
Towards PVT-Tolerant Glitch-Free Operation in FPGAs

Safeen Huda and Jason Anderson
Dept. of Electrical and Computer Engineering,

University of Toronto
Toronto, ON, Canada

Email: {safeen,janders}@ece.toronto.edu

ABSTRACT
Glitches are unnecessary transitions on logic signals that needlessly
consume dynamic power. Glitches arise from imbalances in the
combinational path delays to a signal, which may cause the signal
to toggle multiple times in a given clock cycle before settling to its
final value. In this paper, we propose a low-cost circuit structure
that is able to eliminate a majority of glitches. The structure, which
is incorporated into the output buffers of FPGA logic elements,
suppresses pulses on buffer outputs whose duration is shorter than a
configurable time window (set at the time of FPGA configuration).
Glitches are thereby eliminated “at the source” ensuring they do
not propagate into the high-capacitance FPGA interconnect, saving
power. An experimental study, using Altera commercial tools for
power analysis, demonstrates that the proposed technique reduces
70% of glitches, at a cost of 1% reduction in speed performance.

1. INTRODUCTION
In recent years, field-programmable gate arrays (FPGAs) have

become increasingly popular platforms for the implementation of
digital systems, as reflected in the increased market share FPGA
vendors have enjoyed in the semiconductor industry. However, it
has previously been shown that there is a large gap between FP-
GAs and the alternative medium for the implementation of digital
systems, ASICs [1]. While FPGAs (vs. ASICs) suffer from defi-
ciencies in area efficiency and performance, it is the large power
consumption – 7-14⇥ as claimed in a recent study [1] – that has
particularly inhibited the adoption of FPGAs in a wide variety of
current and emerging applications that require strict power bud-
gets. In this paper, we propose a technique to reduce a component
of FPGA dynamic power, namely, power dissipated due to glitches.

Underscoring the importance of reducing FPGA power, the ven-
dors have adopted a variety of techniques to tackle power con-
sumption at the device, circuit, and architectural levels, and through
CAD techniques as well [2, 3, 4]. One particular power optimiza-
tion, Altera’s Programmable Power Technology [5], makes use of
the fact that a transistor’s threshold voltage, VT can be altered by ap-
plication of a bias voltage at the base terminal. An increase in |VT |
(by applying a base-terminal (body) bias) results in reduced static
power of a device, at the expense of increased delay. However,
since designs implemented on FPGAs typically have a large num-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’16, February 21-23, 2016, Monterey, CA, USA
c� 2016 ACM. ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847272

ber of paths with considerable timing slack [6], this technique can
be used to reduce the static power of circuitry on such paths. Un-
fortunately, with the vendors transitioning to FinFETs [7, 8] which
do not permit independent body bias control, the future of this tech-
nique appears to be limited. Nevertheless, the notion of using ex-
cess timing slack to trade-off overall power with delay appears to
be a very effective means of power reduction – and is one which
we exploit in this work.

We take aim at glitch power in FPGAs, which has previously
been shown to account for a significant portion of the total dynamic
power dissipated, with one study finding that glitches account for
⇠26% of total core dynamic power [9]. We propose novel glitch
filtering circuitry which serves to completely eliminate glitches of
a given pulse-width. The circuitry is incorporated into the buffers
present at logic element outputs. Glitches are eliminated immedi-
ately after they are generated, and most importantly, before they can
propagate into the high-capacitance programmable interconnection
network, where they would otherwise result in significant energy
waste. We also propose an optimization algorithm to maximize the
glitch power reduction (by applying appropriate settings on each
glitch filter), subject to timing constraints. We present a full CAD
flow which we use to assess the merits of our power reduction tech-
nique. Experiments show that glitch power can be reduced by up to
⇠70% at an area cost of < 3%, with an average critical-path degra-
dation of ⇠1%. We provide an overview of glitch power in FPGAs
and previous techniques proposed to reduce glitches in Section 2.
Section 3 describes our proposed glitch filtering circuit. Section 4
provides an overview of our CAD flow and glitch optimization al-
gorithm. Section 5 describes our experimental study and presents
results. Finally, Section 6 concludes the paper.

2. BACKGROUND
2.1 Glitch Power Dissipation in FPGAs

Glitches commonly occur in digital circuits, as a consequence
of unequal arrival times at the inputs of combinational logic gates,
such as the scenario depicted in Figure 1, where input A transitions
after input B. The period of time between the two input transitions
shown in the figure can potentially give rise to spurious transitions
at the output – i.e. glitches – which have no functional value, and
are a waste of energy. Each transition consumes CV 2

DD joules of
energy, where C is the capacitance of the net being driven by OUT .

Glitches are especially troublesome in FPGAs. Whereas in ASICs
there exists the freedom to minimize the disparity between the de-
lays of different paths (and thereby ensure that the arrival times of
the input signals to a combinational circuit are well matched), there
is no such freedom with FPGAs. For example, consider the circuit
shown in Figure 2, which shows an inherent potential mismatch
between the delays of the two paths of combinational logic, named
path 1 and path 2, which converge at the XOR gate. The delay mis-
match is inherent because of the structure of this circuit: path 1 has

90

t
D

t
D

A

B

OUT

Figure 1: Example showing conditions which result in glitches
at the outputs of combinational gates.

Rest of logic circuit

D Q

D Q

Path 1

Path 2

Figure 2: Example showing inherent mismatch in arrival times
due to structure of circuit.

more logic gates than path 2. If this circuit were implemented in
an ASIC, given sufficient freedom in the ability to trade-off power
with area or speed, the delay of the single logic gate in path 2 could
be increased (for example, by reducing the sizing of its transis-
tors), or the delays of the gates along path 1 could be decreased
(by increasing the sizing of their transistors), with the objective to
equalize and align the arrival times at the inputs to the XOR gate. In
contrast, if this circuit were to be implemented in an FPGA, each of
the logic gates and inteconnects would be mapped to prefabricated
circuits, whose delays cannot be optimized as freely, thus making
the problem of equalizing arrival times difficult. Recent work has
shown that glitches account for, on average, 26% of total core dy-
namic power for the MCNC circuits, and up to 50% for specific
circuits [9].

2.2 Previous Work on Glitch Power Reduc-
tion

Several prior works have addressed glitch power in FPGAs [9,
10, 11, 12]. One recent approach [9] proposed to make use of the
prevalent don’t-care states in logic circuits to minimize glitches.
The authors proposed to set the don’t-care states to specific val-
ues such that when the input vector to a logic circuit momentarily
assumes an intermediate (don’t-care) state (while it transitions be-
tween two states), the output does not make a spurious transition.
This technique is a light-weight approach to glitch reduction, as
it has zero performance or area overheads, and offers reasonable
glitch power reduction: an average of 13.7% over a set of bench-
mark circuits.

