that from the initial random placement, a 2/3 reduction in estimated wirelength
is observed. Altering the initial placement, temperature,or the rate of temperature
decrease has a drastic effect on the run-time and quality of annealing-based place-
ment [87].

An alternative to annealing is to use analytical placement techniques, as in the
Xilinx commercial placer. Analytical placement normally begins with a fixed place-
ment of the I/O objects. A placement for the core objects is computed mathemati-
cally, such the squared wirelength is minimized:

22 Jason H. Anderson and Tomasz S. Czajkowski

P
(A

cc
e

p
t)

∆C

T = 100

T = 50
T = 10

T = 1

0

100

200

300

400

500

600

700

W
ir

e
le

n
g

th
C

o
st

 (
W

L)

Placement iteration

a) P(Accept) function plot b) Wirelength cost progression in VPR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fig. 19 Annealing cost function and placement cost progression.

Φ =

NLogicBlocks

∑
j=1

NLogicBlocks

∑
i=1

wi, j · [(xi −x j)
2 +(yi −y j)

2] (6)

wherewi, j is a positive weight if logic blocki connects to logic blockj, and is zero
if i and j are not connected to one another. The variablesxi andyi represent thex and
y positions of logic blocki in the placement. The general approach is to find values
for thexi , yi variables such thatΦ is minimized. Since (6) is a quadratic function,
it can be minimized by solving a linear system with standard solvers. Placement is
done in the real-valued domain, and therefore placement results must besnapped
onto the FPGA grid.

1 2

(0,1)

(1,3)

I/O

Logic block

(x1,y1) (x2,y2)

fixed (x,y) position

Fig. 20 Toy analytical placement example.

The approach is best illustrated by an example. Consider thecircuit shown in
Fig. 20, with two logic blocks and two I/O blocks (whose placement is fixed). We
assume the edge weights are1 in this example. The optimization function,Φ, can
be broken into separatex andy components that can be minimized separately to find
the values of unknownsx1, x2, y1, andy2:

Φx = 1 · (x1−0)2+1 · (x1−x2)
2 +1 · (x2−2)2 (7)

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 23

and
Φy = 1 · (y1−1)2+1 · (y1−y2)

2 +1 · (y2−3)2 (8)

To minimize these equations, we need to solve two linear systems:
[

2 −1
−1 2

]

·

[

x1

x2

]

=

[

0
2

]

and

[

2 −1
−1 2

]

·

[

y1

y2

]

=

[

1
3

]

(9)

These systems can be solved using standard techniques, suchas Gauss-Siedel or the
conjugate gradient method [44].

Observe that the formulation described above does not incorporate constraints
that prohibit logic blocks from overlapping with one another. Indeed, analytical
placement initially produces an overlapped, infeasible placement. Fig. 21 shows
an example of initial analytical placement results for a circuit. The figure shows I/O
blocks, placed on the periphery, surrounding an overlappedplacement of core logic
blocks. Based on the initial placement, the formulation is modified to reduce over-
laps, while at the same time keeping connected blocks close to one another. Much
research has been published on how best to modify the formulation, with popular ap-
proaches being [104, 105, 106, 38]. The revised formulationis then re-solved and a
new placement is produced. The process of solving, re-formulating, and re-solving
progresses iteratively, gradually reducing the number of overlaps, eventually pro-
ducing a placement of logic blocks that is fairly free of overlaps. Finally, the logic
blocks are snapped onto the discrete placement slots available on the target FPGA
grid.

Fig. 21 Initial analytical placement of a circuit.

Following placement with either simulated annealing or analytical techniques,
a greedy optimization is typically executed. Pairwise swaps of logic blocks are at-

24 Jason H. Anderson and Tomasz S. Czajkowski

tempted and accepted if the placement is improved. This optimization can be done
in a windowed fashion, where, within a window of the placement area, all possible
logic block swaps are considered. Subsequently, the windowis shifted to another
region on the chip.

Placement and routing are the most time consuming phases of the CAD flow, re-
quiring hours or even days for the largest commercial designs. Research on run-time
reduction is therefore paramount, and a promising direction is through paralleliza-
tion of placement algorithms. Chan and Schlag considered parallelizing VPR across
a network of computers [19], showing considerable speed-up. More recently, Altera
released a parallel placer targeted to modern multi-core microprocessors [67]. One
core proposes the moves (perturbations), while the other cores evaluate moves con-
currently. Backtracking is required in some cases to maintain deterministic results.
This happens when moves evaluated concurrently are interdependent, e.g. the∆C
value for thenth move depends on the∆C value for then−1th move.

