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It is generally accepted that a custom hardware implementation of a set of computations will provide supe-
rior speed and energy-efficiency relative to a software implementation. However, the cost and difficulty of
hardware design is often prohibitive, and consequently, a software approach is used for most applications.
In this paper, we introduce a new high-level synthesis tool called LegUp that allows software techniques to
be used for hardware design. LegUp accepts a standard C program as input and automatically compiles
the program to a hybrid architecture containing an FPGA-based MIPS soft processor and custom hardware
accelerators that communicate through a standard bus interface. In the hybrid processor/accelerator archi-
tecture, program segments that are unsuitable for hardware implementation can execute in software on the
processor. LegUp can synthesize most of the C language to hardware, including fixed-sized multi-dimensional
arrays, structs, global variables and pointer arithmetic. Results show that the tool produces hardware so-
lutions of comparable quality to a commercial high-level synthesis tool. We also give results demonstrating
the ability of the tool to explore the hardware/software co-design space by varying the amount of a program
that runs in software vs. hardware. LegUp, along with a set of benchmark C programs, is open source and
freely downloadable, providing a powerful platform that can be leveraged for new research on a wide range

of high-level synthesis topics.

1. INTRODUCTION

Two approaches are possible for implementing computations: software (running on a stan-
dard processor) or hardware (custom circuits). A hardware implementation can provide
a significant improvement in speed and energy-efficiency versus a software implementa-
tion (e.g. [Cong and Zou 2009; Luu et al. 2009]). However, hardware design requires writing
complex RTL code, which is error prone and can be notoriously difficult to debug. Software
design, on the other hand, is comparatively straightforward, and mature debugging and
analysis tools are freely accessible. Despite the apparent energy and performance benefits,
hardware design is simply too difficult and costly for most applications, and a software
approach is preferred.

In this paper, we propose LegUp – an open source high-level synthesis (HLS) framework
we have developed that aims to provide the performance and energy benefits of hardware,
while retaining the ease-of-use associated with software. LegUp automatically compiles a
standard C program to target a hybrid FPGA-based software/hardware system-on-chip,
where some program segments execute on an FPGA-based 32-bit MIPS soft processor and
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other program segments are automatically synthesized into FPGA circuits – hardware ac-
celerators – that communicate and work in tandem with the soft processor. Since the first
FPGAs appeared in the mid-1980s, access to the technology has been restricted to those
with hardware design skills. However, according to labor statistics, software engineers out-
number hardware engineers by more than 10X in the U.S. [United States Bureau of Labor
Statistics 2010]. An overarching goal of LegUp is to broaden the FPGA user base to include
software engineers, thereby expanding the scope of FPGA applications and growing the size
of the programmable hardware market – a goal we believe will keenly interest commercial
FPGA vendors and the embedded systems community.

The decision to include a soft processor in the target system is based on the notion that
not all C program code is appropriate for hardware implementation. Inherently sequential
computations are well-suited for software (e.g. traversing a linked list); whereas, other com-
putations are ideally suited for hardware (e.g. addition of integer arrays). Incorporating
a processor into the target platform also offers the advantage of increased high-level lan-
guage coverage. Program segments that use restricted C language constructs can execute
on the processor (e.g. calls to malloc/free). We note that most prior work on high-level
hardware synthesis has focused on pure hardware implementations of C programs, not a
hybrid software/hardware system.

LegUp is written in modular C++ to permit easy experimentation with new HLS algo-
rithms. We leverage the state-of-the-art LLVM (low-level virtual machine) compiler frame-
work for high-level language parsing and its standard compiler optimizations [LLVM 2010],
and we implement hardware synthesis as new back-end compiler passes within LLVM. The
LegUp distribution includes a set of benchmark C programs [Hara et al. 2009] that the user
can compile to pure software, pure hardware, or a combined hardware/software system. For
the hardware portions, LegUp produces RTL code that can be synthesized using standard
commercial synthesis tools. In this paper, we present an experimental study demonstrat-
ing that LegUp produces hardware implementations of comparable quality to a commercial
tool [Y Explorations (XYI) 2010]. We also give results illustrating LegUp’s ability to effec-
tively explore the design space between a pure software implementation and pure hardware
implementation of a given program.

While the promise of high-level hardware synthesis has been touted for decades (consider
that Synopsys introduced its Behavioral Compiler tool in 1996), the technology has yet to
be embraced broadly by the industry. We believe its widespread adoption has been impeded
by a number of factors, including a lack of comprehensive C/C++ language support, and, in
some cases, the use of non-standard languages (e.g., [Huang et al. 2008]). While a number
of research groups have developed high-level hardware synthesis tools, few have gained
sustained traction in the research community and the tools have been kept proprietary in
many cases. The open source nature of LegUp is a key differentiator relative to prior work.

Prior high-quality open source EDA projects have had a tremendous impact in spurring
new research advances. As an example, the VPR system has enabled countless studies on
FPGA architecture, packing, placement, and routing [Betz and Rose 1997]. Similarly, the
ABC logic synthesis system has reinvigorated low-level logic synthesis research [Mishchenko
et al. 2006]. High-level hardware synthesis and application-specific processor design can
likewise benefit from the availability of a robust publicly-accessible framework such as LegUp
– a framework used and contributed to by researchers around the world. In fact, a number
of research groups around the world have already downloaded our tool.

A preliminary version of a portion of this work appears in [Canis et al. 2011]. In this
extended journal version, we elaborate on all aspects of the proposed framework, including
background on the intermediate representation (IR) within the LLVM compiler, and how
programs represented in the IR are synthesized to hardware circuits. We describe the pro-
cessor/accelerator interconnection approach in further detail, as well as provide additional
information on the benchmark suite and debugging capabilities. Circuit-by-circuit experi-
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Table I. Release status of recent non-commercial HLS tools.

Open source Binary only No source or binary

Trident xPilot WarpProcessor
ROCCC GAUT LiquidMetal

CHiMPS

mental results for speed, area and power are also included (whereas, only average data was
included in the 4-page conference version).

The remainder of this paper is organized as follows: Section 2 presents related work.
Section 3 introduces the target hardware architecture and outlines the high-level design
flow. The details of the high-level synthesis tool and software/hardware partitioning are
described in Section 4. An experimental evaluation appears in Section 5. Conclusions and
suggestions for future work are given in Section 6.

