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Abstract—Stochastic computing (SC) [1] has received attention
recently as a paradigm to improve energy efficiency and fault
tolerance. SC uses hardware-generated random bitstreams to
represent numbers in the [0:1] range – the number represented is
the probability of a bit in the stream being logic-1. The generation
of random bitstreams is typically done using linear-feedback shift
register (LFSR)-based random number generators. In this paper,
we consider how best to design such LFSR-based stochastic
bitstream generators, as a means of improving the accuracy
of stochastic computing. Three design criteria are evaluated: 1)
LFSR seed selection, 2) the utility of scrambling LFSR output
bits, and 3) the LFSR polynomials (i.e. locations of the feedback
taps) and whether they should be unique vs. uniform across
stream generators. For a recently proposed multiplexer-based
stochastic logic architecture [8], we demonstrate that careful seed
selection can improve accuracy results vs. the use of arbitrarily
selected seeds. For example, we show that stochastic logic with
seed-optimized 255-bit stream lengths achieves accuracy better
than that of using 1023-bit stream lengths with arbitrary seeds:
an improvement of over 4⇥ in energy for equivalent accuracy.

I. INTRODUCTION

Stochastic computing (SC) is a style of approximate com-
puting that uses randomly generated bitstreams to represent
numbers. Numerical values in stochastic computing are locked
to the [0:1] range, where a value x is represented by a random
bitstream having the property that the probability of each bit
being logic-1 is x. Fault tolerance is improved relative to
a traditional binary number representation because each bit
in a stochastic bitstream has equal weight – bitflips due to
faults have little impact on the overall value of the bitstream.
Moreover, certain types of computations are lightweight to
implement using a stochastic representation in comparison
with traditional binary, potentially offering area and power
benefits (discussed below). Recent applications of SC in-
clude image processing [6] and numerical integration [10].
Stochastic logic circuits use random number generators to
produce bitstreams with specific values, which are then fed into
circuits that perform the desired computations in the stochastic
representation. As the input bitstreams are random, the results
of stochastic computing are not guaranteed to be exact. In
this paper, we explore methodologies to raise the accuracy of
stochastic computing through design decisions pertaining to
the bitstream generators.

Fig. 1(a) shows an AND gate receiving two stochastic
streams with values a and b as input and producing a stream
z at its output. Assuming streams a and b are statistically
independent, the function computed by the circuit is: z = a · b
(multiplication). Fig. 1(b) shows a 2-to-1 multiplexer, which
can be used to implement scaled addition: z = s ·a+(1�s) ·b.
Fig. 1(c) shows the circuit typically used to generate a
stochastic bitstream. In this case, a 255-bit-length stream1 is

1The stream length is 255 instead of 256, as the 0-state in the LFSR is
normally not used.
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Fig. 1. Stochastic logic structures.

generated by an 8-bit linear-feedback shift register (LFSR)
random number generator, whose output value is compared
on each cycle with an 8-bit binary value y. On each cycle,
the comparator produces 1 if the LFSR value is less than y,
yielding a stochastic bitstream with the value y/255.

The accuracy of stochastic computing generally hinges on
the random bitstreams being statistically independent from one
another. However, the LFSRs used in stochastic logic cir-
cuits are pseudo-random number generators and cycle through
numbers in a fixed repeating sequence. The usual method to
approximate independence is to seed (initialize) LFSRs to start
at different states. In such an approach, while the various
LFSRs are stepping through the same numbers in the same
order, they are all at different points in the overall sequence.
One aspect of LFSRs explored in this paper is whether there
exists a “good” set of starting points for the LFSRs, as opposed
to selecting them arbitrarily.