Another important direction in FPGA placement research is consideration of
architecture-specific placement constraints. I/O objectsin FPGAs are organized into
banks, with constraints on the I/O signaling standards may be placed together in a
single bank. The constrained I/O placement problem has beenhandled through a
new term in simulated annealing-based placement [12] and also through integer lin-
ear programming techniques [69]. Recently, the importanceof recognizing the struc-
ture of the pre-fabricated clock network in placement has been shown [60, 107, 109].
The logic blocks in modern FPGAs are partitioned into clock regions where blocks
in a region have access to the same set of clock signals. Powerconsumption can be
reduced by limiting the number of regions spanned by the logic blocks belonging
to a single clock domain. Power consumption can also be reduced by incorporating
signal capacitance estimation into the placer, and including power estimates into the
annealing cost function [86, 59, 45].

7 Routing

The role of the router is to form the desired electrical connections between the logic
blocks in a placed design. FPGA routing differs considerably from routing in custom
ICs. In custom ICs, wires, vias and repeaters (buffers) may be located anywhere
by the router, as allowed by layout design rules. In FPGAs, however, the metal
routing wires are fixed, as are the repeaters and routing switches. Programmable
switches permit wires to be programmably connected to one another and permit pins
on logic blocks to be connected to wires. The router’s job is ultimately to decide
which switches to turn on to make the desired connections between logic blocks,
while meeting speed and power constraints.

An example of a simplified programmable routing network is shown in Fig. 22.
The figure shows 4 logic blocks, each with 4 pins. Each pin can be programmably
connected to two neighboring wires, illustrated byX in the figure. Metal wires can
also be connected to other metal wires, using switch blocks.For clarity, in Fig. 22,

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 25

(1,1)

(1,2)

(2,1)

(2,2)

1

3

1

3

1

3

1

3

4 4

44

2 2

22

logic block

switch block

programmable
switches

metal wire
segment

Fig. 22 Abstract FPGA routing fabric.

programmable connections are shown in only one of the switchblocks, illustrated
using dashed lines. A search-based algorithm is used in FPGArouters to route a load
pin on a signal. Beginning with the signal’s source pin, a greedy search algorithm,
similar to Dijkstra’s algorithm [37], is used to traverse the interconnect network to-
wards the load pin. In this search, each of the routing resources (wires, pins and
switches) is assigned a cost corresponding to delay, capacitance, length or other
criteria. The router’s objective is to find a low-cost path for each load pin. Fig. 23
shows an example routing solution for 3 connections. For example, one of the con-
nections is between pin 4 on the logic block at (1,2), which connects to pin 3 on the
logic block at (1,1). Modern FPGAs contain metal wire segments of varied lengths,
allowing long distance connections to be made using fewer programmable switches,
reducing interconnect delay. Routers must also handle multi-fanout signals, where
it is normally advantageous to share partial routing paths between loads, reducing
overall capacitance and power.

While FPGA routing research has been active since the early 1990s (e.g., [16,
61, 4]), a breakthrough occured in 1995, with the publication of the PathFinder al-
gorithm [73] by McMurchie and Ebeling, based partly on priorwork in the ASIC
domain by Nair [80]. Nair noted that given a set of connections to route, the first
connections routed create blockages for the later connections, making routing solu-
tions dependent on connection order. His innovation was to reduce order dependence
by routing all connections multiple times, in the same order. Consider a scenario
where there aren connections to route. After routing all connections once, asecond
pass begins wherein the first connection is ripped-up and re-routed; however, in this
second pass, while routing the first connection, the connections 2− n are seen as
blockages.

26 Jason H. Anderson and Tomasz S. Czajkowski

(1,1)

(1,2)

(2,1)

(2,2)

1

3

1

3

1

3

1

3

4 4

44

2 2

22

“ON” programmable
switches

Fig. 23 Example routing solution for 3 connections.

PathFinder borrows Nair’s iterative routing concept and also allows intercon-
nect resources (i.e. wires, pins and sets of wires) to beover-subscribedin the early
steps of routing. This means, for example, that a single metal wire segment can be
shared by multiple different signals. Such signal shorts are permitted initially, and
then removed gradually by a rip-up and re-route mechanism, eventually producing
a feasible short-free routing.

Fig. 24 gives the flow of the PathFinder algorithm. Initiallyall signals are routed
in the best-possible manner, without concern for shorts between signals. Timing-
critical signals will be routed with low-delay; non-timing-critical signals will be
routed to minimize resource usage. Since shorts are ignoredinitially, the initial rout-
ing solution will be independent of the order in which signals are routed. After initial
routing, assuming the presence of shorts, some or all signals are selected, ripped-up
and re-routed. The penalties for creating new shorts are then increased. In essence,
signals that are shorted together on a wirenegotiateamong themselves for that wire;
hence, the label applied to the algorithm:negotiated congestion routing. The pro-
cess continues iteratively, until either the routing is feasible, or else a fixed number
of loop iterations is exceeded and the design is deemed unroutable. PathFinder has
proven to be robust in practice and it produces good routing solutions. The two
largest FPGAs vendors, Xilinx and Altera, both use variations of PathFinder in their
commercial routers.