2. RELATED WORK

Automatic compilation of a high-level language program to silicon has been a decades-long
quest in the EDA field, with early seminal work done in the 1980s. We highlight several
recent efforts, with emphasis on tools that target FPGAs.

Several HLS tools have been developed for targeting specific applications. GAUT is a
high-level synthesis tool that is designed for DSP applications [Coussy et al. 2010]. GAUT
synthesizes a C program into an architecture with a processing unit, a memory unit, and
a communication unit, and requires that the user supply specific constraints, such as the
pipeline initiation interval. ROCCC is a tool that synthesizes C programs into a feed-forward
pipelined architecture with no control flow – an architecture particularly well-suited to
streaming applications [Villarreal et al. 2010].

General (application-agnostic) tools have also been proposed in recent years. CHiMPS
is a tool developed by Xilinx and the University of Washington that synthesizes programs
into a many cache architecture, taking advantage of the abundant small block RAMs avail-
able throughout the FPGA fabric [Putnam et al. 2008]. LiquidMetal is a compiler being
developed at IBM Research comprising a HLS compiler and a new language, LIME, that
incorporates hardware-specific constructs, such as bitwidth specification on integers [Huang
et al. 2008]. xPilot is a tool that was developed at UCLA [Cong et al. 2006] and used success-
fully for a number of HLS studies (e.g., [Chen and Cong 2004]). Trident is a tool developed
at Los Alamos National Labs, with a focus on supporting floating point operations [Tripp
et al. 2007].

Among prior academic work, the Warp Processor proposed by Vahid, Stitt and Lysecky
bears the most similarity to our framework [Vahid et al. 2008]. In a Warp Processor, soft-
ware running on a processor is profiled during its execution. The profiling results guide the
selection of program segments to be synthesized to hardware. Such segments are disassem-
bled from the software binary to a higher-level representation, which is then synthesized to
hardware [Stitt and Vahid 2007]. The software binary running on the processor is altered
automatically to leverage the generated hardware. We take a somewhat similar approach,
with key differences being that we compile hardware from the high-level language source
code (not from a disassembled binary) and our tool is open source.

With regard to commercial tools, there has been considerable activity in recent years,
both in start-ups and major EDA vendors. Current offerings include AutoPilot from Au-
toESL [AutoESL ] (a commercial version of xPilot, recently acquired by Xilinx, Inc.), Cat-
apult C from Mentor Graphics [Mentor Graphics 2010], C2R from CebaTech [CebaTech
2010], eXCite from Y Explorations [Y Explorations (XYI) 2010], CoDeveloper from Im-
pulse Accelerated Technologies [Impulse 2010], Cynthesizer from Forte [Forte 2010], and
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Fig. 1. Design flow with LegUp.

C-to-Silicon from Cadence [Cadence 2010]. The source code for all of the commercial HLS
tools is kept proprietary. Moreover, in our experience, attaining a binary executable for
evaluation has not been possible for most tools.

Also on the commercial front is Altera’s C2H tool [Altera, Corp. 2009]. C2H allows a
user to partition a C program’s functions into a hardware set and a software set, where
the software-designated functions execute on a Nios II soft processor, and the hardware-
designated functions are synthesized into custom hardware accelerators that connect to the
Nios II through an Avalon interface (Altera’s on-chip interconnect standard). The C2H
target system architecture closely resembles that targeted by our tool.

Table I shows the release status of each non-commercial tool surveyed above, indicating
whether each is: 1) open source, 2) binary only (i.e., only the binary is publicly available),
or 3) no source or binary available. Tools in category #2 cannot be modified by the research
community to explore new HLS algorithms or new processor/accelerator design styles. Re-
sults produced by tools in category #3 cannot be independently replicated. In the open
source category, the Trident tool was based on an early version of LLVM, however, it is
has not been actively maintained for several years, and it targeted pure hardware and not
a hybrid hardware/processor architecture. ROCCC is actively being worked on, however,
it targets a feed-forward pipeline hardware architecture model. To our knowledge, there is
currently no open source HLS tool that compiles a standard C program to a hybrid pro-
cessor/accelerator system architecture, where the synthesized hardware follows a general
datapath/state machine model.

3. LEGUP OVERVIEW

In this section, we provide a high-level overview of the LegUp design flow and its target
architecture. Algorithmic and implementation details follow in Section 4.

3.1. Design Flow

The LegUp design flow comprises first compiling and running a program on a standard
processor, profiling its execution, selecting program segments to target to hardware, and
then re-compiling the program to a hybrid hardware/software system. Figure 1 illustrates
the detailed flow. Referring to the labels in the figure, at step À, the user compiles a stan-
dard C program to a binary executable using the LLVM compiler. At Á, the executable
is run on an FPGA-based MIPS processor. We evaluated several publicly-available MIPS
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processor implementations and selected the Tiger MIPS processor from the University of
Cambridge [University of Cambridge 2010], based on its support for the full MIPS instruc-
tion set, established tool flow, and well-documented modular Verilog. Migrating the system
to other MIPS implementations or other processor architectures is straightforward.

The MIPS processor has been augmented with extra circuitry to profile its own execution.
Using its profiling ability, the processor is able to identify sections of program code that
would benefit from hardware implementation, improving program throughput and power.
Specifically, the profiling results drive the selection of program code segments to be re-
targeted to custom hardware from the C source. Profiling a program’s execution in the
processor itself provides the highest possible accuracy, as the executing code does not need
to be altered to be profiled and can run at full speed. Presently, we profile program run-time
at the function level. In the future we plan to profile energy consumption, cache events and
other run-time behavior.

Having chosen program segments to target to custom hardware, at step Â LegUp is
invoked to compile these segments to synthesizeable Verilog RTL. Presently, LegUp HLS
operates at the function level: entire functions are synthesized to hardware from the C
source. Moreover, if a hardware function calls other functions, such called functions are also
synthesized to hardware. In other words, we do not allow a hardware-accelerated function
to call a software function. Future releases of LegUp may permit this, and may also perform
hardware synthesis at finer granularities (e.g., at the loop level). The RTL produced by
LegUp is synthesized to an FPGA implementation using standard commercial tools at
step Ã. As illustrated in the figure, LegUp’s hardware synthesis and software compilation
are part of the same LLVM-based compiler framework.