Even when different starting points are used, the values
produced by stochastic bitstream generators may exhibit cor-
relations detrimental to the independence goal, possibly owing
to the underlying LFSRs traversing states in the same order.
To combat this, we consider two easy-to-implement LFSR
design alternatives. The first approach is to permute the output
bits of each LFSR in the system; i.e. each LFSR is given a
different (yet fixed) output bit permutation, thereby making
the state order appear different. The second approach we
consider is the use of a diverse set of feedback polynomials
(tap locations) across LFSR instances, rather than the use of
a single polynomial for all LFSRs. Both of these approaches
break the fixed-state-ordering property and both are relatively
“cheap” to implement in hardware.

We evaluate the seed selection and design alternatives
empirically, using a recently proposed multiplexer-based SC
architecture [8]. The contributions of this paper are as follows:



• Evaluation on SC accuracy of: 1) permuting LFSR
output bits; 2) the use of diverse LFSR feedback
polynomials.

• Monte Carlo-style seed sweeping for SC: 1) an ap-
proach that is independent of the function being imple-
mented in the stochastic domain, and 2) an approach
that is tied to the specific function.

• A study demonstrating that SC accuracy is improved
by both the design alternatives and seed selection.

• An analysis of energy and performance of an FPGA-
based stochastic logic implementation.

While the LFSR design alternatives considered here are cer-
tainly not new, the impact of LFSR design and seeding on
SC accuracy has not appeared in prior literature, nor has prior
work analyzed SC energy in the FPGA context. While it is
perhaps unsurprising that seeding has an effect on accuracy,
the extent of its impact is shown to be considerable such that
with seeding, shorter streams (less precision) can be used in
lieu of longer streams to achieve the same or better accuracy.
For a given accuracy level, seed sweeping provides 4⇥ energy
reduction (owing to the ability to use shorter streams) vs. the
use of arbitrary seeds.

II. BACKGROUND

A key concept in SC is the notion of precision. Consider
a bitstream of length l, where l = 2Q � 1, Q being a natural
number. The number of bits in the stream that may be logic-1
ranges from 0 to at most 2Q � 1: its range is from [0:2Q �
1]. The stochastic bitstream is therefore said to have Q-bit
precision. Increasing from Q to Q + 1-bit precision requires
doubling the stream length. In SC, linear increases in precision
require exponentially more time.

LFSRs are typically used as random number generators
in SC implementations, as they are inexpensive, consuming
one flip-flop per bit, as well as few logic gates. The idea
to judiciously seed LFSRs to produce better results has also
been applied in other domains, notably in built-in-self-test to
improve fault coverage using fewer vectors, e.g. [13], [3].

A. Multiplexer-Based Stochastic Logic Architecture

The focus in this paper is on the SC structure illustrated
in Fig. 2 – a MUX-based stochastic logic circuit proposed by
Qian et al. [8] that can approximate any continuous function
with a [0:1] domain and [0:1] range. Observe that S drives
the select inputs of the multiplexer. S has dlog2ne bits, and
on each clock cycle, S is the sum of individual bits from n
stochastic streams, each representing the value x. Thus, S may
take on any value from 0 (all bits 0) up to n (all bits 1). If the
streams are independent, the probability of S being a particular
value i is given by the binomial distribution:

P (S = i|x) =
nX

i=0

✓
n

i

◆
· xi · (1� x)n�i (1)

The data inputs of the MUX are driven by streams with
different values, b0 . . . bn. Each clock cycle, a bit from one of
the b streams is selected (based on S) to be passed to output z.
The probability of a particular bit, b

i

being selected is P (S =
i|x), as given by (1). Hence, the overall function computed by
the structure is:

z(x) =
nX

i=0

b
i

·
✓
n

i

◆
· xi · (1� x)n�i (2)
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Fig. 2. MUX-based stochastic computing architecture [8].

which is called a Bernstein polynomial [7] of order n, with
the b

i

’s being the Bernstein coefficients. Bernstein polynomials
can approximate any continuous function in the [0:1] range,
with the approximation becoming exact as n ! 1. The Bern-
stein coefficients for a desired function, f(x), can be computed
as described in [8] using MATLAB by finding the b

i

values
that minimize: � =

R 1
0 (f(x)�

P
n

i=0 bi ·
�
n

i

�
·xi ·(1�x)n�i)2dx,

i.e. the sum of the squared error between f(x) and its Bernstein
approximation.