Many improvements to PathFinder have appeared in the literature. Swartz et al. en-
hanced PathFinder from the run-time viewpoint, by pruning the router’s search when
routing a signal load pin [99]. Two pruning techniques are proposed: 1) instead of
applying a breadth-first exploration of the interconnection network, a directed search
toward the load pin is used, and 2) when routing a load pin, a bounding rectangle

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 27

Route all connections

(shorts allowed)

Rip-up and re-route connections

Increase penalties for shorts

Feasible

routing?

Feasible

routing?

List of connections to route

Completed routing

yes

yes

no

no

Fig. 24 Flow of PathFinder algorithm.

is drawn, encompassing the load and the signal’s source pin,and only those routing
resources falling within the rectangle are considered (therest are pruned). Several
researchers have attempted to parallelize PathFinder, using multple CPUs to route
different sets of signals [18, 20] concurrently; however, the parallelization research
was conducted in a distributed computing framework and not on the multi-core pro-
cessors available today.

Timing-driven routing has typically meant minimizing the delay of the longest
critical path, however, modern routers must also handle thescenario where paths are
too fast. Interconnect delays in FPGAs are decreasing due totechnology scaling and
architectural improvements, making hold time violations aconcern, leading to mini-
mum delay constraints on connections. Altera tackled the problem of handling short
and long path constraints within a PathFinder-based framework [43]: given short
and long path delay constraints, a maximum and a minimum delay can be computed
for each connection [42], yielding an acceptable delay window. The router’s cost
function is adapted to have a “valley” shape, where the lowest (best) cost (base of
valley) corresponds to the center of the delay window, and cost escalates as connec-
tion delay becomes either too short or too long.

Growing device sizes necessitate concentration on the scalability of CAD algo-
rithms. Several recent works deal with router memory consumption. Sharma and
Hauck used a clustering approach to reduce the size of the table holding cost esti-
mates for router search pruning [93]. Chin and Wilton noted that since the FPGA’s
interconnection fabric is regular, a data model representing the entire interconnec-
tion network need not be kept in memory at once [24]. Rather, the fabric can be
computed “on the fly” during the routing of an individual pin,with special handling
for irregularities in the FPGA fabric, e.g. routing on the edge of the chip [24].

28 Jason H. Anderson and Tomasz S. Czajkowski

8 Physical Synthesis

Following routing, the circuit can be implemented on an FPGA. However, recent
research has shown that a logic circuit implementation can still be significantly im-
proved post-routing. The main reason for such improvement is that complete design
implementation data is only available post-routing. Algorithms can utilize this data
to further improve the circuit. In physical synthesis, a feedback loop is introduced
into the FPGA CAD flow. The feedback starts after routing (or perhaps placement)
and leads back to any of the earlier stages in the flow. The coreidea is provide phys-
ical information, primarily delay information, back to earlier phases of the flow, to
allow better optimizations to be applied based on more accurate information. Both
Altera and Xilinx CAD tools incorporate physical synthesisoptimizations.

Within the physical synthesis flow, we can distinguish several different ap-
proaches. The first type applies synthesis, technology mapping and placement in
an iterative process. The second type uses the synthesizer to specify to the placer
where to place logic elements. This enables the placer to better understand the de-
cisions made by the synthesizer, and possibly to accommodate them. A third type
permits the placer to consider several alternative logic mappings for placement.

An example of the iterative approach was proposed by Lin et al. [63]. During
each iteration, the mapping algorithm takes some of the gates from one LUT and
places them in another, basing its decisions on net delays between the gates. The
new mapping is then placed again, using the prior placement as a guide. The work
of Singh and Brown [96] proposes that the placer be provided with an incentive to
situate logic elements in a specific location on the device. Their approach starts by
executing the normal CAD flow to obtain a synthesized and placed implementation.
Then, placement-driven optimization techniques are invoked to reduce the delay
on critical paths. Each new logic element (LUT) created in the process is assigned a
location that aims to minimize the disruption to the entire logic circuit. The key con-
tribution of the work is that the synthesizer communicates to the placer the intended
location of synthesized logic elements, allowing the placer to respond accordingly.

The approach proposed by Lou et al. [66] relies on the synthesis tool to aid the
placer by providing several mapping solutions for each logic function. Based on the
performance of the circuit, the placer may choose one of several mapping solutions
to use during placement. Since it is easier to estimate circuit delay during place-
ment, each mapping solution can be better examined and the best available mapping
solution is used.

Physical synthesis has also received a lot of attention fromboth Altera and Xil-
inx, in their respective commercial tools. Altera’s CAD tools include physical syn-
thesis techniques such as the ones described by Singh et al. [98]. Post-technology
mapping optimizations consider logic restructuring at a coarse granularity, but re-
quire accurate timing models. For timing critical paths, itis possible to attain reason-
able delay estimates, because these paths have priority to use fast routing resources.
However, for non-critical paths it is not always possible topredict the wiring delay.
Once the post-technology mapping optimizations have been applied, post-placement

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 29

optimization techniques in [98] can fine-tune the circuit implementation to provide
a good final solution.