More direct approaches to glitch reduction were proposed in [12]
and [13]. While these two works offered different approaches to
glitch reduction, the overall strategy was similar to that depicted in
Figure 3. The figure shows two signals, A and B, that are inputs
to an XOR gate, and again, B arrives earlier than A. In theory,
glitches can be eliminated if we equalize the delay along the input
paths to ensure all signal transitions arrive at the same time at the
different inputs to the logic circuit. This is shown in the figure,
where a delay, Dt, is added to B, and so now the difference in the
arrival times of the two signals to the XOR gate is tD �Dt, which is
also the width of the resulting glitch at OUT . Clearly, if the added
delay can be calibrated such that it is equal to tD, then the two signal
transitions arrive at exactly the same time to the inputs of the XOR
gate, and the glitch is eliminated.

∆t

Δt →t
D

Δt →t
D

A

B

OUT

Figure 3: Glitch reduction through input delay balancing.

K

∆t

∆t

∆t

Figure 4: Proposed glitch-free BLE from [12].

In [13], path delay equalization was proposed by inserting addi-
tional routing conductors along paths with early arrival times – the
additional delay of each routing conductor slows the path down.
While this approach requires no additional changes to the FPGA ar-
chitecture or circuitry, and does not result in an area penalty (since
routing conductors are often underutilized to begin with), the power
reductions arising from the elimination of glitches are offset by the
increased dynamic power due to the use of additional routing re-
sources. In contrast, [12] proposes a modified logic element (LE)
with programmable delay lines at the input pins, shown Figure 4.
The programmable delay lines are used to adjust the arrival delays
at each input pin so that they may be equalized and glitch power
eliminated. While this approach does incur an area overhead as-
sociated with programmable delay lines on each input of a LUT
(which may not be insignificant for large LUT sizes), the authors
claim the ability to completely eliminate glitch power with this ap-
proach.

2.3 The Limitations of Path-Delay Balancing
One fundamental problem with the above “path delay equaliza-

tion” approaches is that in general, circuit delays are a function
of temperature and in some process corners, are also a function of
logic state, because of unequal rise and fall delays. The reason
for these effects is that modern commercial FPGAs are comprised
of both CMOS gates and NMOS pass transistors. Multiplexers,
which form the core of both programmable logic elements and rout-
ing switches, are effectively large trees of NMOS pass-transistors,
along with CMOS level-shifters and buffers. These two different
styles of circuitry respond differently to changes in operating pa-
rameters, such as temperature. Recall that the rise/fall delay of a
CMOS circuit is approximately inversely proportional to both µ,
the mobility parameter of the gate’s transistors, and (VDD �VT)
(this is also true for the fall delay of an NMOS pass-gate). While
(VDD �VT) is an increasing function of temperature (by virtue of
VT decreasing with temperature), µ generally decreases with tem-
perature, and so generally, the combined effect results in an over-
all increased delay with increasing temperature [14]. On the other

91

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

*!!

"!!!

+ , - . / 0

!
"
#
$
%
&'
(
)
*

!"#$%&'()

!1234562.6789

)&1234562.6789

!120877208772.6789

)&1208772.6789

(a) Temperature dependence and rise/fall delay imbal-
ance of LUT delays for each LUT input.

!

"

#!

#"

$!

$"

%!

! " #! #" $! $" %! %" &!

!
"
#
$
%
&
'
(
(
$
)*
$
(
'
+
),
-
.
'
(
'
/
0
$
)'
1
)2
3
!
4
)5
6
)7
8
)'
9
$
:
'
;
$
)

<
$
(
'
+
=

!"#$%&'(()*$('+),-.'('/0$)'1)2!3)45)67)'8$9':$);$('+<

(b) Correlation of routing path rise/fall delay imbalance
at 0�C and 85�C.

Figure 5: Temperature consequences on FPGA logic and rout-
ing delays.

hand, the rise delay of an NMOS pass-gate, assuming an ideal tran-
sistor model, is approximately:

tdelay =
CLVDD

µNCOX (W/L)(VDD/2�VT)(VDD �VT)
(1)

which exhibits an inverse-quadratic relationship between delay and
(VDD �VT). This equation is derived from a differential equation
for the voltage at the source terminal of an NMOS transistor when
its drain and gate terminals are held at VDD. The increased sen-
sitivity to (VDD �VT) in this case typically results in an inverse
temperature-dependence characteristic – i.e. delay decreases with
temperature. This characteristic of NMOS pass-gates leads to two
observable characteristics: (1) paths which are dominated by pass-
transistors have inverse temperature dependence on delay, while
paths which are dominated by CMOS gates will more likely ex-
perience delay degradation with increased temperature and (2) the
inherent asymmetry in rise and fall behaviour of pass-transistors
means that the rise and fall delays can only be balanced at a sin-
gle PVT corner. Under other conditions, the rise and fall delays of
pass-transistors are unbalanced. LUT and routing delay data from
a design placed and routed in a Stratix III FPGA illustrate these
trends, as shown in Figure 5.

Figure 5(a) shows the rise and fall delays for each of the six in-
puts to a Stratix III LUT at 0�C and 85�C. Note that inputs A,
B and C, which connect to pass-transistors at deep levels of the
LUT’s pass-transistor tree, exhibit an inverse temperature depen-
dency (likely owing to the fact that these paths are pass-transistor
dominated), while inputs D, E, and F, which connect to pass-transistors
closer to the output of the LUT exhibit slight delay degradation
with increased temperature. Note also the large rise and fall de-
lay imbalance (⇠45% of the rise delay) for inputs A and B. Fig-
ure 5(b) highlights the unpredictable and temperature-dependent

rise/fall delay imbalance of routing circuitry. The plot shows the
relationship between the rise/fall delay imbalance, expressed as a
percentage of the average delay, of each routing path in a sample
circuit at 0�C and 85�C. In the figure, it is apparent that most
routing paths exhibit a delay imbalance greater than 5%, with some
approaching 40% at 0�C. Qualitatively, the plot also shows the
unpredictability of the delay-imbalance over temperature, since a
poor correlation between delay-imbalances at the two temperature
points is apparent.

These characteristics of circuit structures in FPGAs means that
the relative arrival times of signals at the inputs to a gate is a strong
function of both temperature and logic-state (due to rise/fall delay
imbalance). This implies that if delay equalization is used to re-
move glitches at a particular temperature and for a particular state,
the glitches may reappear or new glitches may form at a different
temperature/logic state. Circuitry to compensate for these varia-
tions would be prohibitive from an area point of view, since aside
from the required additional circuitry needed to sense different tem-
perature/logic states, these variations are a function of the specific
mapping, placement, and routing of a design, thus making the vari-
ations highly unpredictable.

As opposed to prior path-delay-balancing techniques, we pro-
pose a glitch reduction technique with low area overhead which has
the ability to eliminate all glitches whose pulse-widths are bounded
across different process, voltage, and temperature conditions. The
following sections detail the proposed circuitry and associated CAD
support.

3. PROPOSED GLITCH FILTERING CIR-
CUITRY

3.1 Circuit Overview
At the core of our proposed glitch power reduction technique is

the circuit shown in Figure 6, which we call a glitch filter, as it
has the ability to suppress glitches. This circuit bears some resem-
blance to the circuit shown in [15], although there are several subtle
differences.