In step Ä, the C source is modified such that the functions implemented as hardware
accelerators are replaced by wrapper functions that call the accelerators (instead of doing
computations in software). This new modified source is compiled to a MIPS binary exe-
cutable. Finally, in step Å the hybrid processor/accelerator system executes on the FPGA.

Our long-term vision is to fully automate the flow in Figure 1, thereby creating a self-
accelerating adaptive processor in which profiling, hardware synthesis and acceleration hap-
pen transparently without user awareness. In the first release of our tool, however, the user
must manually examine the profiling results and place the names of the functions to be
accelerated in a file that is read by LegUp.

3.2. Target System Architecture

Figure 2 elaborates on the target system architecture. The processor connects to one or
more custom hardware accelerators through a standard on-chip interface. As our initial
hardware platform is the Altera DE2 Development and Education board (containing a 90 nm
Cyclone II FPGA) [DE2 2010], we use the Altera Avalon interface for processor/accelerator
communication [Altera, Corp. 2010]. Synthesizable RTL code for the Avalon interface is
generated automatically using Altera’s SOPC builder tool. The Cyclone II/DE2 was chosen
because of its widespread availability.

As shown in Figure 2, a shared memory architecture is used, with the processor and
accelerators sharing an on-FPGA data cache and off-chip main memory. The on-chip cache
memory is implemented using block RAMs within the FPGA fabric (M4K blocks on Cyclone
II). Access to memory is handled by a memory controller. Such an architecture allows
processor/accelerator communication across the Avalon interface or through memory. The
shared single cache obviates the need to implement cache coherency or automatic cache
line invalidation. Although not shown in the figure, the MIPS soft processor also has an
instruction cache.

The architecture depicted in Figure 2 represents the target system most natural for an ini-
tial release of the tool. We expect the shared memory to become a bottleneck if many proces-
sors and accelerators are included in the system. The architecture of processor/accelerator
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Fig. 2. Target system architecture.

systems is an important direction for future research – research enabled by a framework
such as LegUp – with key questions being the investigation of the best on-chip connectivity
and memory architecture. Moreover, in our initial release, the processor and accelerators
share a single clock signal. accelerators. Multi-clock domain processor/accelerator systems-
on-chip is another avenue to explore in the future. Supporting other bus protocols (besides
Avalon) is also possible in a future release.

4. DESIGN AND IMPLEMENTATION

4.1. High-Level Hardware Synthesis

High-level synthesis has traditionally been divided into three steps [Coussy et al. 2009]:
allocation, scheduling and binding. Allocation determines the amount of hardware avail-
able for use (e.g., the number of adder functional units), and also manages other hard-
ware constraints (e.g., speed, area, and power). Scheduling assigns each operation in the
program being synthesized to a particular clock cycle (state) and generates a finite state
machine. Binding saves area by sharing functional units between operations, and sharing
registers/memories between variables. We now describe our initial implementation choices
for the HLS steps, beginning with a discussion of the compiler infrastructure.

4.1.1. Low-Level Virtual Machine (LLVM). LegUp leverages the low-level virtual machine
(LLVM) compiler framework – the same framework used by Apple for iPhone/iPad de-
velopment. At the core of LLVM is an intermediate representation (IR), which is essentially
machine-independent assembly language. C code is translated into LLVM’s IR then ana-
lyzed and modified by a series of compiler optimization passes. Current results show that
LLVM produces code of comparable quality to gcc for x86-based processor architectures.

Consider an 8-tap finite impulse response (FIR) filter whose output, y[n], is a weighted
sum of the current input sample, x[n] and seven previous input samples. The C code for
calculating the FIR response is given in Figure 3. The unoptimized LLVM IR corresponding
to this C code is given in Figure 4. We highlight a few key elements of the IR here. The LLVM
IR is in single static assignment (SSA) form, which prohibits variable re-use, guaranteeing
a 1-to-1 correspondence between an instruction and its destination register. Register names
in the IR are prefixed by %. Types are explicit in the IR. For example, i32 specifies a 32-bit
integer type and i32* specifies a pointer to a 32-bit integer.
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y[n] = 0;
for(i = 0; i < 8; i++) {

y[n] += coeff[i] * x[n - i];
}

Fig. 3. C code for FIR filter.

In the example IR for the FIR filter in Figure 4, line 1 marks the beginning of a basic
block called entry. A basic block is a contiguous set of instructions with a single entry (at
its beginning) and exit point (at its end). Lines 2 and 3 initialize y[n] to 0. Line 4 is an
unconditional branch to a basic block called bb1 that begins on line 5. phi instructions
are needed to handle control flow-dependent variables in SSA form. For example, the phi
instruction on line 6 assigns loop index register %i to 0 if the previous basic block was
entry ; otherwise, %i is assigned to register %i.new, which contains the incremented %i from
the previous loop iteration. Line 7 initializes a pointer to the coefficient array. Lines 8 and
9 initialize a pointer to the sample array x. Lines 10-12 load the sum y[n], sample and
coefficient into registers. Lines 13 and 14 perform the multiply-accumulate. The result is
stored in line 15. Line 16 increments the loop index %i. Lines 17 and 18 compare %i with
loop limit (8) and branch accordingly.

Observe that LLVM instructions are simple enough to directly correspond to hardware
operations (e.g., a load from memory, or an arithmetic computation). Our HLS tool operates
directly with the LLVM IR, scheduling the instructions into specific clock cycles (described
below).

Scheduling operations in hardware requires knowing data dependencies between opera-
tions. Fortunately, the SSA form of the LLVM IR makes this easy. For example, the multiply
instruction (mul) on line 13 of Figure 4 depends on the results of two load instructions on
lines 11 and 12. Memory data dependencies are more problematic to discern; however, LLVM
includes alias analysis – a compiler technique for determining which memory locations a
pointer can reference. In Figure 4, the store on line 15 has a write-after-read dependency
with the load on line 10, but has no memory dependencies with the loads on lines 12 and
13. Alias analysis can determine that these instructions are independent and can therefore
be performed in parallel.