For a given target function, the streams b0 . . . bn repre-
sent constant coefficients and prior work has proposed using
combinational [9] and sequential [11] circuits to generate
such “constant” stochastic streams using a limited number
of LFSRs. We expect the techniques proposed here are also
compatible with such work. However, one of the advantages
of the MUX-based SC architecture is the target function can
be changed flexibly during system operation by making the
b0 . . . bn values programmable via an instance of the circuit in
Fig 1(c) for generating each b

i

– this is the scenario assumed
in this paper.

III. SEED SELECTION FOR LFSRS

To motivate the impact of LFSR seeding on SC results,
consider two stochastic streams in 4-bit precision: stream a
representing 3/16 and stream b representing 7/16. To produce
stream a requires an LFSR whose output is checked to be less
than 4. Example LFSR output in hex and the corresponding
stream a is as follows:

LFSR: F,7,3,1,8,4,2,9,C,6,B,5,A,D,E

a: 0,0,1,1,0,0,1,0,0,0,0,0,0,0,0

Now consider the same LFSR, but seeded differently to pro-
duce stream b (the LFSR output is compared with 8). In this
case, the LFSR is seeded with 4, instead of F. The LFSR steps
through the same sequence, but the start point is different.

LFSR: 4,2,9,C,6,B,5,A,D,E,F,7,3,1,8

b: 1,1,0,0,1,0,1,0,0,0,0,1,1,1,0

And finally, consider the same LFSR, but this time seeded with
1, to produce a second version of stream b:

LFSR: 1,8,4,2,9,C,6,B,5,A,D,E,F,7,3

b2: 1,0,1,1,0,0,1,0,1,0,0,0,0,1,1

If our objective is to compute a⇥ b, we would AND stream a
with stream b. If the first stream b is used, the resulting product
stream is:

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0



representing 1/16 (0.0625). On the other hand, if the second
stream b is used, the resulting product stream is:

0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0

representing 2/16 (0.125). Evidently, the first b stream produces
a result that is considerably closer to ideal, 7/16 ⇥ 3/16 =
21/256 = 0.082, yet the only change is in the seeding of the
various LFSRs.

A. MUX-Based SC Architecture

The MUX-based stochastic computing architecture de-
scribed above requires 2n + 1 LFSRs to generate random
numbers: n of these are used to generate the values of S
and the other n + 1 are used to produce random numbers
that are compared with the Bernstein coefficients. For Q bits
of precision (Q-bit LFSRs), the number of ways to uniquely
seed the LFSRs is

Q2n
j=0 2

Q � 1� j ⇡ 22nQ. Prior work does
not consider how to seed such LFSRs, leading us to surmise
that prior researchers seeded them arbitrarily.

We consider two approaches to seeding the LFSRs. We
first note that in the MUX-based SC architecture, only the
b
i

’s depend on the function being implemented. The circuit
structure producing S is agnostic to the function implemented.
Improvements in the accuracy of S are useful for any target
function. Consequently, in a first approach, we consider seed-
ing the n LFSRs in the S-structure (i.e. the portion of the
circuit producing S) with the aim of improving the values of
S produced to make them a better approximation to the ideal.
In a second approach, we consider the impact of seeding all
2n+ 1 LFSRs.

We consider both approaches as practical from the hard-
ware implementation viewpoint: to configure the MUX-based
SC architecture, instead of setting solely the Bernstein coef-
ficients as proposed in [8], one would also seed the LFSRs
with specific values. Prior work assumes that the Bernstein
coefficients for a given function are computed offline in
software (not in the hardware itself). Likewise, we do not
envision that the selection of seeds would be done in hardware;
rather, the selection would be done offline in software and
the chosen LFSR seeds would be used to configure the SC
architecture, along with the Bernstein coefficients. In fact, we
expect that in prior implementations, seeds are already being
provided to configure the LFSRs. What we are proposing is
to provide selected seeds, rather than arbitrarily chosen ones.