The proposed circuitry is effectively a buffer with a first stage
inverter, shown as B1 in the figure, followed by a second stage in-
verter, formed by transistors M5 and M6. Transistors M1 through
M4 form gating circuitry which can disconnect the input stage from
the output stage, and this enables the glitch filtering functionality
of the proposed circuit, as will be described. The circuit also com-
prises a programmable inverting delay line, shown as D1 in the
figure, whose delay determines the glitch pulse-widths which are
filtered out by the circuit. When the glitch-filtering mechanism of
this circuit is not needed (i.e. for timing critical paths), the multi-
plexer shown in the figure allows the input transition to bypass the
delay-line and directly drive transistors M2 and M3. The SRAM
configuration cells shown connected to the delay line, will be dis-
cussed below.

To understand the operation of this circuit, we first begin with a
description of the dynamic behaviour of the circuit in response to
a single transition at the input, and then describe the response to a
glitch (i.e. multiple consecutive transitions). Immediately follow-
ing a transition at the input to this circuit – say from logic-“0” to
logic-“1” – the output of B1 transitions from logic-“1” to logic-“0”,
but because of the delay tD of D1, the output of the delay line re-
mains at logic-“0”. The combination of signal values (the input to
the circuit at logic-“1” while the outputs of D1 and B1 at logic-“0”)
means that M1 will turn on, thus discharging the gate of M5 and
turning it off. Since M3 is also off during this time, the gate of
M6 will be briefly floating, but because it was previously driven to
VDD (since the input was previously at logic-“0”), M6 will remain
turned off. As such, the output remains at logic-“0” (despite both
M5 and M6 being momentarily off). After a delay tD, the transition

92

Figure 6: Proposed glitch-filter circuit.

at the input of the circuit is seen at the output of D1, and this turns
M3 on. Since the source of M3 (which is driven by B1) is at this
moment logic-“0”, the gate of M6 is discharged, which turns M6 on
and results in the output transitioning from logic-“0” to logic-“1”.

This analysis of the response of this circuit to a transition at the
input highlights an important property: immediately following a
transition at the input, the output of the buffer is prevented from
following suit and propagating the transition at the input. Instead,
the buffer is forced to wait a delay of tD before the output of B1 is
connected to the gates of the transistors forming the output stage
of the circuit. If however, during this delay tD, the input transitions
back to the previous value (i.e. a glitch has occurred), then the data
value during the course of the spurious transition is not “seen” by
the output stage when it is reconnected to B1. As such, the spurious
transition does not propagate to the output, and the glitch input to
the circuit is prevented from propagating and dissipating power in
other areas of the chip. While this discussion highlights how lone
pulses may be filtered out, consider what happens when a train of
pulses, x(t) appears at the input to the glitch filter: assuming the
glitch filter contains an ideal delay line, it follows that the delay-
line output is equal to x(t � tD), where tD is the delay of the delay
line. If for example x(t) is a periodic function with a period equal to
tD, then by definition, the output of the delay line will in fact just be
x(t), and as such, all glitches will be allowed to pass through from
the input to the output. In a more general sense, if the temporal
separation, tS, between glitch i and i+1 is less than tD, glitch i+1
will only be partially filtered. If tS+ tW = tD, where tW is the pulse-
width of a particular glitch, then the glitch will pass from the input
to the output of the circuit without any attenuation or pulse-width
reduction. Thus, in an analogy to passive electronic filters, while
the proposed glitch filter has a low-pass characteristic, in that all
glitches with pulse-widths less than tD may be filtered, it also has
a resonance characteristic, where the glitches can pass through the
filter without any attenuation for certain values of tS. It can be
shown that a mechanism to effectively flush the delay line of its
contents following the arrival of a restoring transition is required
to rectify this problem, and this can be achieved by ensuring that
the delay of the delay-line is asymmetric and dependent on the state
of its output: if the output of the glitch filter is at logic-“1”, then
the delay line is to have a slow output-fall delay and fast output-
rise delay, while if the output of the glitch filter is at logic-“0”, the
delay line is to have a slow output-rise delay and fast output-fall
delay. This allows a restoring transition to quickly "flush" the delay
line, to ensure previous transitions at the input do not continue to
stay in flight in the delay line – this helps to significantly mitigate

(a) Conventional delay cell.

3

2

DD

PB4 5

NB1 6

(b) Current-starved delay cell.

Figure 7: Delay-cell implementation options.

the resonant effects. It can be shown that a glitch of pulse-width
tW seconds will be filtered without any resonant effects if tW <
tD � tD f (where tD f is the time required for a restoring transition to
propagate through the delay line) with this new topology.

3.2 Delay Line Design
A number of options exist for the implementation of the pro-

grammable delay line D1. As will be discussed in Section 5, from
our experiments we determined that each stage of our delay line
had to provide, in the worst case, up to 600 ps of delay (some
benchmarks required significantly less delay per stage as will be
discussed in Section 5). Given that the FO4 delay in 65nm CMOS
(for standard-VT) is just over 20 ps, achieving such a large delay
per stage in an area and power-efficient manner can be challenging.
Since the delay of a CMOS gate is approximately a linear func-
tion of the product of the gate’s drive resistance and its output load
capacitance, increasing either of these will result in an increase in
delay. However, increasing delay solely through increasing a gate’s
output capacitance would result in an unacceptably large power
overhead, as such we considered two different approaches to effec-
tively increase the drive resistance of the delay cells comprising the
delay line, so that our delay targets could be achieved with minimal
overhead.

The two alternative delay-cells are depicted in Figure 7. The
first delay-cell shown in Figure 7(a), which we call a conventional
delay cell is effectively a conventional inverter comprising of tran-
sistors with increased channel-lengths; a combination of a stack of
series transistors (needed when the maximum modeled length by
the foundry is less than the length necessary to meet a target delay)

93

and transistors with increased length leads to degraded drive resis-
tance, allowing us to meet target delay. Note that while this tech-
nique also increases the input capacitance of the cell (which is the
dominant load on the preceding cell in the delay-line), and thus will
increase power, the power-overhead is still smaller than a delay-cell
which achieves the same delay strictly through increased load ca-
pacitance. The second delay-cell shown in Figure 7(b), which is
a current-starved delay cell, achieves increased delay by restrict-
ing the maximum pull-up/down current, by applying a bias voltage
which is less (greater) than VDD (GND) on the gates of transistor
M6 (M5). This technique allows us to degrade drive-resistance to
meet our delay targets by finding suitable voltages VPB and VNB.

These two techniques have different costs and trade-offs. For
the conventional delay cell, an increase to its constituent transitors’
channel lengths results in increased area, and as mentioned previ-
ously, increased input-capacitance and thus power. In contrast, for
the current-starved delay cell, as long as suitable bias voltages VBP
and VBN can be generated and distributed throughout the chip in
a reliable and cost efficient-manner, the transistors comprising the
delay cell can be set to minimum length and width, thus minimiz-
ing area and power overheads. However, given than VPB > GND
and VNB < VDD, transistors M5 and M6 have degraded overdrive
voltage, thereby making them more sensitive to VT variation, al-
though in this case sensitivity to variation and area overhead can
be traded-off since increasing the size of M5 and M6, will reduce
their sV T . In addition, there may be considerable area/power costs
of distributing the voltages VPB and VNB. In this work, however, we
assume that both the costs of the bias generation and the current-
starved delay-cell’s sensitivity to variation are insignificant, as this
serves as a lower-bound estimate on the area and power overheads
of the proposed glitch filtering circuitry. In contrast, the conven-
tional delay cell allows us to form an upper-bound estimate on the
are and power overheads of the glitch filtering circuit. Rigorous
PVT analysis of the current-starved delay cell, as well as design
and cost/benefit analysis of the bias generation circuitry is left for
future work. Finally, observe that both of the delay cells shown in
Figure 7 contain fast pull-up/down paths, which are activated by
input A for both cells; these paths enable the cells to have asym-
metric, state-dependent delay, which serves to eliminate resonant
effects as discussed previously.