Transformations and optimizations in the LLVM framework are structured as a series
of compiler passes. Passes include optimizations such as dead code elimination, analysis
passes such as alias analysis, and back-end passes that produce assembly for a particular
target machine (e.g. MIPS or ARM). The infrastructure is flexible, allowing passes to be
reordered, substituted with alternatives, and disabled. LegUp HLS algorithms have been
implemented as LLVM passes that fit neatly into the existing framework. Implementing the
HLS steps as distinct passes also allows easy experimentation with different HLS algorithms.
For example, one could modify LegUp to “plug in” a new scheduling algorithm and study
its impact on quality of result.

4.1.2. Allocation. The purpose allocation is to set-up the constraints for the subsequent
synthesis steps, reflecting the fixed limits on the target FPGA resources and resource speeds.
LegUp reads allocation information from a configuration TCL file, which specifies the target
FPGA device and the resource limits for the device, e.g. the number of available multiplier
blocks. For a given FPGA family, LegUp includes scripts to pre-characterize the hardware
operation corresponding to each LLVM instruction for all supported bitwidths (typically, 8,
16, 32, 64). The script synthesizes each operation in isolation for the target FPGA family
to determine the propagation delay, required number of logic elements, registers, multiplier
blocks, and power consumption. This characterization data allows LegUp to make early
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1: entry:
2: %y.addr = getelementptr i32* %y, i32 %n
3: store i32 0, i32* %y.addr
4: br label %bb1
5: bb1:
6: %i = phi i32 [ 0, %entry ], [ %i.new, %bb1 ]
7: %coeff.addr = getelementptr [8 x i32]* %coeff,

i32 0, i32 %i
8: %x.ind = sub i32 %n, %i
9: %x.addr = getelementptr i32* %x, i32 %x.ind
10: %0 = load i32* %y.addr
11: %1 = load i32* %coeff.addr
12: %2 = load i32* %x.addr
13: %3 = mul i32 %1, %2
14: %4 = add i32 %0, %3
15: store i32 %4, i32* %y.addr
16: %i.new = add i32 %i, 1
17: %exitcond = icmp eq i32 %i.new, 8
18: br i1 %exitcond, label %return, label %bb1
19:return:

Fig. 4. LLVM IR for FIR filter.

predictions of circuit speed and area for the hardware accelerators and also to aid scheduling
and binding.

4.1.3. Scheduling. Scheduling is the task of assigning operations to clock cycles and building
a finite state machine (FSM). A control flow graph (CFG) of a program is a directed graph
where basic blocks are represented by vertices and branches are represented by edges. For
example, given two basic blocks, b1 and b2, b1 has an edge to b2 in the CFG, if b1 can
branch to b2. We can think of a CFG as a coarse representation of the FSM needed to
control the hardware being synthesized – the nodes and edges are analogous to those of a
state diagram. What is not represented in this coarse FSM are data dependencies between
operations within a basic block and the latencies of operations (e.g., a memory access may
take more than a single cycle).

Having constructed the coarse FSM from the CFG, LegUp then schedules each basic block
individually, which amounts to splitting each node in the CFG into multiple nodes, each
corresponding to one FSM state (clock cycle). The initial release of LegUp uses as-soon-as-
possible (ASAP) scheduling [Gajski and et. al. Editors 1992], which assigns an instruction to
the first state after all of its dependencies have been computed. Traversing basic blocks, and
visiting the instructions within each basic block in order, the operands for each instruction
are either: 1) from this basic block and therefore guaranteed to have already been assigned
a state, or 2) from outside this basic block, in which case we can safely assume they will be
available before control reaches this basic block. Note that our scheduler properly handles
instructions with multi-cycle latencies, such as pipelined divides or memory accesses.

In some cases, we can schedule an instruction into the same state as one of its operands.
This is called operation chaining. We perform chaining in cases where the estimated delay of
the chained operations (from allocation) does not exceed the estimated clock period for the
design. Chaining can reduce hardware latency (# of cycles for execution) and save registers
without impacting the final clock period.

Figure 5 shows a scheduled version of the FIR LLVM IR shown in Figure 4. The same
LLVM instructions are present as in the unscheduled IR, however, they are now organized
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s0:
%y.addr = getelementptr i32* %y, i32 %n
store i32 0, i32* %y.addr
%i = 0
next.state = s1

s1:
%coeff.addr = getelementptr [8 x i32]* %coeff,

i32 0, i32 %i
%x.ind = sub i32 %n, %i
%0 = load i32* %y.addr
%i.new = add i32 %i, 1
next.state = s2

s2:
%x.addr = getelementptr i32* %x, i32 %x.ind
%1 = load i32* %coeff.addr
%exitcond = icmp eq i32 %i.new, 8
next.state = s3

s3:
%2 = load i32* %x.addr
next.state = s4

s4:
%3 = mul i32 %1, %2
next.state = s5

s5:
%4 = add i32 %0, %3
next.state = s6

s6:
store i32 %4, i32* %y.addr
if (%exitcond)
next.state = s7

else
%i = %i.new
next.state = s1

s7:

Fig. 5. Scheduled FIR filter IR.

into one of 8 states, labeled s0, s1, ..., s7. State labels replace the basic block labels in
Figure 4. Lines containing next.state and if statements represent state transition logic.

4.1.4. Binding. Binding comprises two tasks: assigning operators from the program being
synthesized to specific hardware units (operation assignment), and assigning program vari-
ables to registers (register allocation). When multiple operators are assigned to the same
hardware unit, or when multiple variables are bound to the same register, multiplexers are
required to facilitate the sharing. We make two FPGA-specific observations in our approach
to binding. First, multiplexers are relatively expensive to implement in FPGAs using LUTs.
A 32-bit wide 2-to-1 multiplexer implemented in 4-LUTs is the same size as a 32-bit adder.
If we decide to share an adder unit, we may need a multiplexer on each input, making
the shared version 50% larger than simply using two adders. Consequently, there is little
advantage to sharing all but the largest functional units, namely, multipliers and dividers.
Likewise, the FPGA fabric is register rich – each logic element in the Cyclone II FPGA has
a 4-LUT and a register. Therefore, sharing registers is rarely justified.
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int add (int * a, int * b, int N)
{
int sum=0;
for (int i=0; i<N; i++)
{
sum += a[i]+b[i];

}
return sum;

}

Fig. 6. C function targeted for hardware.

