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ABSTRACT

The development of future FPGA fabrics with more sophis-
ticated and complex logic blocks requires a new CAD flow
that permits the expression of that complexity and the abil-
ity to synthesize to it. In this paper, we present a new logic
block description language that can depict complex intra-
block interconnect, hierarchy and modes of operation. These
features are necessary to support modern and future FPGA
complex soft logic blocks, memory and hard blocks. The key
part of the CAD flow associated with this complexity is the
packer, which takes the logical atomic pieces of the complex
blocks and groups them into whole physical entities. We
present an area-driven generic packing tool that can pack
the logical atoms into any heterogeneous FPGA described
in the new language, including many different kinds of soft
and hard logic blocks. We gauge its area quality by compar-
ing the results achieved with a lower bound on the number of
blocks required, and then illustrate its explorative capability
in two ways: on fracturable LUT soft logic architectures, and
on hard block memory architectures. The new infrastructure
attaches to a flow that begins with a Verilog front-end, per-
mitting the use of benchmarks that are significantly larger
than the usual ones, and can target heterogenous FPGAs.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Hardware description languages, Op-
timization

General Terms

Algorithms, Design, Languages, Measurement, Performance

1. INTRODUCTION

As the semiconductor industry evolves and accounts for
the prohibitive cost of custom chip design and fabrication,
together with the continued exponential growth in logic ca-
pacity per die, there is a need to make pre-fabricated and
programmable chips more capable. That enhanced capabil-
ity may in part be expressed through more complex prog-
rammable logic blocks. These logic blocks may perform cer-
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Figure 1: Commercial Virtex-6 logic block
tain computations more efficiently, or store data, or perhaps
contain novel soft logic structures.

Today’s publicly available FPGA CAD tools lack the abil-
ity to target the complexity present in modern commercial
architectures - the Altera Stratix IV [1] and Xilinx Virtex
6 [2] FPGAs contain highly complex soft logic blocks, hard
memories and mulitpliers. For example, it simply isn’t pos-
sible to represent the details of the Virtex-6 logic block, illus-
trated in Fig. 1 [3], in the architecture description language
provided in VPR 5.0 [20]. While commercial tools can be
used to synthesize to this exact architecture, there is no ca-
pability for researchers to explore new issues (such as process
variability) for that device, or to modify important aspects
of the architecture.

Furthermore, the MCNC benchmark circuits [33] often
used in research are no longer representative of modern or
future FPGA applications because they are no larger than a
few thousand 4-LUTs while commercial FPGAs today can
target applications that contain hundreds of thousands and
soon millions or more 4-LUT-equivalents. There is a need,
then, for modern, public benchmarks and CAD tools that
can deal with the heterogeneity inherent in those bench-
marks in order to do relevant, scientific research on FPGA
architecture and CAD.

In this paper, we describe two key new capabilities for an
FPGA CAD flow that provide the ability to describe and
synthesize for the necessary complexity: first, we present a
new logic block description language that can express far
more complex logic blocks than is currently possible with



any publicly available toolset. It can describe complex logic
blocks with arbitrary internal routing structures (such as
all the small muxes in Fig. 1), it permits arbitrary levels of
hierarchy within the logic block and it can give blocks differ-
ent modes that represent significantly different functionality
and interconnect of portions of the block. Modern commer-
cial FPGAs have different modes in their memory blocks,
for example, they can be configured as say 4Kx8, or 8Kx4,
or 16Kx2 memories and so on. The new language permits
the description of an FPGA with many different kinds of
blocks, each of which can have the above features. The new
language also allows the specification of timing for the atoms
and their interconnect.

Secondly, we present a new area-driven packing frame-
work and algorithm that takes as input a user design as well
as an architectural description in the language mentioned
above, and then determines area-efficient legal groupings of
the atoms in the design into the logic blocks specified in the
language. This problem is far more complex than the tradi-
tional LUT-packing problem [5] because of the non-simple
interconnects, hierarchy and modes. Indeed, this kind of
packing problem contains within it a combined placement
and routing problem. Fortunately, the packing context per-
mits some efficiencies which we describe in the paper.

We illustrate these new capabilities through two architec-
tural experiments: one that explores different fracturable
LUTs, now commonly used in industry, and one that ex-
plores different aspects of hard block memory architectures.
In each of these experiments, we use a new set of large-scale
Verilog circuits that contain both memory and multipliers.

This paper is organized as follows: the next section pro-
vides relevant background; Section 3 describes the new lan-
guage with examples, and Section 4 gives the generic packing
algorithm. The new features are integrated into an existing
FPGA CAD system. Section 5 gives the illustrative archi-
tecture explorations. Section 6 concludes.

2. BACKGROUND AND TERMINOLOGY

The architecture of an FPGA consists of the set of blocks
that perform internal computing, the input/output blocks
that communicate with the extra-chip environment, and the
programmable routing structure that connects them. As
FPGASs have evolved, they have employed increasingly more
complex logic blocks that consist of a larger number of small
components, which we will call primitives, grouped together.
One purpose of this grouping, often called clusters, is to
leverage the locality typically found in circuits. This section
describes the prior work on languages that describe such
complex blocks and algorithms that pack a user circuit into
complex blocks.

2.1 Complex Block Architecture Description
Languages

In order to explore the large space of complex block archi-
tectures, a language that can precisely specify those complex
blocks is needed. Over the years, several languages have
been developed that target different trade-offs between ex-
pressiveness and conciseness for complex blocks.