The commercial tools from Xilinx incorporate physical synthesis to improve
speed performance, where the idea is to identify connections in the design that are
on timing-critical paths not meeting user performance constraints [7, 6]. The de-
sign objects on this connections are incrementally re-placed and the design is incre-
mentally re-routed. The incremental changes take considerably less time than a full
placement and routing. If the new incrementally-generatedsolution has superior per-
formance, it is accepted, otherwise, the tools revert back to the previously-observed
best-performance solution.

It is also possible to improve the power consumption of the circuit implementa-
tion without “touching” the placement and routing solution. One idea has been to
use the concept of SPFDs –Sets of Pairs of Functions to be Distinguished, which is
an approach for computing the don’t-cares in logic functions [51, 57]. Some LUT
functions can be changed in ways that do not affect the circuit’s functional correct-
ness, yet may reduce toggling on the connections between LUTs, thereby reducing
power. While SPFDs have been used to reduce power on signals between LUTs, the
work in [45] shows how to reduce powerwithin LUTs.

Leakage power reduction also can be reduced at the post-routing stage by recog-
nizing that FPGA routing hardware consumes more leakage when signals are in the
logic-0 state versus the logic-1 state2. The work in [11] inverts the logic functions
implemented by LUTs so that the signals produced by the LUTs spend more time
in the low-leakage (logic-1) state.

9 Future Trends

Research on power optimization has been vigorous in recent years and is likely to
continue to be active, given technology scaling trends and the desire of the commer-
cial vendors to broaden the usage of FPGAs in low-power mobile markets. CAD
techniques for dealing with process variations and reliability, while well-studied for
custom ICs, are largely unexplored for FPGAs and will be of rising importance in
the future.

Looking forward, one way to expand the usage and market of programmable
hardware is for FPGAs to be adopted by the software development community and
used for computing applications. Today’s FPGA CAD tools represent perhaps the
most significant obstacle to achieving that goal. First, therun-time of the CAD tools
is simply too long, taking hours or days for the largest circuits. More scalable CAD
algorithms for FPGAs need to be developed. Run-times need tobe brought closer
to those required for compiling software programs, perhapsthrough parallelization
of CAD algorithms to take advantage of multi-core CPUs. Or perhaps, new FPGA

2 The dependence of leakage power on logic state has been exploited for power in the custom IC
domain [47]

30 Jason H. Anderson and Tomasz S. Czajkowski

architectures specifically designed to allow fast tool run-time could be devised. Sec-
ond, the complexity of the CAD tools is an insurmountable barrier for many soft-
ware programmers. Needed are tools which allow designers tooperate at a higher
level of abstraction, writing code in variants of C or streaming languages. With-
out these, FPGAs may well lose out to other computing platforms coming onto the
market today, such as Graphics Processing Units (GPUs) or many-core computers.

References

1. Continuous retiming: algorithms and applications. InICCD ’97: Proceedings of the 1997 In-
ternational Conference on Computer Design (ICCD ’97), page 116, Washington, DC, USA,
1997. IEEE Computer Society.

2. FLEX 10K Programmable Logic Device Datasheet. Altera, Corp., San Jose, CA, 2003.
3. T. Ahmed, P. Kundarewich, J. Anderson, B. Taylor, and R Aggarwal. Architecture-specific

packing for Virtex-5 FPGAs. InACM/SIGDA Int’l Symposium on Field Programmable Gate
Arrays, pages 5–13, Monterey, CA, 2008.

4. Michael J. Alexander and Gabriel Robins. New performance-driven fpga routing algorithms.
In DAC ’95: Proceedings of the 32nd ACM/IEEE conference on Design automation, pages
562 – 567, 1995.

5. Altera, Corp., San Jose, CA.Stratix-III FPGA Family Data Sheet, 2008.
6. J.H. Anderson. Incremental placement of design objects in an integrated circuit design.U.S.

Patent #6,871,336, 2005.
7. J.H. Anderson, S. Kalman, and V. Verma. Post-layout optimization in integrated circuit

design.U.S. Patent #7,111,268, 2006.
8. J.H. Anderson, S. Nag, K. Chaudhary, S. Kalman, C. Madabhushi, and P. Cheng. Run-

time-conscious automatic timing-driven FPGA layout synthesis. In Int’l Conf. on Field-
Programmable Logic and Applications, pages 168–178, Antwerp, Belgium, 2004.

9. J.H. Anderson and F.N. Najm. Power-aware technology mapping for LUT-based FPGAs. In
IEEE International Conference on Field-Programmable Technology, pages 211–218, Hong
Kong, 2002.

10. J.H. Anderson and F.N. Najm. Power estimation techniques for FPGAs.IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 12(10):1015–1027, October 2004.

11. J.H. Anderson, F.N. Najm, and T. Tuan. Active leakage power optimization for FPGAs. In
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 33–41,
Monterey, CA, 2004.

12. J.H Anderson, J. Saunders, S. Nag, C. Madabhushi, and R. Jayaraman. A placement algo-
rithm for fpga designs with multiple I/O standards. InFPL, pages 211–220, 2000.