3.3 PVT Sensitivity
Given the nature of the way in which glitches are suppressed

using this technique, we may draw some conclusions about the
ability of this circuit to suppress glitches in the face of variation
in PVT. Section 2.3 highlighted the principal shortcoming in pre-
venting glitches using delay balancing: it requires precise knowl-
edge and control of path delays. As discussed previously, varying
PVT conditions makes this difficult to guarantee in modern pro-
cesses, particularly in FPGAs because of the unique combination
of various circuit structures which they employ. However, the ex-
act bounds of path delays, and thus the bounds on the pulse-widths
of resulting glitches, can be determined, and to some degree guar-
anteed.

The proposed glitch reduction technique in this work relies solely
on the expected bounds of the glitches to be suppressed. If it is
known in a circuit at a particular node which dissipates a large
amount of power, that the vast majority of glitches at that node
have pulse widths which are less than some bound Wmax over all
PVT corners, then simply by setting the delay of the delay line of
the glitch filter at that node to a value � Wmax ensures that those
glitches will be eliminated for all possible operating conditions of
the circuit. Moreover, we can always ensure that the delay line de-
lay is greater than Wmax over all process corners; given that the de-
lay line delay can be expressed as tD +dD, where tD is the nominal
delay of the delay line and dD is some random deviation from the
nominal delay due to PVT variation, we can guarantee that the de-

Figure 8: Proposed BLE architecture.

lay line delay is greater than Wmax by setting tD �Wmax + |d(max)
D |,

where d(max)
D is the worst case variation of the delay line’s delay

over all PVT corners (which can be modelled and bounded). There
may be a resulting timing penalty in this case, but for energy critical
applications, this technique provides an ability to guarantee glitch
suppression. While the inherent robustness to PVT makes this ap-
proach even more appealing, in this paper, we perform glitch sup-
pression using statistics gathered from a single corner. Multi-corner
glitch reduction and optimization using this technique is therefore
left for future work. In addition to improved robustness compared
to delay-balancing glitch reduction approaches, the proposed cir-
cuit also offers reduced area overhead, since only a single glitch
filter is required at the output of the BLE, whereas a BLE with in-
put delay balancing will need a delay-line and associated circuitry
at each input to the BLE, as shown previously in Figure 4.

3.4 Proposed Architecture
Figure 8 shows a proposed Basic Logic Element (BLE) incor-

porating the proposed glitch filtering circuitry. We assume a con-
ventional BLE will have an output buffer consisting of the inverter
and transistors shown in the figure; this buffer exists to restore the
voltage at the output of the bypass multiplexer to full CMOS lev-
els, and is necessary to drive the BLE’s output load. We propose
to augment this buffer with glitch filtering circuitry consisting of
transistors M1-M4, delay-line D1, SRAM configuration cells, and
additional auxiliary circuits as shown in the figure. The SRAM
cells are used to configure the delay of the delay line. Recall that
if the delay line is set to a delay tD, then all glitches input to the
glitch filter of a pulse width less than tD will be filtered out. Thus,
given information about the glitch statistics at the input to the glitch
filter (which may be profiled through timing simulations of a given
design mapped to the FPGA), the delay line can be configured ac-
cordingly to maximize glitch suppression and save power. How-
ever, the ability to filter glitches comes at a cost, namely an added
delay of tD. The configuration of the glitch filter delays is thus non-
trivial. While it is desirable to filter out all possible glitches in the
circuit, it may not be desirable from the performance angle. More-
over, the configuration of each glitch filter must take into account
effects of an added delay on downstream nodes, since the additional
delay introduced by a glitch filter may in fact result in the inception
of new glitches downstream. If these downstream glitches propa-
gate through very capacitive interconnect network, there may be a
resulting net increase in glitch power. The additional delay intro-
duced by a particular glitch filter setting may also leave less room
for downstream nodes to filter out glitches due to reduced slack. As
such, the optimization of glitch filter settings is a combinatorial op-
timization problem, wherein global glitch power must be reduced

94

Figure 9: CAD/experimental flow for proposed glitch reduction
technique.

under the presence of timing constraints. The CAD flow and glitch
optimization approach are described in next section.

The circuits shown above were designed and simulated using
commercial 65nm STMicroelectronics models to verify function-
ality, and extract power and delay overheads. All simulations were
conducted using Cadence’s Spectre simulator, with typical transis-
tor models, 1V VDD, and at a temperature of 28�C. We assume a
transition time of 150 ps at the input to the buffer, and an output
load of 20 f F (which is to represent the load of multiplexers and
wire capacitance at the output of the BLE, similar to the loading
considered in [16]). The delay penalty of the cell when the glitch-
filtering mechanism is not used (and thus the input signal is allowed
to propagate directly through the bypass multiplexer) is approxi-
mately 30 ps; this delay represents the signal propagation from the
buffer’s input through the glitch filter’s bypass multiplexor to the
gate of transistors M2 and M3 in Figure 8, and the signal propaga-
tion from the output of the first stage of the buffer through transistor
M3 (M2) to the gate of transistor M4 (M1). These two signal propa-
gations have some overlap, thus the total added delay is not simply
their sum. For the baseline output buffer (without glitch filtering
circuitry), under the aforementioned PVT conditions, we observed
a ⇠90 ps delay in our simulations, which grows to ⇠120 ps with
the addition of the glitch filtering circuitry.

For a glitch filter implemented with current-starved delay cells,
the dynamic power overhead is << 1%, while for a conventional
delay cell based delay-line, the glitch filter’s dynamic power over-
head would increase to ⇠1.5% (compared to estimated power dis-
sipated in routing, which is typically the dominating component of
total dynamic power consumption). The static power overhead is
also negligible, since aside from transistors M1�M6, and the tran-
sistors comprising the bypass multiplexer and input buffer B1, all
transistors are HV T (high-threshold voltage transistors).

4. GLITCH FILTER SETTING OPTIMIZA-
TION

4.1 CAD Flow
A proposed CAD flow supporting glitch filter-based power opti-

mization is presented in Figure 9. While packing, placement, and
routing remain the same as in a conventional FPGA CAD flow [17],
we propose to add the following steps post-routing: glitch power
analysis, glitch filter setting optimization, and final power analysis.
Other than specific implementation details, overall the additional
steps in the CAD flow are agnostic to the original CAD flow being
augmented, and as such, we chose to use Altera’s Quartus II CAD
software as the base CAD flow to extend.