Some languages gain conciseness by limiting the complex
block architectures that they can describe to a restricted
subset and then employ parameters to select between dif-
ferent instances of that subset. These languages include
those used in VPR 4.30 [6] and VPR 5.0 [20] which tar-
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get a simple block consisting of a cluster of fully-connected
basic logic elements and Ho’s language [13] which describes
more sophisticated floating-point cores as blocks.

Other languages focus more on expressiveness. Cronquist’s
Emerald [10], Filho’s CGADL [12], Ebeling’s language for
RaPiD [11], and the languages described in [26], use a netlist
representation which, though very expressive, is cumber-
some and verbose when expressing simple soft logic complex
blocks. Paladino proposed a general complex block descrip-
tion language called CARCH in [29] which employs proper-
ties and rules to gain expressiveness, but was focussed on
more microscopic attributes of common soft logic blocks.

2.2 Packing Algorithms

There is large body of prior work on the packing prob-
lem for FPGAs. Most of it focuses on the optimization of
area, delay, and/or power for the basic (LUT-based) soft
logic complex blocks. These algorithms include T-VPack
[21], T-RPack [7], IRAC [30], HDPack [9], and others [17]
[18]. Lemieux [16] and Wang [32] investigated packing to a
basic soft logic complex block that contains a depopulated
crossbar.

There has also been work on packing for complex blocks
that are significantly different from the basic complex block.
Ni proposed an algorithm that packs together netlist blocks
for clusters with arbitrary interconnect and an arbitrary
number of heterogeneous primitives [28]. The algorithm
does not scale and it is intractable to use it to model all
but the smallest soft logic clusters. Ahmed described pack-
ing DSP blocks to make use of regularity in placement and
routing [4]. Paladino proposed a design rule check (DRC)
based packer called DC that can pack to the soft logic of
two different Altera FPGA families [29]. Limitations with
the tool prevent it from exploring non-trivial complex blocks
such as memories and fracturable LUTs.

3. ANEW COMPLEX BLOCK ARCHITEC-
TURE DESCRIPTION LANGUAGE

A key goal of this work is to enable architecture explo-
ration and CAD tool research for FPGAs with far more
complex logic and interconnect than has been possible with
prior public tools. In this section, we describe a new mod-
eling language that permits the description of logic blocks
with an arbitrary amount of hierarchy, that permits complex
specification of the interconnection between logical elements,
and that allows the specification of different modes of oper-
ation. To be as easy to use as possible, we seek to have the
language be:

e Expressive: The language should be capable of describ-
ing a wide range of complex blocks.

e Simple: The language constructs should match closely
with an FPGA architect’s existing knowledge and in-
tuition.

e Concise: The language should permit complex blocks
to be described as concisely as possible.

In the following sections, we provide an introduction to
the new language that shows how these goals are met. Due
to space limitations, the full language itself, with detailed
examples, is presented at
http://www.eecg.utoronto.ca/vpr/arch_language.html.
This language will be supported in the next release of VPR.
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Figure 2: Example physical blocks

3.1 Overview

The new language uses XML syntax; readers unfamiliar
with XML should review [31]. It also incorporates con-
structs that directly correspond to the hardware structures
that most commonly occur in FPGA complex blocks — such
as muxes and LUTs.

At the highest-level, the language contains two categories
of construct: 1) physical blocks, and 2) interconnect. Phys-
ical blocks are used to represent the core logic, computa-
tional, and memory elements within the FPGA. This in-
cludes LUTs, flip-flops and memories. Interconnect con-
structs represent connectivitiy within and between physical
blocks, including wiring, programmable switches, and mul-
tiplexers. We begin by describing the physical block con-
struct.

3.1.1 Physical Blocks

The basic physical block type in the language is spec-
ified using the XML element pb_type which has a name
attribute to identify it. To obtain the ability to describe
arbitrary hierarchy, any pb_type start-end block can con-
tain other pb_type specifications. For example, consider the
empty complex block shown in Fig. 2 a). It is specified by
the following code:

<pb_type name="exampleCB">
</pb_type>

A more complex block is shown in Fig. 2 b), which has
three child blocks in it, two of the same type (labelled 4lut)
and one different block (labelled blk_A). The language con-
struct num_pb can be used to specify the number of instances
of a child physical block that are contained in its parent
physical block. The full specification of the example com-
plex block in Fig. 2 b) is as follows:

<pb_type name="exampleCB">
<pb_type name="blk_A" num_pb="1">
</pb_type>
<pb_type name="4lut" num_pb="2">
</pb_type>

</pb_type>

Physical blocks must communicate with one another, and
also with other blocks at the same level, as well as the
external inter-block routing. A physical block will have a
combination of input, output, and/or clock ports. A port
comprises of one or more pins. The input, output, and clock
ports are described using XML tags input, output, and clock,
respectively. Each tag is declared as a child element of the
pb_type on which the ports reside. Each port tag must be
given an identifier with the name attribute. The number of
pins associated with a port is specified with the num_pins
attribute. For example, the block shown in Fig. 2 ¢) adds

four ports to the complex block of part b), and its language
specification is given below. Notice that the Inl port has
four pins; the In2 port has three pins; the Out port has 2
pins; and, the Clk port has a single pin.