B. Seeding the S-Structure

(1) defines the probability of S being a specific value of i,
given x and n. For a specific SC precision, Q, and associated
bitstreams of length l = 2Q�1 (i.e. l clock cycles), ideally the
following number of occurences, O, of a particular i would be
observed on S:

O
i,x,l

= P (S = i|x) · l (3)

The quantity O
i,x,l

is generally not an integer, so we round it to
the nearest integer by taking bO

i,x,l

+0.5c, thereby establishing
an “ideal” value the number of occurences of i we could expect
in a practical implementation.

For a given seeding combination of the n LFSRs in the
S-structure, we can set the input x to a specific value, execute
the structure for l cycles and count the number of observed
i’s, Obs

i,x,l

. The discrepancy between the observed and ideal
number of occurences of a given i represents error in the

output of the S structure. Let comb
S

be a particular seeding
combination for the n seeds in the LFSRs of the S-structure,
we define the error associated with comb

S

as:

Error(comb
S

) =
2Q�1X

x=0

nX

i=0

(Obs
i,x,l

� bO
i,x,l

+ 0.5c)2 (4)

where the first summation walks over all possible input values
x; the second summation is over the possible values of i; Q
is the precision; and, l = 2Q � 1 is the bitstream length. In
essence, (4) is a proxy for the mismatch between the values
of S observed for a specific seed combination, and those we
would ideally like to see. (4) is the sum of the squared errors
in the SC approximation of the actual function and is inspired
by the Chi-squared test in statistics [12].

C. Seeding the Entire Structure

An alternative to tuning the seeds in the S structure is to
tune all 2n + 1 seeds in the entire circuit. For a particular
seeding combination, comb, and precision Q, we define error
as follows:

Error(comb) =
2Q�1X

x=0

(f(
x

2Q � 1
)� f̂

Qb

(
x

2Q � 1
))2 (5)

where f is the function value computed in double-precision
floating point in software, and f̂

Qb

is the SC result with Q-bit
precision, which takes l = 2Q�1 clock cycles to compute for
each value of x.

D. Overall Approach

Algorithm 1 shows the seeding approach, which uses
Monte Carlo seed sweeping. The inputs to the algorithm are
two sets of LFSRs: L

S

being the set in the S structure and
L
b

being the remaining LFSRs. Lines 2-11 only apply to
seeding the S structure, wherein Lines 3-9 constitute a for

loop that iterates for Strials seeding combinations of L
S

.
For each of these, equation (4) is evaluated and the best
seeding combination (minimum error) is stored. Line 10 sets
the seeds of L

S

to the best combination for the remainder of
the algorithm.

Lines 15-25 perform seed sweeping on a set of LFSRs,
L: if the S structure is already seeded by lines 2-11, these
lines sweep seeds solely on those LFSRs in L

b

, i.e. L = L
b

;
otherwise, seed sweeping is performed on all LFSRs in the
design: L = L

b

[ L
S

. The for loop in lines 17-24 executes
for trials seeding combinations. The error for each seeding
combination is computed using equation (5); average and
minimum error are computed and reported in line 25.

IV. LFSR DESIGN ALTERNATIVES

An n-bit LFSR is said to have maximal length if it cycles
through all 2n � 1 possible states. For example, given the n-
bit LFSR is seeded (initialized) to a particular n-bit state s

i

(s
i

6= 0), the LFSR walks through all values from [1:2n � 1],
beginning with s

i

, in pseudo-random order in 2n � 1 clock
cycles. On the next clock cycle, the LFSR returns to the initial
state s

i

. The specific order through which the various states are
traversed is defined by the LFSR’s “feedback polynomial” [4].
The polynomial specifies the LFSR bits used in determining
the next state (the taps). By seeding an LFSR differently, we
change only its initial state – the order in which states are
traversed is fixed for a given feedback polynomial. In this
paper, we only consider the use of maximal-length LFSRs.