Details for each of the CAD flow steps introduced are as fol-
lows: the first step post-routing is glitch power analysis, where

cumulative distribution functions relating glitch pulse-width and
glitch power are generated. Total glitch power is calculated on a
node-by-node basis by comparing power reports generated from a
functional simulation and a timing simulation. Since a functional
simulation contains no glitches, differences in power between two
different simulations represent glitch power. The exact distribution
of pulse-widths are extracted from the timing simulation, and the
relative frequency of glitches of a certain pulse width is used to esti-
mate the dissipated power arising from glitches of that pulse width.
These statistics, in addition to the netlist and its timing information
(i.e. the timing graph), are used by the glitch filter setting optimiza-
tion step to find the best settings for each glitch filter used in the
circuit. The details of this step will be discussed in the following
section. Finally, a timing simulation is performed on the model of
the circuit augmented with glitch filters (configured to the settings
determined in the previous step), and the results of this simulation
are used by power analysis to determine the power savings through
glitch filtering.

4.2 Glitch Power Optimization
It is worthwhile to consider some of the challenges faced in op-

timization of glitch filter settings in a circuit. As mentioned above,
reduction of all glitches at a node with pulse-width less than tW
results in an increase in delay at that node of tW . This trade-off
must be considered carefully. To begin with, in the optimization of
overall power reduction, we ought to allocate more of the timing
slack available on a particular path to nodes on that path with the
greatest power reduction opportunity (that is, nodes with the high-
est glitch power). As such, timing data must be used in conjunction
with the power reduction opportunities for nodes along a particular
path. In addition, we must be careful in considering the conse-
quences a particular glitch filter setting may have on downstream
nodes. When a particular node’s glitch filter is set to a setting of
tD, all downstream nodes will experience a delay push-out of tD
seconds at one (or more, if there are re-convergent paths) of their
inputs. This results in the profile of relative arrival times (that is, the
difference in time between the signal arrival times at each input) of
the inputs to each downstream node being altered, which may result
in new glitches (and increased power consumption) arising down-
stream. Even if the power dissipation of downstream nodes does
not change, the glitch statistics of downstream nodes will become
“stale”, and therefore less useful for subsequent decision making.

In the absence of a model that relates changes in glitch-filter set-
tings to altered glitch power characteristics on downstream nodes
of the circuit, the glitch power analysis step (outlined above) would
have to be executed frequently to ensure: (1) overall glitch power
has not increased following changes to the glitch filter settings for
a set of nodes and (2) the glitch power and pulse-width statistics
for all affected nodes are updated so that they are always relevant
and usable for glitch power optimization. This particular approach
seemed to be intractable from a run-time point of view, and as such
an alternative approach was pursued. Specifically, we opted to en-
sure that regardless the glitch filter settings applied to the various
nodes in the circuit, the relative arrival times at all consequential
nodes stayed unchanged. By consequential, we mean a node whose
worst-case increased glitch power due to an altering of its relative
fanin arrival times is significantly large. This means that nodes of
relatively low output capacitance, whose worst-case glitch power is
small in comparison to the potential glitch power savings elsewhere
in the circuit, would be allowed to have altered input arrival times.
This approach therefore ensures that the two main concerns previ-
ously discussed are avoided. By ensuring the relative arrival times
stay unchanged (for consequential nodes), we are assured that no
new (consequential) glitches are created at a given node whenever
we attempt to filter glitches at other points (specifically, upstream
nodes) of the circuit, while this also ensures that the glitch data at
each consequential node is never stale. Whenever a consequential

95

node’s glitch filter settings are changed to some delay tD, we en-
sure that for all nodes downstream, the arrival times at each fanin
path is similarly increased by tD (by applying the necessary delay
settings on upstream glitch filters). Admittedly, this is a somewhat
conservative approach, and leads to compromised power reduction
and development of a strategy to more optimally manage the effects
of unequal delay push-out among the fanin paths of consequential
nodes is left for future work.

4.2.1 Problem Statement
The optimization of glitch power as described in the preceding

sections can in general be formulated as a constrained non-linear
optimization problem. We are given as input a timing graph for a
circuit, G(V,E) where each vertex, v 2 V , represents an input or
output port of a block in the design (i.e. LUT, DFF, RAM, I/O),
while each edge e = (u,v), represents a signal path between ports
(i.e. routing or a block’s internal timing arc). For each node v in the
circuit, we are given a glitch power density function, GPv(t) (this
is obtained empirically during the glitch power analysis step in the
CAD flow described in Section 4.1), which describes the amount of
power dissipated at node v by glitches of width t. The total glitch
power at node v is therefore:

P(max)
v =

Z •

0
GPv(t)dt. (2)

At each node v, we have a decision variable dv, which is the
specific glitch filter setting at node v. As described previously, the
proposed glitch filtering circuitry is able to eliminate all glitches
of pulse width less than dv from appearing at its output when the
glitch filter’s delay line is set to a delay of dv. This means that given
a glitch filter setting of dv, the total glitch power at node v would
be reduced to:

Pv =
Z •

dv

GPv(t)dt. (3)

Therefore, total glitch power in the entire design (which we aim
to minimize) is:

Ptotal = Â
v2V

Z •

dv

GPv(t)dt. (4)

At each node v, we wish to keep track of the worst-case arrival
time, arrv, and this expressed as:

arrv = max
(u,v)2E

arru +du + tuv, (5)

where tuv is the delay from node u to v in the graph, and du is
the delay push-out caused by the glitch filter setting at u (i.e. it is
u’s glitch filter delay setting). Let CO be the set of circuit outputs
– i.e. primary outputs, flip flop inputs, etc. Given a constrained
critical path of T , we have the following constraint:

8v 2CO : arrv  T (6)

As described in the previous section, we also wish to ensure that
the delay push-out on each fanin edge of each node v are within
some tolerance level of one another. However, this should be a
soft constraint, as we only wish to avoid the case of unequal input
delay push-out on nodes which are consequential. Similar to arrival
time, we can keep track of the minimum and maximum input delay
push-out on each node v, d p(min)

v and d p(max)
v respectively, with the

following equations:

d p(min)
v = min

(u,v)2E
d p(min)

u +du (7)

d p(max)
v = max

(u,v)2E
d p(max)

u +du (8)

We wish to ensure that d p(max)
v and d p(min)

v are within some ac-
ceptable threshold of one another, i.e.:

d p(max)
v �d p(min)

v  Ktol (9)

Where Ktol is the maximum allowed mismatch between input
push-out (which can for example be obtained empirically and set
to a constant value). Equation 9 represents a hard constraint, and
so we may allow this constraint to be relaxed with the following
modification:

d p(max)
v �d p(min)

v �Keq · ev  Ktol (10)

In contrast to Equation 9, we introduce a large constant Keq
(which can be set to some value which provably will always be
greater than d p(max)

v � d p(min)v, such as the critical path delay),
and a slack variable ev, which is binary, and allows the constraint in
Equation 9 to be violated for certain nodes. In order to objectively
trade-off glitch power reduction opportunities available in the cir-
cuit with the requirement that nodes have equal delay push-out on
input edges, we introduce a penalty term to Equation 4 to form our
objective function:

Pob j = Â
v2V

Z •

dv

GPv(t)dt+ Â
v2V

Pv ·Kp · ev, (11)

where Kp is an empirically determined penalty factor. The second
term in Equation 11 effectively indicates that whenever a node’s in-
put fanin delay push-outs are allowed to be unequal to one another,
we must pay a penalty in power consumption pessimistically set
to Kp ·Pv (i.e. all glitch power reduction at node v is now lost, and
some additional power penalty may be incurred if Kp > 1). This en-
sures that we are careful in balancing the input delay push-out on
consequential nodes, while allowing us to violate this condition on
inconsequential nodes if this would allow for greater glitch power
reduction in other parts of the circuit. Equations 5 - 8 and Equations
10-11 together define a constrained optimization problem.