The initial relase of LegUp uses a weighted bipartite matching heuristic to solve the
binding problem [Huang et al. 1990]. The binding problem is represented using a bipartite
graph with two vertex sets. The first vertex set corresponds to the operations being bound
(i.e. LLVM instructions). The second vertex set corresponds to the available functional units.
A weighted edge is introduced from a vertex in the first set to a vertex in the second set
if the corresponding operation is a candidate to be bound to the corresponding functional
unit. We set the cost (edge weight) of assigning an operation to a functional unit to the sum
of all operations assigned so far to the functional unit. Thus, we minimize the number of
multiplexer inputs required, thereby minimizing area. Weighted bipartite matching can be
solved optimally in polynomial time using the well-known Hungarian method [Kuhn 2010].
We formulate and solve the matching problem one clock cycle at a time until the operations
in all clock cycles (states) have been bound.

4.2. Local Accelerator Memories

The system architecture shown in Figure 2 includes a shared memory between the processor
and accelerators, comprising on-FPGA cache and off-FPGA SDRAM. Accesses to the off-
chip SDRAM are detrimental to performance, as each access takes multiple clock cycles to
complete, and contention may arise in the case of concurrent accesses. To help mitigate this,
constants and local variables used within hardware accelerators (which are not shared with
the processor) are stored in local memories in the accelerators themselves. We create local
memories for each variable/constant array used by an accelerator. An advantage of using
multiple memories instead of a single large memory is enhanced parallelism.

Each local memory is assigned a 9-bit tag using the top 9 bits of the 32-bit address
space. The tag is used to steer a memory access to the correct local accelerator memory,
or alternately, to the shared memory. LegUp automatically generates the multiplexing logic
to interpret the tags and steer memory requests. Tag 000000000 is reserved for the NULL
pointer, and tag 000000001 indicates that the memory access should be steered to the shared
memory, that is, to the memory controller shown in Figure 2. The remaining 510 different
tags can be used to differentiate between up to 510 local accelerator memories. Using 9 bits
for the tag implies that 23 bits are available for encoding the address. The decision to use
9-bit tags in the initial release of LegUp was taken because the Altera DE2 board contains
an 8 MB SDRAM which is fully addressable using 23 bits. It is straightforward to change
LegUp to use a different tag width if desired.

4.3. Hardware Profiling

As shown in Figure 1, a hardware profiler is used to decide which functions should be
implemented as hardware accelerators. The profiler utilized in LegUp is a non-intrusive,
real-time profiler that performs its analyses at the function level. As a program executes on
the MIPS processor, the profiler monitors the program counter and instruction op-codes to
track the number of cycles spent in each function and its descendants. We believe hardware

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2011.



LegUp: An Open Source High-Level Synthesis Tool 1:11

profiling in the context of hardware/software partitioning to be a rich area for research, and
in the future we plan to enhance the profiler to monitor power consumption and memory
access characteristics.

At a high-level, our profile works by associating both an index and a counter with each
function in a program. The index for a function is computed using a hash of the memory
address of the function’s first instruction. The hash is done in hardware through straight-
forward logical and arithmetic operations. The counter tracks the total number of execution
cycles spent in the function and optionally, execution cycles spent in the function’s descen-
dants. The number of functions being tracked by the profiler is configurable, as are the
widths of the cycle counters. Most importantly, the profiler allows different programs to be
profiled without requiring any re-synthesis. The profiler represents a 6.7% overhead on the
MIPS processor area (as measured in Cyclone II LEs) when configured to track up to 32
functions using 32-bit counters. Complete details of the profile are beyond the scope of this
paper and can be found in [Aldham 2011].

4.4. Processor/Accelerator Communication

Recall the target architecture shown in Figure 2 comprising a MIPS processor that com-
municates with hardware accelerators. When a function is selected to be implemented in
hardware, its C implementation is automatically replaced with a wrapper by the LegUp
framework. The wrapper function passes the function arguments to the corresponding hard-
ware accelerator, asserts a start signal to the accelerator, waits until the accelerator has
completed execution, and then receives the returned data over the Avalon interconnection
fabric.

The MIPS processor can do one of two things while waiting for the accelerator to complete
its work: 1) it can continue to perform computations and periodically poll a memory-mapped
register whose value is set to 1 when the accelerator is done, or, 2) it can stall until a
done signal is asserted by the accelerator. The advantage of polling is that the processor
can execute other computations concurrent with the accelerator doing its work, akin to a
threaded computing environment. The advantage of stalling is energy consumption – the
processor is in a low-power state while the accelerator operates. In our initial LegUp release,
both modes are functional; however, we use only mode #2 (stalling) for the results in this
paper. A direction for future work is to automatically identify segments of C code that can
be run on the processor in parallel with the accelerator’s execution.

To illustrate the wrapper concept, consider the C function shown in Figure 6. The func-
tion accepts two N -element vectors as input and computes the sum of the vectors’ pairwise
elements. If function is to be implemented in hardware, it would be replaced with the wrap-
per function shown in Figure 7. The defined memory addresses correspond to the assigned
memory space of the hardware accelerator. Each accelerator contains logic to communi-
cate with the processor according to the signals and addresses asserted through the Avalon
interconnect. Writes to the specified memory addresses translate into data communicated
across the Avalon interface to the accelerator. The write to the STATUS address starts the
accelerator. At this point, the accelerator asserts an input signal to the processor causing
it to stall; the accelerator de-asserts this signal when its work is complete. A read from the
DATA address retrieves the vector addition result from the accelerator.

4.5. Language Support and Benchmarks

LegUp supports a large subset of ANSI C for synthesis to hardware including: assignments,
loops, nested loops, logical and bitwise operations, all integer arithmetic operations, and
integer types. Program segments that use unsupported language features are required to
remain in software and execute on the MIPS processor. Table II lists C language con-
structs that are frequently problematic for hardware synthesis, and specifies which con-
structs are supported/unsupported by LegUp. Unlike many HLS tools, synthesis of fixed-size
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#define STATUS (volatile int *)0xf00000000
#define DATA (volatile int *)0xf00000004
#define ARG1 (volatile int *)0xf00000008
#define ARG2 (volatile int *)0xf0000000C
#define ARG3 (volatile int *)0xf00000010

int add (int * a, int * b, int N)
{
// pass arguments to accelerator
*ARG1 = a;
*ARG2 = b;
*ARG3 = N;
// give start signal
*STATUS = 1;
// wake up and get return data
return *DATA;

}

Fig. 7. Wrapper for function in Figure 6.