A. Scrambling LFSR Output Bits

Seeded differently but with uniform polynomials, the var-
ious LFSRs in the circuit are all cycling through states in
the same order, but “offset” (in clock cycles) from each other
by an amount equal to the distance between the seeds in the
state ordering. A straightforward optimization we consider in
this paper is to scramble (permute) the LFSR output bits in
addition to seeding them differently. Scrambling is cheap to
implement in hardware, amounting simply to a different con-
nectivity between the LFSR outputs and the comparator inputs
(c.f. Fig. 1(c)). We explore using a different randomly-selected
scrambling for each LFSR. With their outputs scrambled, the
LFSRs “appear” to be walking through their states in different
orders. We randomly scramble the outputs of each LFSR, and
then execute Algorithm 1.

Algorithm 1 Monte Carlo-style LFSR seeding approach.
input : LS : set of LFSRs in S structure
input : Lb: set of LFSRs in b structure
output: Seed set for LS , Lb, avg/min error

1 Ebest =1
2 if S-structure seeding then
3 for i 1 to Strials do
4 combS = unique randomly chosen seeds for LS

5 if E(combS) < Ebest then
6 Ebest = E(combS)
7 Store combS as BestS

8 end
9 end

10 Restore seeds of LS to BestS

11 L = Lb // seed Lb below
12 else
13 L = Lb [ LS // seed both Lb and LS below
14 end
15 Ebest =1
16 SumError = 0
17 for i 1 to trials do
18 comb = unique randomly chosen seeds for L
19 SumError = SumError + E(comb)
20 if E(comb) < Ebest then
21 Ebest = E(comb)
22 Store comb as Best

23 end
24 end
25 Report Best, avg error (SumError/trials), min error Ebest

B. Feedback Polynomial Diversity

A second approach we consider to improve SC accuracy
(and make bitstreams more statistically independent) is to
leverage the property that in general, there is more than one
polynomial that produces a maximal-length LFSR [4]. For
example, for 10-bit LFSRs, [5] reports at least 60 different
polynomials that produce maximal-length sequences. LFSRs
with different polynomials will exhibit different state order-
ings, potentially producing more independent SC bitstreams.

Thus, a second design optimization we consider is to imple-
ment each LFSR with a different polynomial. This is not quite
as straightforward as scrambling outputs from the hardware
implementation perspective, and it may be undesireable as it
introduces irregularity to the circuitry. Nevertheless, LFSRs
with different polymomials are not appreciably different from
the area/speed perspective, and in fact, we have observed their
speed/area to be identical in FPGA implementations. Using
the polynomial tables in [4], we choose a different feedback

TABLE II. ALTERA CYCLONE IV IMPLEMENTATION RESULTS FOR
VARIOUS PRECISIONS OF MUX-BASED SC.

8-bit 9-bit 10-bit

Area (LEs) 232 258 285
Speed (MHz) 169.6 164.1 157.9

Energy/Op (nJ) 17.92 36.2 72.93

polynomial for each LFSR arbitrarily from the table. We then
execute Algorithm 1.

V. EXPERIMENTAL STUDY

In this paper, we use (5) to quantify the error in a
SC approximation: the sum of the squared errors in the
approximation. The maximum precision we consider is 10-bit
(1023-bit stream lengths). To allow comparisons between the
errors at different precisions, e.g. 10-bit and lower precisions
(which have shorter stream lengths), we sum the error across
1024 input points, even in the lower-precision cases. For
example, with 9-bit precision, we compute error as follows:
Error =

P1023
x=0 (f(

x

1023 )� f̂9b(
b x

2 c
511 ))

2. Thus, our error values
for lower precisions reflect both the error from short bitstream
lengths, as well as error from coarser quantization.