4.2.2 MILP Formulation
While the optimization of Equation 11 may at first appear to be

intractable given that GPv(t) are arbitrary non-linear functions, we
can simplify the equation by observing that each glitch filter’s delay
line has finite resolution and a limit on its maximum delay. In other
words, dv = div · res, where res is the finite resolution of the delay
line, and div is an integer decision variable (it is effectively the
delay line setting for node v’s glitch filter) in the range from 0 
div  2B � 1, where B is the number of configuration bits of the
delay line. This means that given the finite number of values for dv,
we also have a finite number of possible values for the glitch power
dissipated at node v. This observation allows us to recast Equation
11 as a linear equation coupled with linear constraints. First, let
gpv[k] =

R k·res
(k�1)·res GPv(t)dt where 1  k  2B � 1. We can then

rewrite Equation 11 as:

Pob j = Â
v2V

2B�1

Â
k=1

xv[k] ·gpv[k]+ Â
v2V

Z •

tDM

GPv(t)dt+ Â
v2V

Pv ·Kp · ev

(12)
Where xv[k] are binary decision variables for node v, and indi-

cate whether or not the glitch power corresponding to gpv[k] can be
eliminated (i.e. if xv[k] = 0, gpv[k] can be eliminated), and tDM =
(2B �1) · res corresponds to the maximum delay of the delay line.
The second term in this Equation describes glitch power that cannot
be reduced due to the finite maximum delay of the glitch filter delay
line. As such, this term is a constant, and therefore Equation 12 is
a linear function of xv[k] and ev. We may relate this objective func-

96

tion with the underlying decision variables div with the following
linear constraints at each node v:

8k2{1,...,2B�1} : res ·div + k · res · xv[k]� k · res (13)

This constraint indicates that if div < j, xv[k] = 1 for k � j; in
other words, the delay line setting is unable to filter glitches of
pulse-width greater than or equal to res · j, and so the glitch power
corresponding to these glitches cannot be eliminated. On the other
hand, the constraint is satisfied if xv[k] = 0 for k  div; thus the
glitch power corresponding to glitches of width  res · div can be
eliminated.

The min and max constraints in Equations 5, 7, and 8 also repre-
sent non-linearities in our problem formulation, however these too
may be recast into a linear form through the following constraints:

arrv � 8(u,v)2E arru +du + tuv (14)

d p(min)
v  8(u,v)2E d p(min)

u +du (15)

d p(max)
v � 8(u,v)2E d p(max)

u +du (16)

It can be shown that the objective function Equation 12 is min-
imized whenever arrv and d p(max)

v are minimized, and whenever
d p(min)

v is maximized. Thus, for example, any optimal solution to
the objective function will guarantee that arrv will be suitably min-
imal, while ensuring that the constraints in Equation 14 are met. As
such, for all practical purposes, arrv = max(u,v)2E(arru +du + tuv).

Similar claims can also be made for d p(max)
v and d p(min)

v to ensure
that they are effectively the max and min of their respective argu-
ments.

Together, the objective function in Equation 12 and the con-
straints in Equation 6, 10 and Equations 13-16 define a mixed-
integer linear program (MILP), with binary variables xv[k] and ev,
integer variables dv, and continuous variables arrv, d p(min)

v , and
d p(max)

v . This MILP can be solved using standard mathematical op-
timization software. We used the commercial Gurobi Optimizer
tool, version 6.0.5 [18].

5. EXPERIMENTAL STUDY
To assess the power reductions attainable using our proposed

technique, we conducted a set of experiments on the 20 largest
MCNC benchmark circuits, as well as the 6 circuits from the UMass
RCG HDL Benchmark Collection [19]. Since the glitch analysis
step in our CAD flow requires functional and timing simulations,
we chose the MCNC benchmark circuits as it is straightforward to
generate testbenches for these designs that result in sufficient tog-
gling on their internal nodes without requiring an intimate knowl-
edge and understanding of how each of these benchmarks work.
The UMass RCG HDL benchmarks were chosen because ready-
made test benches are provided with the benchmark set. We also
conducted an architecture study to investigate different trade-offs
in area overhead and power reduction corresponding to the param-
eters of the glitch filter circuit. We considered the impact on power
reduction from quantization effects in the reduction in resolution
and finite maximum delay of the delay lines. Indeed, a glitch filter
whose delay line is infinitely precise and has infinite range would
offer the greatest flexibility, and thus the greatest opportunity to re-
duce power. On the other hand, a delay line with large range and
fine granularity would also require many stages and SRAM cells,
thus presenting an area overhead. Our experiments shed light on an
appropriate choice for these parameters.

Our methodology is summarized in the CAD flow shown in Fig-
ure 9. A circuit is first compiled using Altera’s Quartus II software,

targetting 65nm Stratix-III devices, to generate a delay-annotated
netlist. This delay annotated netlist is then input to ModelSim for
timing simulation, and the appropriate input vectors are used for
simulation (10000 random vectors are generated for the MCNC
circuits, while the UMass RCG HDL benchmark circuits are pro-
vided with test benches containing appropriate input vectors). A
functional simulation is also performed using the same set of vec-
tors to allow us to characterize the glitch statistics of the circuit.
These glitch statistics, along with timing information (also output
by Quartus II in Standard Delay Format (SDF)) are then input to
the glitch setting optimization framework described in Section 4.

To simulate the glitch statistics after applying our glitch filter set-
tings, we created a behavioural model of our programmable glitch
filter circuit – the exact glitch filter settings to be used for this cir-
cuit are supplied as parameters. We augment the outputs of combi-
national logic cells in the original Quartus II-generated netlist with
instances of our glitch filter circuit, where each instance would have
its glitch filtering parameters set by the previous stage of our CAD
flow. This modified netlist is then run with the same set of random
vectors used previously, and the output of this timing simulation
is used to gauge power using Altera’s PowerPlay power estima-
tion tool (via a ModelSim-generated .vcd file for switching activity
data).