<pb_type name="exampleCB">
<input name="Ini" num_pins="4"/>
<input name="In2" num_pins="3"/>
<output name="QOut" num_pins="2"/>
<clock name="Clk" num_pins="1"/>
<pb_type name="blk_A" num_pb="1">
</pb_type>
<pb_type name="4lut" num_pb="2">
</pb_type>

</pb_type>

3.1.2 Modeling Primitives

Primitives are physical blocks at the bottom level of hier-
archy — they do not contain other physical blocks. A primi-
tive corresponds to the elements present in the technology-
mapped user netlist, prior to the packing phase. The lan-
guage attribute, blif model must be included in the primitive
pb_type element, and it specifies the type of input user netlist
block that the primitive implements. The packer, described
below, uses BLIF as the netlist format. The value of the
blif model attribute for a primitive pb_type is a string that
should exactly match the string in BLIF used for the netlist
block that can reside in the primitive.

The new language incorporates special handling for three
of the most common types of primitives found in FPGAs:
flip-flops, LUTSs, and memory. We chose to do this to make it
easier to deal with specific features of these primitives. The
language class attribute is used to identify these primitives.
Consider again the example in Fig. 2 b): we make the 4lut
a LUT primitive type by adding the blif model and class
attributes as follows:

<pb_type name="exampleCB">
<input name="Inl" num_pins="4"/>
<input name="In2" num_pins="3"/>
<output name="QOut" num_pins="2"/>
<clock name="Clk" num_pins="1"/>
<pb_type name="blk_A" num_pb="1">
</pb_type>
<pb_type name="4lut" num_pb="2"

blif_model=".names" class="lut">

</pb_type>

</pb_type>

In processing the input user netlist, the BLIF construct
.names is assumed to map into a LUT.

In addition to the class attribute, the ports on these primi-
tives must be declared with a special attribute called port_class
which provides necessary information about the pins on these
special types of primitives, as described below:

1. [ut: The LUT primitive has one port class for its inputs
(called lut_in) and one for its output called lut_out.
This is useful for example, so that downstream tools
can take advantage of input pin swapability: signals on
LUT inputs can be permuted and the LUT’s truth ta-
ble re-programmed accordingly. Note that more com-
plex LUTSs, such as fracturable LUTs, are described
as clusters; basic LUTs within the more complex LUT
are described using this LUT primitive.

2. flipflop: A flip-flop has three port classes: input (D),
output (@), and clock (clock), which have exactly one
pin each. The library could be extended to support
more ports for flip-flops (such as asynchronous clear).



3. memory: Single-port memories have three input port
classes: address, data_in, and write_en and one output
port class: data_out, which represent the related func-
tionality of memories. Dual-port memories have six
input port classes: addressl, data_inl, write_enl, ad-
dress2, data_in2, and write_en2 and two output port
classes: data_out! and data_out2. Both single and
dual-port memories have one optional clock port class:
clock (for synchronous memories). The library can be
extended to support more ports for memories.

The following example describes a single-port memory

primitive type to illustrate the usage of the class and port_class

attributes:

name="mem_1024x2"

blif_model=".subckt single_port_ram"

class="memory" num_pb="1">

name="addr" num_pins="10" port_class="address"/>
<input name="data" num_pins="2" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="2" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>

<pb_type

<input

It may occur to the reader that an alternative to intro-
ducing the class and port_class attributes would be to re-
quire that the architect give specific pre-defined names to
pb_types and ports. We considered that approach, however,
we deemed it overly restrictive. With the proposed class and
port class scheme, the architect is free to name pb_types and
ports any way he/she likes, which enhances readability and
may ease integration with other tools that use different nam-
ing conventions.

3.2 Intra-Block Interconnect

The ports and pins on physical blocks are connected to
one another using an interconnect element that is declared
within a parent physical block type. There are three kinds
of interconnect:

1. complete: This represents a complete crossbar switch
from a set of inputs pins to a set of output pins. It is
assumed that the particular input pin that is matched
with a particular output pin is controlled by signals in-
ternal to the FPGA whose values are set during device
configuration.

2. direct: This is a direct connection from one set of pins
to another set of pins. This is used to model single
metal wires or buses that have no programmability or
switching.

3. muz: This is a multiplexed connection of single or
multi-bit (bus) signals. As in the case of complete,
it is assumed that signals internal to the FPGA (likely
driven by configuration bits) control the select inputs
of the multiplexer. That is, this construct represents
a bus-based multiplexer whose input-to-output path is
set during FPGA configuration.

The input and output pins of interconnect elements are
specified by one input attribute and one output attribute
declared within the interconnect element. The complete el-
ement has one set of pins for its input and one set of pins
for its output. The direct element has one set of pins for
its inputs and another set of pins for its outputs. The mux
element has multiple sets of pins for its input and one set of
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Figure 3: Examples interconnect types: a) complete
b) direct ¢) mux

pins at its output. Each set of input pins is delimited by a
space.

A set of pins to be connected is specified by first selecting
physical blocks that are to be connected, and then specifying
the desired pins on those blocks: In the case of there being
multiple instances of a physical block, the following syntax
is used:

<pb_type name>[<start index of physical block>:
<end index of physical block>]

Physical blocks are indexed from 0 to num_pb - 1. If only
one physical block is selected, then the colon and ending
index may be eliminated. If there is only one physical block,
then the entire [ to ] specification is not needed.