For hardware implementation, we implemented the MUX-
based SC architecture at several precisions in Verilog RTL.
We synthesize the Verilog to the Altera Cyclone IV 45nm
FPGA [2]. Energy results are based on post-place-and-route
delay and capacitance extraction. Circuits were simulated
using ModelSim with full routing delays, producing switching
activity in VCD format. The activity and capacitance data is
used by Altera’s PowerPlay power analyzer tool. The energy
results reflect dynamic power consumption consumed in the
FPGA core logic (i.e. not including I/O power or leakage).

Table II shows area, speed, and energy consumption for the
MUX-based SC architecture, 6th-order, at various precisions,
for the function y = x0.45. Area is given in Cyclone IV
logic elements (LEs), each of which comprises a 4-input look-
up-table (LUT) paired with a flip-flop. Delving into the area
numbers, the 9-bit and 10-bit implementations are ⇠11% and
⇠22% larger than the 8-bit implementation, respectively. This
agrees with intuition, as for example, the register widths in the
10-bit version are 25% wider than those in the 8-bit version.
Regarding circuit speed, we observe a degradation as precision
is increased, likely owing to wider comparators. The energy
numbers in the table represent the total energy to compute one
output value for an input value: this takes 255, 511, and 1023
cycles in the 8-, 9-, and 10-bit precision cases. As expected,
energy consumption roughly doubles for each bit increase in
precision. Meaning, computing a value in 10-bit precisions
requires 4⇥ the energy of 8-bit precision.

Turning now to seed sweeping, Table I shows the impact
of seed selection for a set of five benchmarks, listed in column
1. The results are for 6th-order Bernstein approximations
with 1023-bit stream lengths. Column 2 shows the average
error across 1000 different seedings of all 13 LFSRs in
the MUX-based stochastic computing circuit (Fig. 2). We
refer to the results in this column as the baseline in the
remainder of this paper. The numbers represent the average
error one could expect with arbitrarily chosen seeds. Column
3 of the table shows the minimum error achieved for one of
the seeding combinations; i.e. the best error achieved among
the 1000 seeding trials. The second-last row of the table
shows geometric mean results; the last row shows the ratio
of geomean relative to the baseline. Observe that, on average,
the minimum error achieved is just 20% of the average error:



TABLE I. AVERAGE AND MIN ERROR RESULTS FOR BASELINE, SCRAMBLING AND MULTI-POLY BITSTREAM GENERATION DESIGNS (1000 TRIALS).

Baseline Scrambling Multi-Poly

Benchmark Average error Min error Average error Min error Average error Min error
pow(x,0.45) 0.153 0.042 0.146 0.051 0.145 0.050

exp(-3x) 0.097 0.016 0.095 0.017 0.093 0.019
tanh(2x) 0.091 0.017 0.089 0.017 0.092 0.024

(sin(4x)+2)/4 0.141 0.029 0.135 0.029 0.141 0.028
(1 + 0.3*cos(5x))sin(x) 0.150 0.028 0.137 0.029 0.137 0.033

Geomean 0.123 0.025 0.118 0.026 0.119 0.029
Ratio 1.00 0.20 0.95 0.21 0.97 0.24
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Fig. 3. Error histogram for benchmark y = x

0.45 across 1000 seeding trials.
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Fig. 4. Arbitrary and optimized seeding for a function.

5⇥ lower than the average. The results show clearly that
some seeding combinations yield considerably lower errors
than other combinations.

To help understand the relative scarcity of “good” seeding
combinations versus average ones, Fig. 3 shows a histogram
of errors for one of the benchmarks, y = x0.45. Most of the
errors are clustered around the mean value of 0.153; just 3
seeding combinations had errors less than 0.05. This suggests
that with arbitrary seed selection, one is not likely to land on a
good combination. Fig. 4 shows SC results for: 1) an arbitrary
LFSR seeding (red points), and 2) an optimized seeding
(green points) for one of the benchmarks. A “best fit” line is
also shown, corresponding to double-precision floating point.
Qualitatively, it is apparent the optimized seeding produces
results that remain far closer to the best-fit line.