13. R.L. Ashenhurst. The decomposition of switching functions. InInternational Symposium on
the Theory of Switching, pages 74 – 116, 1959.

14. V. Betz and J. Rose. Cluster-based logic blocks for FPGAs: Area-efficiency vs. input sharing
and size. InIEEE Custom Integrated Circuits Conference, pages 551–554, Santa Clara, CA,
1997.

15. V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA research.
In International Workshop on Field-Programmable Logic and Applications, pages 213–222,
London, UK, 1997.

16. Stephen Brown, Jonathan Rose, and Zvonko G. Vranesic. A detailed router for field-
programmable gate arrays.IEEE Trans. on CAD, 11:620–628, 1992.

17. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Trans-
actions on Computers, 35:677–691, 1986.

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 31

18. L. Cabral, J. Aude, and N. Maculan. Tdr: A distributed-memory parallel routing algorithm
for FPGAs. InInternational Conference on Field-Programmable Logic andApplications,
pages 227–240, 2002.

19. P.K. Chan and M.D.F. Schlag. Parallel placement for field-programmable gate arrays. In
ACM International Symposium on Field Programmable Gate Arrays, Monterey, CA, 2003.

20. P.K. Chan, M.D.F. Schlag, C. Ebeling, and L. McMurchie. Distributed-memory parallel
routing for field-programmable gate arrays.Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 19(8):850–862, Aug 2000.

21. D. Chen and J. Cong. Daomap: a depth-optimal area optimization mapping algorithm for
fpga designs. InICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference
on Computer-aided design, pages 752–759, 2004.

22. D. Chen and J. Cong. Delay optimal low-power circuit clustering for FPGAs with dual
supply voltages. InACM/IEEE International Symposium on Low-Power Electronics and
Design, pages 70–73, Newport Beach, CA, 2004.

23. Lei Cheng, Deming Chen, and Martin D. F. Wong. Ddbdd: delay-driven bdd synthesis for
fpgas. InDAC ’07: Proceedings of the 44th annual conference on Designautomation, pages
910–915, New York, NY, USA, 2007. ACM.

24. S.Y.L. Chin and S.J.E. Wilton. Memory footprint reduction for fpga routing algorithms.
Field-Programmable Technology, 2007. ICFPT 2007. International Conference on, pages
1–8, Dec. 2007.

25. J. Cong and Y. Ding. Flowmap: An optimal technology mapping algorithm for delay op-
timization in look-up-table based FPGA designs.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(1):1–12, 1994.

26. J. Cong and Y. Ding. On area/depth trade-off in LUT-basedFPGA technology mapping.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(2):137–148, 1994.

27. J. Cong, C. Wu, and E. Ding. Cut ranking and pruning: Enabling a general and efficient
FPGA mapping solution. InACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 29–35, Monterey, CA, 1999.

28. Jason Cong and Yuzheng Ding. Combinational logic synthesis for lut based field pro-
grammable gate arrays.ACM Transactions on Design Automation of Electronic Systems,
1:145–204, 1996.

29. Jason Cong and Sung Kyu Lim. Physical planning with retiming. In ICCAD ’00: Proceed-
ings of the 2000 IEEE/ACM international conference on Computer-aided design, pages 2–7,
Piscataway, NJ, USA, 2000. IEEE Press.

30. Altera Corp. Quartus university interface program.
http://www.altera.com/education/univ/research/unv-quip.html, 2009.

31. H.A. Curtis. A new approach to the design of switching circuits. 1962.
32. T. S. Czajkowski and S. D. Brown. Functionally linear decomposition and synthesis of

logic circuits for fpgas. InDAC ’08: Proceedings of the 45th annual conference on Design
automation, pages 18–23, New York, NY, USA, 2008. ACM.

33. T.S. Czajkowski and S.D. Brown. Fast toggle rate computation for FPGA circuits. InIEEE
International Conference on Field Programmable Logic and Applications, pages 65–70, Hei-
delberg, Germany, 2008.

34. J.A. Darringer, W.H. Joyner, C.L. Berman, and L. Trevillyan. Logic synthesis through local
transformations.IBM Journal of Research and Development, 25(4):272 – 280, 1981.

35. M.E. Dehkordi and S.D. Brown. The effect of cluster packing and node duplication con-
trol in delay driven clustering. InIEEE International Conference on Field-Programmable
Technology, pages 227–233, Hong Kong, 2002.

36. G. DeMicheli.Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.
37. E.W. Dijkstra. A note on two problems in connxion with graphs. Numerische Mathematik,

1:269–271, 1959.
38. Hans Eisenmann and Frank M. Johannes. Generic global placement and floorplanning. In

DAC ’98: Proceedings of the 35th annual conference on Designautomation, pages 269–274,
1998.