Table II. Language support.

Supported Unsupported

Functions Dynamic Memory
Arrays, Structs Floating Point
Global Variables Recursion
Pointer Arithmetic

Table III. Benchmark programs included with LegUp.

Category Benchmarks Lines of C

Arithmetic 64-bit dbl precision 376–755
add, mult, div, sin

Encryption AES, Blowfish, SHA 716–1406

Processor MIPS processor 232

Media JPEG decoder, Motion, 393–1692
GSM, ADPCM

General Dhrystone 491

multi-dimensional arrays, structs, global variables, and pointer arithmetic are supported by
LegUp. Regarding structs, LegUp supports structs with arrays, arrays of structs, and structs
containing pointers. LegUp stores structs in memory using the ANSI C alignment standards.
Functions that return a struct, dynamic memory allocation, recursion and floating point
arithmetic are unsupported in the initial release of the tool.

With the LegUp distribution, we include 13 benchmark C programs, summarized in
Table III. Included are all 12 programs in the CHStone high-level synthesis benchmark
suite [Hara et al. 2009], as well as Dhrystone – a standard integer benchmark. The pro-
grams represent a diverse set of computations falling into several categories: arithmetic,
encryption, media, processing and general. They range in size from 232-1692 lines of C
code. The arithmetic benchmarks implement 64-bit double-precision floating-point opera-
tions in software using integer types. Notice that the CHStone suite contains a benchmark
which is a software model of a MIPS processor (which we can then run on a MIPS processor).
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A key characteristic of the benchmarks is that inputs and expected outputs are included
in the programs themselves. The presence of the inputs and golden outputs for each pro-
gram gives us assurance regarding the correctness of our synthesis results. Each benchmark
program performs computations whose results are then checked against golden values. This
is analogous to built-in self test in design-for-test methodology. No inputs (e.g. from the
keyboard or a file) are required to run the programs. As an example, for the MIPS bench-
mark program in the CHStone suite, the inputs comprise an array of integer data and a
set of MIPS machine instructions that cause the integer array to be sorted in ascending
order. The golden result is the same integer array in sorted order. Each program returns 0
on success (all results matched golden values), and non-zero otherwise.

4.6. Debugging

The initial release of LegUp includes a basic debugging capability which consists of auto-
matically adding print statements into the LLVM IR to dump variable values at the end of
each basic block’s execution. When the IR is synthesized to hardware, the Verilog can be
simulated using ModelSim producing a log of variable value changes that can be directly
compared with an analogous log from a strictly software execution of a benchmark. We
found even this limited capability to be quite useful, as it allows one to pinpoint the first
LLVM instruction where computed values differ in hardware vs. software, aiding problem
diagnosis and debugging.

5. EXPERIMENTS

The goals of our experimental study are three-fold: 1) to demonstrate that the quality of
result (speed, area, power) produced by LegUp HLS is comparable to that produced by
a commercial HLS tool (eXCite [Y Explorations (XYI) 2010]), 2) to demonstrate LegUp’s
ability to effectively explore the hardware/software co-design space, and 3) to compare the
quality of hardware vs. software implementations of the benchmark programs. We chose
eXCite because it was the only commercial tool we had access to that could compile the
benchmark programs. With the above goals in mind, we map each benchmark program
using 5 different flows, representing implementations with successively increasing amounts
of computation happening in hardware vs. software. The flows are as follows (labels appear
in parentheses):

(1) A software-only implementation running on the MIPS soft processor (MIPS-SW ).
(2) A hybrid software/hardware implementation where the second most 1 compute-intensive

function (and its descendants) in the benchmark is implemented as a hardware accel-
erator, with the balance of the benchmark running in software on the MIPS processor
(LegUp-Hybrid2 ).

(3) A hybrid software/hardware implementation where the most compute-intensive func-
tion (and its descendants) is implemented as a hardware accelerator, with the balance
in software (LegUp-Hybrid1 ).

(4) A pure hardware implementation produced by LegUp (LegUp-HW ).
(5) A pure hardware implementation produced by eXCite (eXCite-HW )2.

The two hybrid flows correspond to a system that includes the MIPS processor and a
single accelerator, where the accelerator implements a C function and all of its descendant
functions.

For the back-end of the flow, we use Quartus II ver. 9.1 SP2 to target the Cyclone II
FPGA. Quartus II was executed in timing-driven mode with all physical synthesis opti-

1Not considering the main() function.
2The eXCite implementations were produced by running the tool with the default options.
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mizations turned on3. The correctness of the LegUp implementations was verified using
post-routed ModelSim simulations and also in hardware using the Altera DE2 board.

Three metrics are employed to gauge quality of result: 1) circuit speed, 2) area, and
3) energy consumption. For circuit speed, we consider the cycle latency, clock frequency
and total execution time. Cycle latency refers to the number of clock cycles required for a
complete execution of a benchmark. Clock frequency refers to the reciprocal of the post-
routed critical path delay reported by Altera timing analysis. Total execution time is simply
the cycle latency multiplied by the clock period. For area, we consider the number of used
Cyclone II logic elements (LEs), memory bits, and 9x9 multipliers.

Energy is a key cost metric, as it directly impacts electricity costs, as well as influences
battery life in mobile settings. To measure energy, we use Altera’s PowerPlay power analyzer
tool, applied to the routed design. We gather switching activity data for each benchmark
through a post-route full delay simulation with Mentor Graphics’ ModelSim. ModelSim
produces a VCD (value change dump) file containing activity data for each design signal.
PowerPlay reads the VCD to produce a power estimate for each design. To compute the
total energy consumed by a benchmark for its computational work, we multiply the average
core dynamic power reported by PowerPlay with the benchmark’s total execution time.

5.1. Results

Table IV presents speed performance results for all circuits and flows. Three data columns
are given for each flow: Cycles contains the latency in number of clock cycles; Freq presents
the post-routed critical path delay in MHz; Time gives the total executation time in µS
(Cycles/Freq). The flows are presented in the order specified above, from pure software on
the left, to pure hardware on the right. The second last row of the table contains geometric
mean results for each column. The dhrystone benchmark was excluded from the geomean
calculations, as eXCite was not able to compile this benchmark. The last row of the table
presents the ratio of the geomean relative to the software flow (MIPS-SW ).