Columns 4 and 5 of Table I show results for the design
incorporating LFSR output bit scrambling. Columns 6 and
7 of the table show results corresponding to the use of a
different feedback polynomial for each LFSR. Both design
alternatives have a modest impact on the average error versus
the baseline, reducing it by 5% and 3% for scrambling and
multiple polynomials, respectively. However, observe that for

TABLE III. RESULTS FOR S-STRUCTURE SEEDING (1000 TRIALS).

No Scrambling Scrambling

Benchmark Avg. error Min error Avg. error Min error
pow(x,0.45) 0.131 0.038 0.118 0.039

exp(-3x) 0.085 0.023 0.088 0.018
tanh(2x) 0.088 0.018 0.092 0.022

(sin(4x)+2)/4 0.136 0.029 0.136 0.025
(1 + 0.3*cos(5x))sin(x) 0.133 0.024 0.128 0.030

Geomean 0.112 0.025 0.111 0.026
Ratio vs. baseline 0.91 0.21 0.90 0.21

both alternatives, the minimum error (columns 5 and 7) is not
reduced (and actually slightly increased) relative to the mini-
mum error for the baseline, due likely to “noise” in the seed-
sampling process, given the huge search space and the fact
that the minimum error is for a single seeding combination.

Table III shows results for S-structure seeding (see Sec-
tion III-B). The results are again for 1000 seeding trials;
however, the seeds in the S-structure are fixed in advance based
on optimizing (4) across 50 ⇥ 106 trials (c.f. Algorithm 1:
Strials = 50 ⇥ 106, trials = 1000). The last row of the
table shows there is a benefit in seeding the S-structure.
Columns 2 and 3 of the table show results for S-structure
seeding without scrambling or the use of different feedback
polynomials. Average error is reduced by 9% relative to the
baseline (last row of table). The minimum error is about the
same as the baseline. Columns 4 and 5 of the table show results
for S-structure seeding combined with scrambling (combining
S-structure seeding with multiple feedback polynomials pro-
duced similar results). Observe that average error is reduced
by 10% vs. the baseline, nearly the same as when scrambling
is not applied. While S-structure seeding offers promise, it is
clear that the “best” seeding combination for a given target
function (considering seeding all 13 LFSRs simultaneously)
produces superior results vs. the average results for a well-
tuned S-structure.

The minimum error results in column 3 of Table I reflect
a specific seeding combination among 1000 trials for each
circuit. A natural question is whether a good seeding com-
bination for one circuit is also a good combination for another
circuit. Table IV shows results for cross-seeding: finding the
best seeding combination for a function, and evaluating that
combination across all other functions. The rows of the table
correspond to the functions we used to select the best com-
bination; the columns correspond to the evaluation functions.
The diagonals show the minimum-error data in column 3 of
Table I. Observe that the non-diagonal data values in each
column of Table IV are often lower than the average for the
corresponding function in column 2 of Table I. However, in
general, the values are significantly higher than the minimum
error observed for that function (in column 3 of Table I). From
this, we conclude that while there may be some benefit in
sharing seeding combinations across different functions, far
better results are achieved if a unique “good” combination is



TABLE IV. EVALUATING THE IMPACT OF “CROSS-SEEDING” WHERE THE BEST SEEDS FOR EACH FUNCTION (ROWS) ARE USED ACROSS ALL
FUNCTIONS (COLUMNS).