The pins on the block are specified in the following way:

<physical block port name>[<start index of pins>:
<end index of pins>]

Pin indices start from 0 and end at num_pins - 1. There
is one shortcut for pin selection: if the architect wishes to
select all the pins of a port, then he can skip the section
from [ to ].

Fig. 3 gives examples of the three interconnect constructs.
Underneath each figure is the code that produces the corre-
sponding interconnect. The examples assume that intercon-
nect connectivity is from pins on a physical block called Top
to pins on one of Top’s child physical blocks. For the com-
plete interconnect case (in Fig. 3 a)), there is one physical
block for each pb_type so only the pb_type is specified when
selecting the blocks. All pins of the ports are used, so only
the names of the ports are specified.

For the direct interconnect example (in Fig. 3 b)), only
the last two of the three Top.in pins are used so the corre-
sponding code specifies the range of pins using [2:1]. There
are two physical blocks of type Child and only the one with
index 1 is used, so the code includes a [I] in Child[1] to
identify that block. This specification creates a one-to-one
mapping between two input pins of Top and two input pins
of Child[1].

The muz interconnect example specifies a 3-bit 2-to-1 mux
(in Fig. 3 ¢)). The input attribute to the mux has two 3-bit
pin sets. The first pin set is Top.A and the second pin set
is Top.B. The two pin sets are separated by a space. The
output of the mux is one 3-bit pin set of Child.in.

For ease-of-use, the language provides a mechanism to
concatenate sets of pins together. It follows a similar syntax
to the concatenate construct in Verilog [8].

A “scope” question naturally arises with the use of the in-
terconnect element: in an arbitrary multi-level hierarchy of
physical blocks, which ports/pins can be used within an in-
terconnect element that is declared within a physical block
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Figure 4: Example of a physical block with multiple
modes of operation

at some specific level of the hierarchy? We take a straight-
forward approach to interconnect scope — the interconnect
element can use pins of its parent physical block, or can use
pins of any physical block declared in the same level of the
hierarchy.

3.3 Modes

A physical block in an FPGA may have multiple modes
of operation and such modes are normally mutually exclu-
sive. For example, consider an FPGA memory block that
can be configured with different aspect ratios such as 512x8
and 1024x4 [27]. Each of these different configurations needs
to be represented by a unique mode of operation. To rep-
resent the mode concept, the language allows the definition
of one or more mode elements within the pb_type. Multi-
ple modes of operation are represented by multiple sibling
mode elements declared within a parent pb_type. If a mode
is declared, child physical blocks and interconnect can be
declared inside the mode element, representing blocks (and
connectivity) that is specific to the particular mode. In gen-
eral, modes represent different ways of using a given piece
of underlying FPGA hardware. A mode has one attribute
name that serves as an identifier. Fig. 4 shows a physical
block with multiple modes of operation. The first mode is
called alpha and it contains one physical block al and the
second mode is called beta and contains two physical blocks
of type b1. The corresponding code is:

<pb_type name="blk_A">
<input name="CI" num_pins="4"/>
<output name="CO0" num_pins="2"/>
<clock name="Clk" num_pins="1"/>
<mode name="alpha">
<pb_type name="al" num_pb="1">
</pb_type>
</mode>
<mode name="beta">
<pb_type name="bl" num_pb="2">
</pb_type>
</mode>
</pb_type>

Different modes can each have their own unique inter-
connect by declaring one or more interconnect elements as
children of a mode element.

Using these language constructs, we can model complex
logic structures, including the one shown in Fig. 1. Due to
space limitations, examples of how to model this and other
logic structures are found in the website provided earlier.

4. PACKING ALGORITHM

In this section, we introduce our architecture-aware pack-
ing algorithm, AAPack. We begin with a top-level overview
of the algorithm, and then elaborate on each step.
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while (unpacked_netlist_blocks_exist())
s = seed_netlist_block()
B = new_complex_block(s)

while (attempt_more_packs(B))
c = candidate_netlist_block(B)
attempt_pack(c,B)

add B to output packed netlist

~NOoO O W

Figure 5: Generic iterative packing algorithm.
4.1 Overview

The input to the packer is a technology mapped netlist of
unpacked netlist blocks, as well as a description of an FPGA
architecture (specified in our language). The output is a
netlist of packed complex blocks that implements the same
functionality as the input netlist. Fig. 5 gives pseudocode
for a generic iterative packing algorithm closely resembling
those in published literature. The outer while loop at line 1
continues until all input netlist blocks are packed into com-
plex blocks. At line 2, a seed netlist block, s, is selected for
a new complex block. Line 3 creates a new complex block,
B, containing the seed block. The algorithm then proceeds
to pack additional netlist blocks into B (inner loop on lines
4-6). The loop on line 4 continues until no further packs into
B should be attempted. Line 5 identifies a netlist block, ¢,
that is a candidate for packing into B. Line 6 attempts to
pack c into B, which presents unique challenges owing to the
range of complex block architectures that can be described
in our language. The process of finding additional netlist
blocks to pack into B continues iteratively until either: 1)
B is full, or 2) no such primitives are found. B is then added
to the output packed netlist (line 7) and control returns to
the outer loop.

The algorithm in Fig. 5 represents a core packer engine
that calls several functions for which a variety of implemen-
tations are possible. We elaborate on our initial implemen-
tation choices below.

4.2 Selecting Netlist Blocks and Complex Blocks

To choose the seed netlist block, s, for a new complex
block (line 2 in Fig. 5), we borrow the approach of [5] and
choose s to be the unpacked block with the largest number
of nets attached.