Beginning with the MIPS-SW flow, the data in Table IV indicates that the processor
runs at 74 MHz on the Cyclone II and the benchmarks take between 6.7K-29M cycles
to complete their execution. In terms of program execution time, this corresponds to a
range of 92-401K µS. In the LegUp-Hybrid2 flow, where the second most compute-intensive
function (and its descendants) is implemented as a hardware accelerator, the number of
cycles needed for execution is reduced by 50% compared with software, on average. The
Hybrid2 circuits run at 6% lower frequency than the processor, on average. Overall, LegUp-
Hybrid2 provides a 47% (1.9×) speed-up in program execution time vs. software (MIPS-
SW ). Moving onto the LegUp-Hybrid1 flow, which represents additional computations in
hardware, Table IV shows that cycle latency is 75% lower than software alone. However,
clock speed is 9% worse for this flow, which when combined with latency, results in a 73%
reduction in program execution time vs. software (a 3.7× speed-up over software). Looking
broadly at the data for MIPS-SW, LegUp-Hybrid1 and LegUp-Hybrid2, we observe a trend:
execution time decreases substantially as more computations are mapped to hardware. Note
that the MIPS processor would certainly run at a higher clock speed on a 40/45 nm FPGA,
e.g. Stratix IV, however the accelerators would also speed-up commensurately.

The two right-most flows in Table IV correspond to pure hardware implementations. Ob-
serve that benchmark programs mapped using the LegUp-HW flow require just 12% of the
clock cycles of the software implementations, on average, yet they run at about the same
speed in MHz. When benchmarks are mapped using eXCite-HW, even fewer clock cycles are
required to complete their execution – just 8% of that required for software implementations.

3The eXCite implementation for the jpeg benchmark was run without physical synthesis optimizations
turned on in Quartus II, as with such optimizations, the benchmark could not fit into the largest Cyclone
II device.
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Table IV. Speed performance results.

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

Benchmark Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time

adpcm 193607 74.26 2607 159883 61.61 2595 96948 57.19 1695 36795 45.79 804 21992 28.88 761
aes 73777 74.26 993 55014 54.97 1001 26878 49.52 543 14022 60.72 231 55679 50.96 1093
blowfish 954563 74.26 12854 680343 63.21 10763 319931 63.7 5022 209866 65.41 3208 209614 35.86 5845
dfadd 16496 74.26 222 14672 83.14 176 5649 83.65 68 2330 124.05 19 370 24.54 15
dfdiv 71507 74.26 963 15973 83.78 191 4538 65.92 69 2144 74.72 29 2029 43.95 46
dfmul 6796 74.26 92 10784 85.46 126 2471 83.53 30 347 85.62 4 223 49.17 5
dfsin 2993369 74.26 40309 293031 65.66 4463 80678 68.23 1182 67466 62.64 1077 49709 40.06 1241
gsm 39108 74.26 527 29500 61.46 480 18505 61.14 303 6656 58.93 113 5739 41.82 137
jpeg 29802639 74.26 401328 16072954 51.2 313925 15978127 46.65 342511 5861516 47.09 124475 3248488 22.66 143358
mips 43384 74.26 584 6463 84.5 76 6463 84.5 76 6443 90.09 72 4344 76.25 57
motion 36753 74.26 495 34859 73.34 475 17017 83.98 203 8578 91.79 93 2268 42.87 53
sha 1209523 74.26 16288 358405 84.52 4240 265221 81.89 3239 247738 86.93 2850 238009 62.48 3809
dhrystone 28855 74.26 389 25599 82.26 311 25509 83.58 305 10202 85.38 119 - - -

Geomean: 173332.0 74.26 2334.1 86258.3 69.98 1232.6 42700.5 67.78 630.0 20853.8 71.56 291.7 14594.4 40.87 357.1
Ratio: 1 1 1 0.50 0.94 0.53 0.25 0.91 0.27 0.12 0.96 0.12 0.08 0.55 0.15
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However, implementations produced by eXCite run at 45% lower clock frequency than the
MIPS processor, on average. LegUp produces heavily pipelined hardware implementations,
whereas, we believe eXCite does more operation chaining, resulting in few computation cy-
cles yet longer critical path delays. Considering total execution time of a benchmark, LegUp
and eXCite offer similar results. LegUp-HW provides an 88% execution time improvement
vs. software (8× speed-up); eXCite-HW provides an 85% improvement (6.7× speed-up).
Both of the pure hardware implementations are a significant win over software. The most
favorable LegUp results were for the dfdiv and dfsin benchmarks, for which the speed-up
over pure software was over 30×. The benchmark execution times of LegUp implementa-
tions relative to eXCite are comparable, which bodes well for our framework and gives us
assurance that it produces implementations of reasonable quality.

It is worth highlighting a few anomalous results in Table IV. Comparing LegUp-HW
with eXCite-HW for the benchmark aes, LegUp’s implementation provides a nearly 5×
improvement over eXCite in terms of execution time. Conversely, for the motion benchmark,
LegUp’s implementation requires nearly 4× more cycles than eXCite’s implementation. We
believe such differences lie in the extent of pipelining used by LegUp vs. eXCite, especially
for arithmetic operations such as division. In LegUp, we pipeline arithmetic units to the
maximum extent possible, leading to higher cycle latencies, and improved clock periods.

Area results are provided for each circuit in Table V. For each flow, three columns provide
the number of Cyclone II logic elements (LEs), the number of memory bits used (# bits),
as well as the number of 9x9 multipliers (Mults). As in the performance data above, the
geometric mean and ratios relative to MIPS software alone are given in the last two rows
of Table V. Observe that some columns contain a 0 for one or more circuits, invalidating
the geomean calculation. To calculate the geomean for such columns, the 0’s were taken to
be 1’s4.

Beginning with the area of the MIPS processor, the data in Table V shows it requires
12.2K LEs, 226K memory bits, and 16 multipliers. The hybrid flows include both the MIPS
processor, as well as custom hardware, and consequently, they consume considerably more
area. When the LegUp-Hybrid2 flow is used, the number of LEs, memory bits, and multi-
pliers increase by 2.23×, 1.14×, and 2.68×, respectively, in Hybrid2 vs. the MIPS processor
alone, on average. The LegUp-Hybrid1 flow requires even more area: 2.75× LEs, 1.16×
memory bits, and 3.18× multipliers vs. MIPS. Note that link time optimization in LLVM
was disabled for the hybrid flows, as was necessary to preserve the integrity of the function
boundaries5. However, link time optimization was enabled for the MIPS-SW and LegUp-
HW flows, permitting greater compiler optimization for such flows, possibly improving area
and speed.