5.1 Maximum Power Reduction Assuming Ideal
Delay Lines

The first set of experiments we conducted were to assess the
maximum possible power reductions assuming an ideal delay line
(i.e. infinite precision and infinite maximum range). The experi-
ments provide an upper bound on the achievable power reduction,
prior to our optimization of the range and precision of the delay-
line. Table 1 summarizes the power reduction and critical path
degradation results for the case where a glitch-filter uses an ideal
delay line (which has no limits on range or resolution, and does
not have any area/power overhead), and for two specific delay-line
implementations which will be discussed in the next section. The
table lists glitch power reduction along with the resulting reduction
to logic and routing dynamic power for each circuit in the bench-
mark set. It should be noted that the amount of dynamic power
dissipated in logic (i.e. BLEs and FFs) and routing versus that dis-
sipated in other parts of an FPGA varies from one design to an-
other. For instance, in the UMass benchmark set, the turboSram
benchmark’s core dynamic power is dominated by the power dissi-
pated in memory blocks, while logic and routing power contributes
a small percentage to overall power dissipation. In contrast in other
benchmarks, such as the jpeg, power dissipated in logic and routing
power is dominant. The percentage of total dynamic power result-
ing from glitches is not shown in the table for the sake of brevity,
but is similar to previously obtained statistics on the same bench-
mark set [9]. Note that the virtually no glitches were observed
while simulating the ava benchmark from the UMass benchmark
set, as such the table entries corresponding to glitch reduction for
this benchmark are left empty.

Turning our attention now to the first section of the table, we
see that with an ideal delay line, glitch reductions ranging from 45-
97%, with an average reduction of 75% may be obtained. Logic
and routing dynamic power savings range from -1% (for the ava
benchmark, the 1% power increase corresponds to the glitch filter’s
power overheads, since no glitch power could be reduced) to 33%.
Average logic and routing dynamic power reduction is ⇠ 14.7%
over the set of benchmark circuits.

For the other two delay-lines shown in the table, we pessimisti-
cally assume that these would be composed of the conventional
delay cells shown in Figure 7(a). In our results, we include the
simulated power overhead of a delay-line which comprises these
delay-cells, in addition to the increased routing power resulting
from the area-overheads of the glitch filtering circuitry. As will be

97

!"#

!$#

!!#

!%#

&'#

&"#

&$#

' ('' "'')'' $'' *'' !'' &'' %''

!
"
#
$
%
&
'
(
)
*
+
,
'
-
+
.
/
%
$
#
)
0

!"#$%&'()"&*"+,#-.(,)&/0+1

!"#$%&$'()*+$),%(

-$%&$'()*+$),%(

-".$%&$'()*+$),%(

-"/$%&$'()*+$),%(

Figure 10: Glitch reductions for delay lines with varying reso-
lution and maximum delay.

described in the subsequent section, for a given delay-line resolu-
tion and maximum delay, we may estimate the resulting area over-
head. Given an area overhead of x, we estimate that the tile dimen-
sions will increase by a factor of

p
1+ x, and thus routing power

will (pessimistically) increase by this factor as well. Given the
power-breakdown data which can be obtained from PowerPlay’s
power reports, we are able to estimate the resulting impact to total
logic and routing power.

Table 1 also lists the critical path degradation for each circuit.
Recall in Section 3 we discussed a delay penalty of 30 ps for the
glitch-filter circuit even when the its glitch filtering mechanism is
unused (e.g. for timing critical signals). This nominal delay penalty
results in a slight impact to the critical path delay for the circuits
considered in this work. Observe that the critical path degradation
ranges from 0.2% to 2.8%, with an average critical path degradation
of 0.9%. Note that the different delay-lines in the table have equal
impacts to critical path, since the critical path is unaffected by the
range or resolution of the delay-lines.

5.2 Power Reduction with Real Delay Lines
After establishing the maximum possible power savings for each

design under ideal circumstances, we experimented with various
resolutions and number of bits (i.e. maximum delay line delay) in a
bid to identify the delay-line parameters to realize maximum power
savings/minimum area overhead. The results of these experiments
are shown in Figure 10.

The figure shows 16 different combinations of delay-line param-
eters, as resolution is varied from 150 ps to 750 ps, while the max-
imum delay of the delay line is varied from 1.6 ns to 2.8 ns. As
expected, the results show monotonic decreases in power consump-
tion as the resolution is increased; reduced resolution is associated
with reduced flexibility to eliminate glitches. At the same time, we
observe that for the same resolution, the ability to eliminate glitches
increases monotonically as the maximum delay of the delay line
(and thus, number of configuration bits) increases.

However, the plot reveals an interesting trend: while the delay-
line in this study with the finest resolution (150ps) and longest de-
lay (2.8 ns) allowed us to achieve a power reduction of just over
72%, approaching the maximum theoretical glitch reduction of 75%,
the other delay lines with coarser resolution and reduced maximum
delay were still able to achieve glitch reductions within 5-10% of
the theoretical maximum. This compels us to further investigate
the area-power trade-offs of these various delay-lines.

We begin by establishing an estimate for the area overhead of
the proposed glitch-filter circuit. The number of minimum-width
transistors introduced as overhead by this circuit (including config-
uration memory) for a delay-line constructed with current-starved
delay cells is approximately:

ACS = 8+12n+6S (17)

!"#

!$#

!%#

!&#

!!#

!'#

!(#

!)#

'*#

'+#

'"#

'$#

*# +# "# $# %# &# !# '# (#

!
"
#
$
%
&
'
(
)
*
+
,
'
-
+
.
/
%
$
#
)
0

!"#$%&'#"(#$)

+,+%-#.$/%#..

01'+%-#.$/%#..

Figure 11: Max glitch reduction vs. area overhead.
Where n is the number of bits, and S is the number of stages in

the delay line. For a conventional delay cell based delay-line, the
area overhead is approximately:

AConv = 8+12n+10S (18)

We further estimate that a suitably-sized 6-input LUT has an area
of 1110 minimum-width transistors, by using transistor sizing data
obtained through area-delay optimization of a conventional island-
style FPGA architecture [16] (i.e. similar to Stratix III). Also, as-
suming that the area of an FPGA tile is broken down as follows:
50% routing, 30% LUTs and 20% for miscellaneous circuitry [20],
we can form an estimate for the area overhead of the proposed
glitch-filters for varying delay-line resolutions and maximum delay-
line delays. For the 16 delay-line parameter combinations explored,
we may then obtain the greatest power reduction for a given area
overhead. The maximum power-reductions, for the two different
delay-lines and over the range of area-overheads considered in this
work are shown in Figure 11.

Interestingly, the plot shows that for an area overhead of less
than 3%, a glitch reduction of ⇠ 70% is obtained (which is within
5% of the theoretical maximum), even with the larger conventional
delay cell based delay line. This corresponds to a glitch filter with
a resolution of 350 ps and maximum delay of 2.4 ns (this requires
3 bits for configuration of the delay-line). The total core dynamic
power dissipation in this case is reduced by 12.8%. Another can-
didate delay-line, with resolution of 550 ps and maximum delay
of 1.6 ns (requiring 2 bits for configuration of the delay-line) of-
fers slightly reduced glitch reduction of just over 63%, but this is
at an area overhead of under 2%, again for both delay-line types.
However, the actual reduction in core dynamic power is 12% in
this case, thus making this combination of parameters particularly
attractive given its low-cost and a net 2.7% decrease in dynamic
power savings compared to the theoretical maximum! The detailed
power reductions for these two candidate delay-lines are provided
in Table 1.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a glitch reduction circuit and the associ-

ated CAD flow/optimization framework needed to maximize glitch
power reduction in an FPGA architecture comprising the proposed
circuitry. In contrast to prior works, the proposed circuitry offers
the ability to reduce glitch power over a wide range of PVT corners
because of the nature in which it suppresses glitches, while incur-
ring minimal area/delay overheads. Variations of the proposed cir-
cuitry allow glitch power to be reduced from 60-71%, which corre-
sponds to a reduction in core dynamic power of 12-13%, at an area
cost of 1.5-3%.