Having initialized a new complex block with a seed netlist
block, we use an affinity metric to select additional netlist
blocks to pack into the complex block (line 5 of Fig. 5).
Consider a netlist block p and a partially filled complex block
B. The affinity between p and B is defined as:

(1 — @) -mets(p, B) + « - connections(p, B)
num_pins(p)

Aff = (1)

where nets(p, B) is the number of shared nets between p and
B, and connections(p, B) is tied to the number of pins on
p’s attached nets that lie outside of B:

1
ext(p, B) + packed(p) + 1

connections(p, B) = (2)
where ext(p, B) represents the sum total of pins on p’s nets
that reside on netlist blocks not packed into B, and packed(p)
represents the total number of pins on p’s nets that attach
to netlist blocks already packed into other complex blocks
(aside from B). Connections between p and netlist blocks
that are already packed are guaranteed to be inter-block con-
nections in the packing solution, and thus, they are penalized
in (2). Observe that connections(p, B) is a pin-based count,
whereas nets(p, B) is a net-based count. The num_pins(p)
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Figure 7: Tree representation of a complex block.

in the denominator of (1) is the number of used pins on p
and it serves to normalize affinities across netlist blocks with
different numbers of used pins. Parameter « in (1) is a scalar
weight that we set to 0.9 for our experiments.

We use the affinity metric (1) to choose packing candi-
dates in the candidate_netlist_block function in Fig. 5,
preferring to pack together netlist blocks with high affin-
ity for one another. Blocks that, based on their type, can-
not be accommodated in the current complex block being
packed are automatically filtered out from consideration by
the candidate_netlist_block function. For example, we
never consider packing a LUT into a multiplier-based com-
plex block.

4.3 Legality Checking in Packing

Our packer must be able to handle arbitrary hierarchy
and arbitrary interconnect — requirements that ultimately
impact the attempt_pack(c,B) function in Fig. 5. The func-
tion performs two key tasks: 1) it finds a candidate prim-
itive (location) for a netlist block ¢ within a hierarchical
complex block Bj; and, 2) for the chosen location, it ensures
that the packing is legal from the perspective of routing c’s
nets through B’s interconnect. These steps are analogous
to placing and routing the netlist blocks within a complex
block.

4.3.1 Location Assignment

For the purposes of packing, we represent a hierarchical
complex block as an ordered tree. Nodes in the tree corre-
spond to physical blocks or modes. Edges between nodes
represent the parent/child relationships between physical
blocks and/or modes. The root node of the tree corresponds
to an entire complex block. Leaf nodes correspond to primi-
tives within a complex block. Fig. 7 gives the tree represen-
tation for the multiplier-based complex block illustrated in
Fig. 6. Observe that the tree is ordered: fine-grained phys-
ical blocks are on the right; coarse-grained physical blocks
are on the left. The ordering allows us to traverse the tree
according to non-decreasing physical block size. In general,
it is desirable to pack a netlist block into the smallest prim-
itive that can accomodate it (doing otherwise would likely
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result in poor utilization) — the tree ordering assists us in
meeting this objective.

Given a candidate netlist block, ¢, and the tree represen-
tation of a complex block, we use a depth-first search to
identify a location for ¢. Our search prioritizes exploring
right children before left children. That is, we explore fine-
grained physical blocks before coarse-grained blocks. As an
example, consider a technology mapped netlist containing
two multiplier blocks: a 16x16 multiplier and an 8x8 mul-
tiplier. We wish to pack the netlist into the complex block
shown in Fig. 7, starting with the 16x16 multiplier block.
Referring to the labels on each node, the search traverses
downwards from the root, visiting nodes a, ¢, f and j. Since
mode B at node j cannot accommodate the 16x16 block,
the search backtracks to node f and continues until a feasi-
ble location is discovered, eventually packing the multiplier
into node n. At this point, a routability check must be per-
formed (described below). If the check is unsuccessful, the
depth-first search continues for an alternative location. If
the check is successful, we move onto the task of packing
the next block, the 8x8 multiplier.

When a netlist block is successfully packed into a tree
node, the depth-first search pops up to the node’s parent,
which corresponds to a sub-tree of the complex block hi-
erarchy. We then look for netlist blocks that can pack into
that sub-tree (using depth-first search). We try to fill up the
sub-tree before proceeding to explore other parts of the hi-
erarchy. Note that the candidate_netlist_block function
filters blocks according to the current sub-tree being packed.
For example, if we packed a LUT into a sub-tree comprising
a LUT/flip-flop pair, our algorithm would attempt to find
a flip-flop that can be packed together with the LUT. We
attempt up to 30 packs on a sub-tree before the depth-first
search pops up to explore other sub-trees.

4.3.2  Ensuring Routability

Simply finding a primitive for a netlist block within a com-
plex block is not a sufficient condition for feasible packing.
Our language allows the description of arbitrary intercon-
nect within a complex block, and therefore, we must check
that the netlist block’s nets can be routed, both in the con-
text of the interconnect specified for the complex block, and
also in the context of other netlist blocks that are already
packed into the same complex block. Each netlist block
packed into a complex block may have connections to other
netlist blocks packed into the same block and we must en-
sure there is sufficient intra-block interconnect for such con-
nections. Likewise, a netlist block may have connections to
netlist blocks packed in other complex blocks. Such connec-
tions will be routed through the general FPGA interconnect
fabric. We must ensure that for such connections, there is
a path to a top-level complex block pin (a “way out” of the
complex block).