32 Jason H. Anderson and Tomasz S. Czajkowski

39. R.J. Francis, J. Rose, and K. Chung. Chortle: A technology mapping program for lookup
table-based field programmable gate arrays. InACM/IEEE Design Automation Conference,
pages 613–619, Orlando, FL, 1990.

40. R.J Francis, J. Rose, and Z. Vranesic. Chortle-crf: Fasttechnology mapping for lookup table-
based FPGAs. InACM/IEEE Design Automation Conference, pages 227–233, San Francisco,
CA, June 1991.

41. R.J Francis, J. Rose, and Z. Vranesic. Technology mapping for lookup table-based FPGAs
for performance. InIEEE International Conference on Computer-Aided Design, pages 568–
571, 1991.

42. J. Frankle. Iterative and adaptive slack allocation forperformance-driven layout and FPGA
routing. InACM/IEEE Design Automation Conference, pages 536–542, 1992.

43. R. Fung, V. Betz, and W. Chow. Simultaneous short-path and long-path timing optimization
for fpgas. Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Confer-
ence on, pages 838–845, Nov. 2004.

44. G.H. Golub and C.F. Van Loan.Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, 1996.

45. S. Gupta, J. Anderson, L. Farragher, and Q. Wang. CAD techniques for power optimization
in Virtex-5 FPGAs. InIEEE Custom Integrated Circuits Conference, pages 85–88, San Jose,
CA, 2007.

46. G.D. Hachtel and F. Somenzi.Logic Synthesis and Verification Algorithms. Springer, 1996.
47. J.P. Halter and F.N. Najm. A gate-level leakage power reduction method for ultra-low-power

CMOS circuits. InIEEE Custom Integrated Circuits Conference, pages 475–478, Santa
Clara, CA, 1997.

48. H. Hassan, M. Anis, and M. Elmasry. Lap: A logic activity packing methodology for leakage
power-tolerant FPGAs. InACM International Symposium on Low Power Electronics and
Design, pages 257–262, San Diego, CA, 2005.

49. R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing analysis of computer hardware.IBM
Jour. of Research and Development, 26(1):100–105, January 1982.

50. D. Howland and R. Tessier. RTL dynamic power optimization for FPGAs. InIEEE Midwest
Symposium on Circuits and Systems, pages 714–717, Nashville, TN, 2008.

51. J-M. Hwang, F-Y. Chiang, and T-T. Hwang. A re-engineering approach to low power FPGA
design using SPFD. InACM/IEEE Design Automation Conference, pages 167–174, San
Francisco, CA, 1998.

52. T.-T. Hwang, R.M. Owens, and M.J. Irwin. Exploiting communication complexity for mul-
tilevel logic synthesis.Computer-Aided Design of Integrated Circuits and Systems,IEEE
Transactions on, 9(10):1017–1027, Oct 1990.

53. P. Jamieson and J. Rose. A verilog RTL synthesis tool for heterogeneous FPGAs. InInterna-
tional Conference on Field Programmable Logic and Applications, pages 305–310, Tampere,
Finland, 2005.

54. Stephen Jang, Billy Chan, Kevin Chung, and Alan Mishchenko. Wiremap: Fpga technol-
ogy mapping for improved routability. InFPGA ’08: Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate arrays, pages 47–55, 2008.

55. T. Karnik and S.-M. Kang. An empirical model for accurateestimation of routing delay
in FPGAs. InIEEE International Conference on Computer-Aided Design, pages 328–331,
1995.

56. A. Kennings, K. Vorwerk, A. Kundu, V. Pevzner, and A. Fox.FPGA technology mapping
with encoded libraries and staged priority cuts. InACM International Symposium on Field-
Programmable Gate Arrays, 2009.

57. B. Kumthekar, L. Benini, E. Macii, and F. Somenzi. Power optimisation in FPGA-based
design without rewiring.IEE Proc. Comput. Digit. Tech., 147(3):167–174, May 2000.

58. Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula. Bdd based decomposition of
logic functions with application to fpga synthesis. InDAC ’93: Proceedings of the 30th
international conference on Design automation, pages 642–647, New York, NY, USA, 1993.
ACM.

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 33

59. J. Lamoureux and S.J.E. Wilton. On the interaction between power-aware FPGA CAD algo-
rithms. InIEEE/ACM International Conference on Computer-Aided Design, pages 701–708,
San Jose, CA, 2003.

60. J. Lamoureux and S.J.E. Wilton. Clock-aware placement for FPGAs. InIEEE International
Conference on Field-Programmable Logic and Applications, pages 124–131, Amsterdam,
The Netherlands, 2007.

61. Guy G. Lemieux and Stephen D. Brown. A detailed routing algorithm for allocating wire
segments in field-programmable gate arrays. InACM/SIGDA Physical Design Workshop,
pages 215–226, 1993.

62. J. Lin, D. Chen, and J. Cong. Optimal simultaneous mapping and clustering for FPGA delay
optimization. InACM/IEEE Design Automation Conference, pages 472–477, San Francisco,
CA, 2006.