Evaluation function
Training function pow(x,0.45) exp(-3x) tanh(2x) (sin(4x)+2)/4 (1 + 0.3*cos(5x))sin(x)

pow(x,0.45) 0.042 0.038 0.047 0.050 0.140
exp(-3x) 0.149 0.016 0.028 0.088 0.129
tanh(2x) 0.568 0.034 0.017 0.579 0.131

(sin(4x)+2)/4 0.096 0.043 0.097 0.029 0.092
(1 + 0.3*cos(5x))sin(x) 0.091 0.052 0.054 0.115 0.028

TABLE V. COMPARISON ACROSS 10-BIT, 9-BIT AND 8-BIT PRECISION (1023-BIT, 511-BIT, 255-BIT STREAM LENGTHS, RESPECTIVELY).

Baseline 10-bit precision 9-bit precision 8-bit precision

Benchmark Average error Min error Average error Min error Average error Min error
pow(x,0.45) 0.153 0.042 0.295 0.075 0.606 0.153

exp(-3x) 0.097 0.016 0.188 0.033 0.381 0.081
tanh(2x) 0.091 0.017 0.198 0.030 0.420 0.110

(sin(4x)+2)/4 0.141 0.029 0.286 0.062 0.579 0.140
(1 + 0.3*cos(5x))sin(x) 0.150 0.028 0.300 0.068 0.616 0.131

Geomean 0.123 0.025 0.248 0.050 0.510 0.120
Ratio 1.00 0.20 2.01 0.41 4.14 0.97

selected for each function.

Table V shows results for lower precisions, and repeats
the data for 10-bit precision for convenience. The last row
of columns 2, 4 and 6 shows average error data across 1000
seeding trials. Observe that error is, on average, 2⇥ higher
when 9-bit precision is used vs. 10-bit precision, and is 4.1⇥
higher when 8-bit precision is used. As mentioned above,
the increased error reflects both shorter stream lengths, and
coarser quantization. Turning to the minimum error data in
columns 3, 5 and 7, we observe that with 9-bit precision,
the minimum error observed is 59% lower, on average, than
the average error for 10-bit precision. This implies that by
using bitstreams that are half as long (i.e. 511 bits vs. 1023
bits), with seed selection, 9-bit precision can deliver higher
accuracy than 10-bit precision with arbitrarily chosen seeds.
Surprisingly, with 8-bit precision, the minimum error observed
is 3% lower than the average error with 10-bit precision.
There are clearly significant error-reduction benefits in careful
seeding of LFSRs. In combination with the energy results
presented earlier, the accuracy results above demonstrate that
SC with careful seeding in 8-bit precision yields nearly the
same accuracy as SC in 10-bit precision seeded arbitrarily – a
4⇥ energy reduction for a given accuracy level.

Seed selection thus offers two benefits: 1) raising the
accuracy of SC for a given precision level (e.g. 10-bit, 9-bit
or 8-bit), or 2) permitting lower precisions to be used for the
same or better accuracy vs. with arbitrarily chosen seeds. For
the latter, consider that 8-bit SC uses 255-bit stream lengths,
which are 4⇥ shorter than the 1023-bit stream lengths needed
for 10-bit accuracy. This represents a 4⇥ delay improvement.

VI. CONCLUSIONS AND FUTURE WORK

We considered the design of bitstream generators for use
in stochastic computing (SC). Two LFSR design alternatives
were investigated to raise diversity in the state sequence:
scrambling LFSR outputs, and the use multiple feedback
polynomials. Both approaches demonstrate reduced error in
SC results. We also studied the impact of LFSR seed sweeping
on SC accuracy. Experimental results show that one can reap
considerable accuracy improvements from LFSR seeding, with
a key result being that careful seeding of 8-bit precision SC
can provide higher accuracy than arbitrary seeding of 10-bit
precision SC. Analysis of an FPGA implementation of SC
structures showed that ⇠2⇥ more energy is needed for each
bit of increased SC precision. Hence, seed sweeping permits

the use of lower-precision SC for a given accuracy level,
yielding significant energy reductions. As future work, we plan
to explore the benefit of using n-bit LFSRs/comparators with
stream lengths shorter than 2n � 1 bits, which may reducing
quantization error at modest hardware cost.
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