To assess routing feasibility, we first execute a basic check
regarding whether packing the candidate netlist block into
the current placement within the complex block causes the
pin demand to exceed the available pins of any parent blocks.
If this check fails, the candidate block is disqualified from
packing into the complex block. Otherwise, we move onto a
more rigorous routing assessment.

We model the complex block interconnect using a rout-
ing graph. A node in the routing graph represents a pin
on a physical block in the complex block hierarchy. Di-
rected edges between nodes correspond to paths through
complex block interconnect. For the set of nodes corre-



sponding to the top-level complex block output pins, we
create directed edges to the nodes corresponding to the top-
level complex block input pins. In so doing, we model the
ability for a primitive to connect to another primitive in the
same complex block through the general FPGA interconnect
fabric. We assume that the general FPGA interconnect is
rich enough to allow any output pin on a complex block to
connect to any other input pin on a complex block (as is
generally the case for commercial FPGAs). This assump-
tion eases the routing problem, as it means that external
connections to (from) a primitive can be routed from (to)
any top-level output (input) pin node of the complex block.

Having formulated the routing problem using a routing
graph and a set of required pin-to-pin connections to route,
we directly apply the PathFinder negotiated congestion rout-
ing algorithm [22] to determine if a feasible routing solution
can be found. The maze router used within our PathFinder
implementation is undirected (breadth-first), as packing does
not incorporate a notion of geographical proximity

4.4 Handling Memories

Memories present a unique challenge for packing. The
user’s design may contain memories that are wider and/or
deeper than the size of a physical memory block in the target
FPGA. In such cases, multiple memory blocks in the FPGA
are needed to implement the user’s memory. The AAPack
algorithm requires that memories in the input netlist be
specified as one-bit-wide memories of depth not exceeding
the depth of the largest physical memory in the FPGA?.
For example, if the user’s design contains a 256 x 8 mem-
ory, the packer’s input will contain eight 256 x 1 memories
that, ultimately, may be packed together in a single RAM
primitive. In other words, for a memory instance in the
user design, the total number of netlist blocks to represent
that memory is equal to the word width of that memory in-
stance. Memory primitives are thus handled differently than
all other types of primitives in the sense that more than one
memory netlist block in AAPack’s input netlist may pack
into a single memory primitive.

For memory blocks in the input netlist to be packed to-
gether into one physical memory primitive, two requirements
must be met: 1) the memory blocks in the netlist must have
the same address bus width, and 2) the signals on corre-
sponding bits of the address bus and control signals must be
identical.

4.5 Limitations of the Packing Algorithm

As is apparent from the discussion above, in our initial
release, we have focused on area-driven packing. An imple-
mentation of timing-driven packing requires a detailed de-
lay model for complex block interconnect and logic. Work
is underway on this front and timing-driven packing will be
included in a future tool release (the packer currently reads
in timing and capactitance information but does not act on
this information).

While the intent of AAPack is to provide good quality
results for any complex block architecture, it is difficult to
demonstrate this capability for the universe of architectures
that can be modeled in our language. In this study, we have
limited the types of complex blocks investigated to the fol-
lowing: 1) LUT-based complex blocks (including blocks with
fracturable LUTs), 2) fracturable multipliers, and 3) memo-
ries with reconfigurable aspect ratios. Such types of complex

!The upstream RTL synthesis tool, ODIN II [14], splits
memories to ensure that this requirement is met.
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blocks are pervasive in commercial FPGAs, yet they are un-
supported by any public-domain packer.

‘We have also placed an architectural constraint that differ-
ent complex block types cannot legally accomodate the same
netlist block. For example, we do not investigate architec-
tures where flip-flops can be packed into either a LUT-based
complex block or a multiplier-based complex block. This
constraint makes the choice of complex block type based on a
netlist block straightforward — there can be only one complex
block type that can accomodate a particular netlist block.
We acknowledge that commercial FPGA packing does not
have this limitation and we plan to remove this limitation
in the future.

S. EXPERIMENTS

In this section, we describe the methodology and exper-
iments to illustrate the new FPGA architecture language’s
ability to model and enable exploration of more complex
blocks than in the past. This is done first by modelling
and exploring soft logic blocks containing fracturable LUTs,
and then block RAMs of different sizes with different con-
figurable aspect ratios. We also evaluate the quality of the
new generic packing algorithm, against a lower bound com-
putation. We also compared our packing algorithm against
a previous algorithm on a legacy architecture [19]; however,
the results are omitted here due to a lack of space.

The complete CAD flow consists entirely of publicly-
accessible source tools. We use ODIN II [14] for front-end
HDL parsing, elaboration and partial synthesis. The ABC
framework [25] is used for technology-independent optimiza-
tion (using the resyn2 script) and technology mapping. Cir-
cuits are mapped to minimize area using WireMap [15], im-
plemented within ABC’s priority cuts-based mapper [24].
Technology mapping is executed with choices [23] — an ap-
proach for reducing structural bias whereby mapping is done
concurrently on multiple functionally equivalent circuit rep-
resentations and the best mapping result is selected. Large
circuit blocks (e.g. block RAMs and multipliers) are passed
through ABC as black box modules. Note that the descrip-
tion of the complex blocks themselves are not used by ABC
during logic synthesis but rather used afterwards during
packing. Packing is performed by the algorithm described
in Section 4. We use a modified version of VPR 5.0 [20]
for non-timing-driven placement and routing. The packer
is integrated into the VPR source code. The routing ar-
chitecture is held constant for all experiments, and consists
of single-driver length-4 wire segments, F, = 3, and Fe(in)
= 0.15 and F.(out)=0.125, as per the usual nomenclature.
Around the chip perhiphery, we assume there to be 7 I/O
tiles per complex block column/row.