63. J. Y. Lin, A. Jagannathan, and J. Cong. Placement-driventechnology mapping for LUT-
based fpgas. InACM International Symposium on Field-Programmable Gate Arrays, pages
121–126, Monterey, CA, 2003.

64. A.C. Ling, D.P. Singh, and S.D. Brown. Fpga plb architecture evaluation and area optimiza-
tion techniques using boolean satisfiability.Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 26(7):1196–1210, July 2007.

65. Andrew C. Ling, Jianwen Zhu, and Stephen D. Brown. Delay driven aig restructuring using
slack budget management. InGLSVLSI ’08: Proceedings of the 18th ACM Great Lakes
symposium on VLSI, pages 163–166, 2008.

66. Jinan Lou, Wei Chen, and Massoud Pedram. Concurrent logic restructuring and placement
for timing closure. InICCAD ’99: Proceedings of the 1999 IEEE/ACM international confer-
ence on Computer-aided design, pages 31–36, Piscataway, NJ, USA, 1999. IEEE Press.

67. A. Ludwin, V. Betz, and K. Padalia. High-quality, determinstic parallel placement for FPGAs
on commodity hardware. InACM/SIGDA Int’l Symposium on Field Programmable Gate
Arrays, pages 14–23, Monterey, CA, 2008.

68. Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Mark Fang, and Jonathan
Rose. VPR 5.0: FPGA CAD and architecture exploration tools with single-driver rout-
ing, heterogeneity and process scaling. InACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages ?–?, 2009.

69. Wai-Kei Mak. I/o placement for fpgas with multiple i/o standards. InFPGA ’03: Proceedings
of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate
arrays, pages 51–57, 2003.

70. V. Manohararajah, S.D. Brown, and Z.G. Vranesic. Heuristics for area minimization in LUT-
based FPGAs. InInternational Workshop on Logic and Synthesis, pages 14–21, 2004.

71. A. Marquardt, V. Betz, and J. Rose. Using cluster based logic blocks and timing-driven
packing to improve FPGA speed and density. InACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 37–46, Monterey, CA, 1999.

72. A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for FPGAs. InACM Inter-
national Symposium on Field-Programmable Gate Arrays, pages 203–213, Monterey, CA,
2000.

73. L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven router
for FPGAs. InACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pages 111–117, Monterey, CA, 1995.

74. Paul Metzgen and Dominic Nancekievill. Multiplexer restructuring for fpga implementation
cost reduction. InDAC ’05: Proceedings of the 42nd annual conference on Designautoma-
tion, pages 421–426, 2005.

75. A. Mishchenko, Sungmin Cho, S. Chatterjee, and R. Brayton. Combinational and sequen-
tial mapping with priority cuts.Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM
International Conference on, pages 354–361, Nov. 2007.

76. Alan Mishchenko, Michael Case, Robert Brayton, and Stephen Jang. Scalable and scalably-
verifiable sequential synthesis.Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM
International Conference on, pages 234–241, Nov. 2008.

34 Jason H. Anderson and Tomasz S. Czajkowski

77. Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting: A fresh
look at combinational logic synthesis. InIn DAC 06: Proceedings of the 43rd annual con-
ference on Design automation, pages 532–536. ACM Press, 2006.

78. J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh. Optimization of combinational and
sequential logic circuits for low power using precomputation. In ARVLSI ’95: Proceedings
of the 16th Conference on Advanced Research in VLSI (ARVLSI’95), page 430, Washington,
DC, USA, 1995. IEEE Computer Society.

79. R. Murgai, R.K. Brayton, and A. Sangiovanni-Vincentelli. Synthesis for Field-Programmable
Gate Arrays. Kluwer Academic Publishers, 1995.

80. R. Nair. A simple yet effective technique for global wiring. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 6(2):165–172, March 1987.

81. F. Najm. Transition density: A new measure of activity indigital circuits.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 12:310–323, February 1993.

82. UC Berkeley Department of EECS. ABC – a system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2009.

83. Marek A. Perkowski and Stanislaw Grygiel. A survey of literature on function decomposi-
tion. Technical report, Portland State University, 1995.

84. K.W. Poon, A. Yan, and S. J. E. Wilton. A flexible power model for FPGAs. InInternational
Conference on Field-Programmable Logic and Applications, pages 312–321, Montpellier,
France, 2002.

85. PwrLite, Inc., Santa Clara, CA.CooolGate RTL Synthesis, 2009.
86. K. Roy. Power-dissipation driven FPGA place and route under timing constraints.IEEE

Transactions On Circuits and Systems, 46(5):634–637, May 1999.
87. Y. Sankar and J. Rose. Trading quality for compile time: ultra-fast placement for FPGAs. In

FPGA ’99: Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field
programmable gate arrays, pages 157–166, 1999.

88. Sachin S. Sapatnekar and Rahul B. Deokar. Efficient retiming of large circuits.IEEE Trans-
actions on VLSI Systems, 6:74–83, 1998.