Turning to the pure hardware flows in Table V, the LegUp-HW flow implementations
require 28% more LEs than the MIPS processor on average; the eXCite-HW implementa-
tions require 7% more LEs than the processor. In other words, on the key area metric of the
number of LEs, LegUp implementations require 19% more LEs than eXCite, on average.
We consider the results to be quite encouraging, given that this is the initial release of an
open source academic HLS tool. In terms of memory bits, both the LegUp-HW flow and the
eXCite-HW flow require much fewer memory bits than the MIPS processor alone. For the
benchmarks that require embedded multipliers, the LegUp-HW implementations use more
multipliers than the eXCite-HW implementations, which we believe is due to more exten-
sive multiplier sharing in the binding phase of eXCite. Improved sharing during binding is
a direction for future work in LegUp.

Figure 8 summarizes the speed and area results. The left vertical axis represents geometric
mean execution time; the right axis represents area (number of LEs). Observe that execution

4This convention is used in life sciences studies.
5Link time optimization permits code optimization across compilation modules.
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Table V. Area results.

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

Benchmark LEs # bits Mults LEs # bits Mults LEs # bits Mults LEs # bits Mults LEs # bits Mults

adpcm 12243 226009 16 25628 242944 152 46301 242944 300 22605 29120 300 16654 6572 28
aes 12243 226009 16 56042 244800 32 68031 245824 40 28490 38336 0 46562 18688 0
blowfish 12243 226009 16 25030 341888 16 31020 342752 16 15064 150816 0 31045 33944 0
dfadd 12243 226009 16 22544 233664 16 26148 233472 16 8881 17120 0 9416 0 0
dfdiv 12243 226009 16 28583 225600 46 36946 233472 78 20159 12416 62 9482 0 32
dfmul 12243 226009 16 16149 225280 48 20284 233472 48 4861 12032 32 4536 0 26
dfsin 12243 226009 16 34695 233472 78 54450 233632 116 38933 12864 100 22274 0 38
gsm 12243 226009 16 25148 232576 114 30808 233296 142 19131 11168 70 6114 3280 2
jpeg 12243 226009 16 46432 338096 252 64441 354544 254 46224 253936 172 30420 105278 20
mips 12243 226009 16 18857 230304 24 18857 230304 24 4479 4480 8 2260 3072 8
motion 12243 226009 16 28761 243104 16 18013 242880 16 13238 34752 0 20476 16384 0
sha 12243 226009 16 20382 359136 16 29754 359136 16 12483 134368 0 13684 3072 0
dhrystone 12243 226009 16 15220 225280 16 16310 225280 16 4985 82008 0 - - -

Geomean: 12243 226009 16 27248 258526 43 33629 261260 51 15646 28822 12 13101 496 5
Ratio: 1 1 1 2.23 1.14 2.68 2.75 1.16 3.18 1.28 0.13 0.72 1.07 0.00 0.32
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Fig. 8. Performance and area results.

time drops as more computations are implemented in hardware. While the data shows
that pure hardware implementations offer superior speed performance to pure software or
hybrid implementations, the plot demonstrates LegUp’s usefulness as a tool for exploring
the hardware/software co-design space. One can multiply the delay and area values to
produce an area-delay product. On such a metric, LegUp-HW and eXCite-HW are nearly
identical (∼4.6M µS-LEs vs. ∼4.7M µS-LEs) – LegUp-HW requires more LEs vs. eXCite-
HW, however, it offers better speed, producing a roughly equivalent area-delay product.
The area-delay product parity with eXCite gives us further confidence that the HLS results
produced by LegUp are competitive with commercial tools.

Figure 9 presents the geometric mean energy results for each flow. The energy results bear
similarity to the trends observed for execution time, though the trends here are even more
pronouced. Energy is reduced drastically as computations are increasingly implemented in
hardware vs. software. The LegUp-Hybrid2 and LegUp-Hybrid1 flows use 47% and 76% less
energy than the MIPS-SW flow, respectively, representing 1.9× and 4.2× energy reductions.
The pure hardware flows are even more promising from the energy standpoint. With LegUp-
HW, the benchmarks use 94% less energy than if they are implemented with the MIPS-SW
flow (an 18× reduction). The eXCite results are similar. Pure hardware benchmark imple-
mentations produced by eXCite use over 95% less energy than software implementations (a
22× reduction). The energy results are promising, especially since energy was not a specific
focus of our initial release.
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Fig. 9. Energy results.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced LegUp – a new high-level synthesis tool that compiles a stan-
dard C program to a hybrid processor/accelerator architecture comprising a MIPS processor
and custom accelerators communicating through a standard on-chip interface. Using LegUp,
one can explore the hardware/software design space, where some portions of a program run
on a processor, and others are implemented as custom hardware circuits. As compared with
software running on a MIPS soft processor, pure hardware implementations produced by
LegUp HLS execute 8× faster and use 18× less energy on a Altera Cyclone II FPGA.
LegUp’s hardware implementations are competitive with those produced by a commercial
HLS tool, both in benchmark execution time and in area-delay product. LegUp, along with
its suite of benchmark C programs, is a powerful open source platform for HLS research
that we expect will enable a variety of research advances in hardware synthesis, as well as in
hardware/software co-design. LegUp is available for download at: http://www.legup.org.

We are currently using the LegUp framework to explore several new directions towards im-
proving computational throughput. First, we are investigating the benefits of using multiple
clock domains, where each processor and accelerator can operate at its maximum speed and
communication between modules occurs across clock domains (the Altera Avalon interface
can support this). And second, we are implementing loop pipelining within our scheduler,
wherein a loop iteration can commence execution prior to the completion of the previous
iteration, as long as data dependencies are available. Lastly, although we are already seeing
significant energy benefits of computing in hardware vs. software, we believe that much
more can be done on this front through the incorporation of energy-driven scheduling and
FSM generation.
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