As indicated previously, the fanin delay push-out balancing scheme
used in this work is a conservative approach to glitch power op-
timization, and indeed compromises to some degree our ability
to remove glitches. Future work will investigate alternative ap-

98

Table 1: Detailed glitch and dynamic power reductions for glitch filters with three delay line variants.

Circuit
Critical
Path
[ns]

Ideal Delay Line Delay Line Candidate #1:
2.4 ns total delay, 3 bits of resolution

Delay Line Candidate #2:
1.6 ns total delay, 2 bits of resolution

Glitch
Reduction
[%]

Logic and
Routing
Dynamic
Power Savings
[%]

Critical Path
Degradation
[%]

Glitch
Reduction
[%]

Logic and
Routing
Dynamic
Power Savings
[%]

Critical Path
Degradation
[%]

Glitch
Reduction
[%]

Logic and
Routing
Dynamic
Power Savings
[%]

Critical Path
Degradation
[%]

alu4 22 70 15 1.3 68 13 1.3 65 12 1.3
apex2 26 81 28 1.1 79 27 1.1 76 25 1.1
apex4 24 73 19 1.3 71 17 1.3 70 17 1.3
bigkey 18 63 18 0.5 56 14 0.5 50 13 0.5
clma 22 65 11 2.2 60 9 2.2 50 7 2.2
des 28 63 19 0.5 59 15 0.5 59 15 0.5
diffeq 18 93 5 0.2 92 4 0.2 92 4 0.2
dsip 17 85 18 0.4 74 15 0.4 53 10 0.4
elliptic 17 74 20 0.2 70 18 0.2 60 15 0.2
ex1010 28 82 33 1 79 30 1 78 29 1
ex5p 26 45 19 1.2 42 17 1.2 42 17 1.2
frisc 17 63 7 0.3 60 6 0.3 55 5 0.3
misex3 24 83 20 1 65 12 1 60 12 1
pdc 31 62 19 1 62 17 1 45 12 1
s298 21 59 5 2.8 57 3 2.8 50 3 2.8
s38417 17 96 25 0.7 96 23 0.7 95 23 0.7
s38584.1 24 84 4 1 80 3 1 58 2 1
seq 23 83 21 1 82 20 1 79 19 1
spla 28 71 24 1.1 70 21 1.1 66 20 1.1
tseng 18 75 7 0.2 55 5 0.2 53 4 0.2
ava 4.3 - -1 1 - -1 1 - -1 1
fdct 7.2 97 17 0.7 94 16 0.7 94 16 0.7
fir_filter 12.6 76 6 0.2 72 5 0.2 72 5 0.2
jpeg 7.8 93 20 0.5 85 18 0.5 85 18 0.5
RS_decoder 7.7 73 3 1.2 71 3 1.2 66 3 1.2
turboSram 4.2 75 3 0.8 65 2 0.8 65 2 0.8

mean 75 14.7 0.9 70 12.8 0.9 63 12 0.9

proaches and/or computationally efficient methods to detect situ-
ations in which fanin delay balancing can be neglected, even for
consequential nodes. Development of compact and accurate mod-
els which allow us to predict glitch statistics given the relative ar-
rival times and switching statistics at input signals would serve this
purpose well, and so this would be a promising avenue for future
research. Finally, since the proposed circuitry allows for glitches
to be suppressed under varying PVT, future work will explore the
problem of multi-corner glitch power optimization, thus yielding a
truly comprehensive glitch power reduction technique.

7. REFERENCES
[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs

and ASICs,” IEEE Trans. On CAD, vol. 26, no. 2, pp.
203–215, Feb. 2007.

[2] Virtex-5 FPGA Data Sheet, Xilinx, Inc., 2012.
[3] S. Gupta et al., “CAD techniques for power optimization in

Virtex-5 FPGAs,” in IEEE CICC, 2007, pp. 85–88.
[4] Introducing Innovations at 28 nm to Move Beyond Moore’s

Law, Altera Corp., 2012.
[5] Stratix III Programmable Power White Paper, Altera Corp.,

2007.
[6] J. Anderson and F. Najm, “Low-power programmable FPGA

routing circuitry,” IEEE Trans. VLSI, vol. 17, no. 8, pp. 1048
–1060, 2009.

[7] The Breakthrough Advantage for FPGAs with Tri-Gate
Technology, Altera Corp., 2013.

[8] Xilinx UltraScale: The Next-Generation Architecture for
Your Next-Generation Architecture, Xilinx Corp., 2014.

[9] W. Shum and J. Anderson, “FPGA glitch power analysis and
reduction,” in ACM/IEEE ISLPED, Aug 2011, pp. 27–32.

[10] S. Wilton et al., “The impact of pipelining on energy per
operation in field-programmable gate arrays,” in

International Conference on Field Programmable Logic and
Applications, Antwerp, Belgium, 2004, pp. 719–728.

[11] T. S. Czajkowski and S. D. Brown, “Using negative edge
triggered FFs to reduce glitching power in FPGA circuits,” in
ACM/EDAC/IEEE DAC, 2007, pp. 324–329.

[12] J. Lamoureux et al., “Glitchless: Dynamic power
minimization in FPGAs through edge alignment and glitch
filtering,” IEEE Trans. VLSI, vol. 16, no. 11, pp. 1521–1534,
Nov 2008.

[13] Q. Dinh et al., “A routing approach to reduce glitches in low
power FPGAs,” IEEE TCAD, vol. 29, no. 2, pp. 235–240,
Feb 2010.

[14] W. Lee et al., “Dynamic thermal management for
FinFET-based circuits exploiting the temperature effect
inversion phenomenon,” in ACM/IEEE ISLPED, 2014, pp.
105–110.

[15] K. Chakravarthy, “Programmable glitch filter,” Dec. 6 2001,
US Patent App. 09/864,946. [Online]. Available:
http://www.google.ca/patents/US20010048341

[16] C. Chiasson and V. Betz, “COFFE: Fully-automated
transistor sizing for FPGAs,” in IEEE FPT, Dec 2013, pp.
34–41.

[17] J. Rose et al., “The VTR project: Architecture and CAD for
FPGAs from verilog to routing,” in ACM/SIGDA FPGA,
2012, pp. 77–86.

[18] I. Gurobi Optimization, “Gurobi optimizer reference
manual,” 2015. [Online]. Available: http://www.gurobi.com

[19] “UMass RCG HDL benchmark collection,”
http://www.ecs.umass.edu/ece/tessier/rcg/benchmarks/.

[20] S. Chin and J. Anderson, “A case for hardened multiplexers
in FPGAs,” in IEEE FPT, Dec 2013, pp. 42–49.

99