89. T. Sasao.Switching Theory for Logic Synthesis. Kluwer Academic Publishers, 1999.
90. Tsutomu Sasao and Jon T. Butler. A design method for look-up table type fpga by pseudo-

kronecker expansion. InIn Int’l Symp. on Multi-Valued Logic, pages 97–106, 1994.
91. K. Schabas and S. D. Brown. Using logic duplication to improve performance in fpgas. In

ACM International Symposium on Field-Programmable Gate Arrays, pages 136–142, Mon-
terey, CA, 2003.

92. M. Schlag, J. Kong, and P.K. Chan. Routability-driven technology mapping for lookup table-
based FPGAs.IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(1):13–26, 1994.

93. A. Sharma and S. Hauck. Accelerating FPGA routing using architecture-adaptive a* tech-
niques.Field-Programmable Technology, 2005. Proceedings. 2005 IEEE International Con-
ference on, pages 225–232, Dec. 2005.

94. Narendra Shenoy and Richard Rudell. Efficient implementation of retiming. InICCAD ’94:
Proceedings of the 1994 IEEE/ACM international conferenceon Computer-aided design,
pages 226–233, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

95. A. Singh and M. Marek-Sadowska. Efficient circuit clustering for area and power reduction
in FPGAs. InACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pages 59–66, Monterey, CA, February 2002.

96. Deshanand P. Singh and Stephen D. Brown. Integrated retiming and placement for field
programmable gate arrays. InFPGA ’02: Proceedings of the 2002 ACM/SIGDA tenth inter-
national symposium on Field-programmable gate arrays, pages 67–76, New York, NY, USA,
2002. ACM.

97. Deshanand P. Singh, Valavan Manohararajah, and StephenD. Brown. Incremental retiming
for fpga physical synthesis. InDAC ’05: Proceedings of the 42nd annual conference on
Design automation, pages 433–438, New York, NY, USA, 2005. ACM.

Computer-Aided Design for FPGAs: Overview and Recent Research Trends 35

98. D.P. Singh, V. Manohararajah, and S.D. Brown. Two-stagephysical synthesis for fpgas.
Custom Integrated Circuits Conference, 2005. Proceedingsof the IEEE 2005, pages 171–
178, Sept. 2005.

99. J. Swartz, V. Betz, and J. Rose. A fast routability-driven router for FPGAs. InACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 140–149, Monterey,
CA, 1998.

100. R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy.Power-efficient RAM mapping
algorithms for FPGA embedded memory blocks.Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, 26(2):278–290, Feb. 2007.

101. Chien-Chung Tsai and Malgorzata Marek-Sadowska. Multilevel logic synthesis for arith-
metic functions. InDAC ’96: Proceedings of the 33rd annual conference on Designautoma-
tion, pages 242–247, New York, NY, USA, 1996. ACM.

102. Navin Vemuri, Priyank Kalla, and Russell Tessier. BDD-based logic synthesis for lut-based
fpgas.ACM Transasctions on Design Automation of Electronic Systems, 7:501–525, 2002.

103. Verific Design Automation, Inc., Alameda, CA.HDL Component Software, 2009.
104. N. Viswanathan and C. C.-N. Chu. Fastplace: Efficient analytical placement using cell shift-

ing, iterative local refinement and a hybrid net model. InACM/IEEE International Sympo-
sium on Physical Design, pages 26–33, Phoenix, AZ, 2004.

105. N. Viswanathan, Min Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic placement
algorithm with placement congestion control. InASP-DAC ’07: Proceedings of the 2007
conference on Asia South Pacific design automation, pages 135–140, 2007.

106. K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable force-directed
placer. InICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference on
Computer-aided design, pages 573–580, 2004.

107. K. Vorwerk, M. Rahman, J. Dunoyer, Y.-C. Hsu, A. Kundu, and A. Kennings. A technique
for minimizing power during FPGA placement. InIEEE International Conference on Field
Programmable Logic and Applications, pages 233–238, Heidelberg, Germany, 2008.

108. Wei Wan and Marek A. Perkowski. A new approach to the decomposition of incompletely
specified multi-output functions based on graph coloring and local transformations and its
application to fpga mapping. InEURO-DAC ’92: Proceedings of the conference on European
design automation, pages 230–235, Los Alamitos, CA, USA, 1992. IEEE Computer Society
Press.

109. Q. Wang, S. Gupta, and J. Anderson. Clock power reduction for Virtex-5 FPGAs. In
ACM/SIGDA International Symposium on Field-ProgrammableGate Arrays, pages ?–?,
2009.

110. Congguang Yang and M. Ciesielski. Bds: a bdd-based logic optimization system.Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 21(7):866–876, Jul
2002.

111. Jian Zhang, Jinian Bian, and Qiang Zhou. Area and delay driven binding algorithm of rtl tech.
mapping for heterogeneous fpgas.Communications, Circuits and Systems, 2008. ICCCAS
2008. International Conference on, pages 1231–1235, May 2008.