We employ a new set of benchmark circuits, as described
in Table 1. This new suite of circuits contain block RAMs
and multipliers of various sizes and were collected from a
variety of sources. They include soft processors, video im-
age processors, and range in size from 256 to 24,587 6-input
LUTs. The columns in this table describe the name of the
circuit, followed by the physical resources demanded by each
circuit after technology mapping, including: the number of
flip-flops, the total number of 6-input (or less) LUTs, the
total number of memory bits, the number of logical memo-
ries, the maximum depth and width across those memories,
and the number of multipliers.



Table 1: New Benchmarks and statistics.

Circuit FFs LUTs Bits #Mem Max Max #Mult
Depth Width
boundtop 1620 2779 32768 1 1024 32
ch_intrinsics 233 402 256 1 32 8
mkDelayWorker 2440 5046 532916 9 1024 313
mkPktMerge 36 256 7344 3 16 153
mkSMAdapter 952 1706 4456 3 64 61
or1200 611 2369 2048 2 32 32
raygentop 1185 1938 5376 1 256 21 18
reed_solomon 1591 3096 30720 15 256 8
stereovisionQ 12628 12318 33554432 1 524288 64
stereovisionl 9558 10563 33554432 1 524288 64 152
stereovision2 13670 24587 33554432 1 524288 64 564

=
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Figure 8: Global Structure of Fracturable Complex
Block

5.1 Fracturable LUT Experiments

We demonstrate the utility of the new language and packer
by using them to model complex blocks that contain frac-
turable LUTs. A fracturable LUT can be broken into two
smaller LUTs that share input pins. Modern commercial
FPGAs incorporate fracturable LUTs for the purpose of im-
proving logic density, because many circuits synthesized by
tools contain small LUTs that can be paired together and
implemented in a single fracturable LUT.

Fig. 8 shows the global structure of a complex block based
on fracturable LUTSs, which looks similar to a classical clus-
ter, except that each BLE has two outputs. A fracturable
BLE contains a fracturable (dual-output) LUT and two by-
passable registers — one register for each LUT output. Fig. 9
shows a fracturable BLE with 7 inputs and bypassable regis-
ters. A fracturable LUT has two modes of operation: 1) as a
single K-input LUT, or 2) as two LUTs that together use at
most FI inputs. In the dual-LUT mode, parameter FI de-
termines the amount of pin sharing that is required between
the pair of LUTs that are implemented in the fracturable
LUT. Fig. 10 shows an example of a fracturable LUT. This
fracturable LUT can operate as either one 6-LUT (K = 6)
or two 5-LUTSs that share 3 inputs (FI = 7).

A key architectural question for fracturable LUT archi-
tectures concerns the selection of the value for F'I. Larger
values for F'I will permit more packing flexibility at the cost
of more pins, whereas lower values of F'I will reduce packing
flexibility. We explore this question for a base architecture
with K = 6 (the LUTs have 6-inputs when used in single-
output mode) and N = 8 (there are 8 fracturable BLEs per
complex block). We vary FI from 5 to 10, covering all pos-
sible pin sharing amounts from all to none. The meaning
of K = 6 and F'I = 5 requires elaboration: when the LUT
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Figure 9: A fracturable BLE with 7 inputs, 2 out-
puts, and optional output registers
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Fracturable LUT
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Figure 10: Two modes of a fracturable 6-LUT with
7 inputs.

is used in dual-output mode, the two LUTs are allowed to
use no more than 5 distinct input signals (as is the case
for Virtex 6 [3]). We also note that the number of inputs
to the full complex block itself, I, is set equal to F'I x N,
which implies that no pin sharing requirements are imposed
between BLEs within the complex block. This architectural
choice creates some architectural side-effects as described in
the results below.

We evaluate the effectiveness of various fracturable LUT
architectures by comparing the number of complex blocks
in packing solutions, and with a lower bound on the opti-
mal number of complex blocks needed. The lower bound is
computed as follows:

# CB lower bound = ceiling((
(# 5-LUTs or smaller + # unabsorbable FFs) / 16)
+ (# 6-LUTs / 8))

The “# 5-LUTSs or smaller” count is the number of LUTs
in the input to the packer that use 5 or fewer inputs. The
“# unabsorbable FFs” is the number of flip-flops that struc-
turally cannot be packed with a LUT (such as flip-flops fed
by memories). The # 6-LUTs is the number of LUTs that
use ezactly 6 inputs. The bound was developed through
a counting argument: There are 8 fracturable BLEs in a
complex block. Each fracturable BLE can implement one
6-LUT, so the number of 6-LUTSs in a design increases the
complex block count by 1/8. Each fracturable BLE can al-
ternatively implement (at most) two 5-LUTSs, so each LUT
in a benchmark circuit that uses 5 or fewer inputs increases
the complex block count by 1/16. Flip-flops that cannot
structurally be packed into a LUT prohibit a 5-LUT from
being used so they increase the complex block count by 1/16.
With this lower bound we can define the logic efficiency for
fracturable LUT-based complex blocks packing as follows:

efficiency = # CB Achieved / # CB lower bound

Fig. 11 illustrates the result of packing the circuits in
Table 1 into different fracturable LUT architectures with the
parameters cluster size N = 8, and LUT size K = 6, with
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FI varied from 5 to 10. The Y-axis in the figure gives the
logic efficiency as defined above. Each point is the geomet-
ric average across the 11 new benchmarks. We can observe
several things from this figure: First, for some values of F'I,
the packer achieves 100% efficiency against the lower bound,
giving us some confidence that it is working well. Second,
there is a significant leap in efficiency when the value of F'I
moves from 6 to 7, suggesting that there are many situa-
tions in which there are smaller LUTSs to pack in with larger
LUTs. It is clear, from this data, that a value of 7 or pos-
sibly 6 for the number of inputs (FI) is sufficient for these
circuits and architectures.

Fig. 12 illustrates the impact of varying FI on the number
of soft logic complex blocks and the minimum achievable
channel width after placement and routing. As expected,
the number of logic blocks declines with increasing FI, as
the block gains flexibility. The effect of FI on channel width
is more complex, in part due to an architectural artifact
described above: on the left hand side of the figure, channel
width increases with FI as there are more pins being routed
into the logic blocks. However, after FI = 7, the number of
pins saturates at the maximum (as shown in Fig. 11). A this
point, the fact that we continue to provide extra routing pins
on the outer complex block only serves to make the routing
problem easier, increasing flexibility and therefore lowering
channel width.

5.2 Memory Architectures

The purpose of the second experiment we ran is to il-
lustrate the new language and packer’s ability to describe
and explore different physical block memory architectures.
The complete target FPGA architecture contains traditional
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Figure 13: Memory utilization of architectures with
varying physical memory sizes.

N = 8/K = 6 non-fracturable LUT soft logic blocks, frac-
turable 36x36 hard multipliers, and configurable hard mem-
ory blocks. The memories have a configurable aspect ratio,
in which the width and depth can be traded-off, as is now
common in commercial FPGAs. These are represented as
different modes of the memory, as discussed above. The
memories can also be configured to be either single-port or
dual-port mode, with the maximum number of total data
pins across each mode kept constant. This means that when
the memory operates in dual-port mode, it can be at most
half as wide as the widest single-port memory.

We vary two parameters of the physical memories: first,
the number of bits contained in each hard memory. This
is also the maximum depth of the memory when it is con-
figured to have single-bit data width. Clearly fewer blocks
would be needed as the size of the memory grows larger,
but more of the bits will be wasted when those larger blocks
are used to implement smaller memories. At the same time,
smaller physical memories in the FPGA may require more
soft logic multiplexers to glue together smaller memories into
larger logical memories. The second parameter is the maxi-
mum data width of the configurable memory. For example, a
1024-bit memory with a maximum width of 8 can implement
all powers of 2 width up to the maximum: a 1024x1, 512x2,
256x4, or 128x8 memory. If this number is too small, the
memory architecture won’t be flexible enough to efficiently
use the memory bits. We again use the 11 benchmark cir-
cuits described in Table 1 in the flow described above.

Fig. 13 gives a plot of memory utilization (defined as the
number of used memory bits divided by the total number
bits in used memory blocks after packing) versus the size of
the physical memory block in bits, for six values of maxi-
mum width, ranging from 2 to 64. This figure shows the
expected trends, with utilization increasing as the physical
memory size decreases. Also, as the maximum width in-
creases, utilization gets better.

Fig. 14 gives the geometric mean of the number of soft
logic complex blocks used (across all 11 circuits) as the phys-
ical memory size is varied. Clearly, for the smaller physical
memories, the amount of soft logic needed to implement the
multiplexers begins to grow significantly for memories less
than 4K bits, at least for the logical memories demanded by
our benchmarks. Although we show the count for only the
case of max width = 64, these results are the same for all
values of max width.

Taken together, Fig. 13 and Fig. 14 suggests the need for
actually having at least two physical memory sizes - a small
one to achieve good utilization on small memories and a
larger one to prevent the inefficiencies of gluing together
many small blocks.
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6.

CONCLUSIONS

We have presented a new FPGA logic block architecture
description language that permits the modelling of far more
complex soft logic blocks and hard logic blocks than was
previously possible. The key features of the language are
its ability to describe hierarchy, modes and arbitrary inter-
connect between atomic elements in the block. We have
also presented a packing algorithm that begins to address
the complexities of the FPGAs that use the new language,
and shown it can be applied to explore block architectures
that weren’t previously explorable with public software -
fracturable LUT-based architectures, and memory architec-
tures. These are but a few of the blocks that can be studied
with the new capabilities. We have demonstrated these ca-
pabilities with a new infrastructure capable of synthesizing
circuits from Verilog, and with circuits that use memory
and multipliers that are significantly larger than the previ-
ous standard benchmarks.

There is much more research and development remaining
to flesh out the new capabilities: the packer must become
timing-driven, and be enhanced to deal with the heteroge-
nous case when one logical atom can be packed into two
or more different complex physical blocks. We also need to
explore more widely varying architectures and enhance the
speed of the packer and quality of the packer for these archi-
tectures. Ultimately, we will employ this infrastructure to
explore far more widely varying FPGA architectures from
the area, speed and power perspectives.

7.
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