Towards Interconnect-Adaptive Packing for FPGAs

Jason Luu, Jonathan Rose, and Jason Anderson

Dept. Electrical and Computer Engineering, University of Toronto
Toronto, Ontario, Canada
vpr@eecg.utoronto.ca

ABSTRACT

In order to investigate new FPGA logic blocks, FPGA ar-
chitects have traditionally needed to customize CAD tools
to make use of the new features and characteristics of those
blocks. The software development effort necessary to cre-
ate such CAD tools can be a time-consuming process that
can significantly limit the number and variety of architec-
tures explored. Thus, architects want flexible CAD tools
that can, with few or no software modifications, explore a
diverse space. Existing flexible CAD tools suffer from im-
practically long runtimes and/or fail to efficiently make use
of the important new features of the logic blocks being in-
vestigated. This work is a step towards addressing these
concerns by enhancing the packing stage of the open-source
VTR CAD flow [17] to efficiently deal with common inter-
connect structures that are used to create many kinds of use-
ful novel blocks. These structures include crossbars, carry
chains, dedicated signals, and others. To accomplish this,
we employ three techniques in this work: speculative pack-
ing, pre-packing, and interconnect-aware pin counting. We
show that these techniques, along with three minor modi-
fications, result in improvements to runtime and quality of
results across a spectrum of architectures, while simultane-
ously expanding the scope of architectures that can be ex-
plored. Compared with VTR 1.0 [17], we show an average
12-fold speedup in packing for fracturable LUT architectures
with 20% lower minimum channel width and 6% lower crit-
ical path delay. We obtain a 6 to 7-fold speedup for archi-
tectures with non-fracturable LUTs and architectures with
depopulated crossbars. In addition, we demonstrate packing
support for logic blocks with carry chains.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic Synthesis, Optimization

Keywords
FPGA,; Algorithms; Packing; Clustering; Architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA’14, February 26-28, 2014, Monterey, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2671-1/14/02 ...$15.00.
http://dx.doi.org/10.1145/2554688.2554783.

21

1. INTRODUCTION

The architecture of an FPGA logic block has a signifi-
cant impact on the overall performance, area, and power
consumption of circuits implemented on the device. Over
the years, market demands and technological innovations
have driven the evolution of FPGA logic blocks from simple
groups of LUTs and flip-flops [2] to more complex blocks
such as memories with configurable aspect ratios [21] [1],
multipliers with selectable size and quantity [1], and general-
purpose logic blocks with different modes of operation. As
the economics of technology scaling continues to drive more
applications towards programmable devices, we expect new
ideas to arise in the architecture of FPGA logic blocks to
meet the demands of a changing market.

As FPGA architects seek to explore increasingly sophisti-
cated logic blocks, the difficulty of conducting experiments
to evaluate their quality has correspondingly increased. One
reason for this difficulty is that many CAD tools employed
in these experiments have restrictive architectural assump-
tions that require significant changes before any evaluation
work can be done. The release of VIR 1.0 [17], an open
source FPGA architecture exploration CAD flow, was a re-
cent effort by Rose et al. towards addressing this problem
by greatly expanding the scope of FPGA architectures that
can be targetted without software changes. However, this
flexibility created new challenges in the packing stage of the
FPGA CAD flow. Packing assigns a technology-mapped
user netlist to the various physical logic blocks of a target
FPGA architecture. To support a greater variety of logic
blocks, pack time in VTR 1.0 increased to the point where
it rivals placement time on the VTR heterogeneous architec-
tures. For more complex architectures, pack time in VTR
can regularly exceed place-and-route time [14]. Our work
seeks to address this runtime issue while simultaneously ex-
panding the scope of architectures that can be explored. We
first describe precisely why the VTR packer is slow before
describing our approach to this problem.

VTR provides the architect great freedom when specify-
ing logic block architectures including the ability to specify
any arbitrary interconnect structure within a logic block.
Support for arbitrary interconnect enables the natural ex-
pression of a wide range of architectural constructs. These
include carry chains, crossbars, optionally registered input-
s/outputs, and control signals, which can be expressed by
simply stating how various components are connected to-
gether. However, this level of customization creates a com-
putationally challenging packing problem. The packing al-
gorithm must determine if the internal connectivity within



a logic block can successfully route the sections of the netlist
that are assigned into that logic block. The packing algo-
rithm in VTR [9], as with other prior attempts on support-
ing arbitrary interconnect [18] [20], employs heavy use of
detailed routing to check for routability. This results in a
packer that is often unnecessarily slow.

Our goal is to develop a packing tool and algorithm that

runs quickly for architectures with simple interconnect, spends

medium computational effort on architectures with moder-
ately complex interconnect, and only uses heavy computa-
tional effort on architectures with very complex intercon-
nect. Our approach is to automatically use a faster, simpler
algorithm when interconnect structures that are easier to
deal with are encountered. For example, if an architecture
contains full crossbars, then computationally intensive rout-
ing checks within the logic block are not necessary because
routing is guaranteed as long as the number of pins to be
connected is below a certain threshold. Similarly, if an ar-
chitecture has an inflexible carry chain, then we know that
the blocks that form that chain must be kept together in a
strict order.

In this work, we enhance the packing stage of VTR [17].
We enable the packer in VTR to adapt computational ef-
fort based on architect-specified interconnect through three
techniques: First, speculative packing attempts to save run-
time by optimistically skipping detailed legality checks at
intermediate steps and then checking all legality rules after
a logic block is full. Second, pre-packing groups together
netlist blocks that should stay together as one unit during
packing. This helps the packer deal with interconnect struc-
tures with limited or no flexibility, such as carry chains and
registered input/output pins. Third, interconnect-aware pin
counting reduces the more complex routing problem to a
simple counting problem, which is inferred from the archi-
tecture.

2. PRIOR WORK

Much of the prior work in packing focused on simple logic
blocks that consist only of LUTs and flip-flops intercon-
nected by full crossbar interconnect [12] [19] [3] [8] [7] [4].

There have been several attempts to make packers that
have more general types of interconnect within the logic
block. Ni [15] proposed a tool that targets the same simple
style logic block described above but with arbitrary logic el-
ements instead of just pairs of LUTs and flip-flops. Wang
[20] and Lemieux [6] proposed different ways to target logic
blocks with depopulated crossbars. Cong proposed a tool,
RASP, where a variety of different interconnect in a logic
block is permitted but the user is then responsible for cre-
ating custom heuristics to map to that logic block [5]. Pal-
adino [16] proposed a packer that focuses on modelling con-
trol signals and carry chains within a logic block. All these
methods provide point solutions to specific constructs, but
do not give a general, comprehensive strategy towards au-
tomatically handling arbitrary interconnect structures.

A few related works have attempted to model arbitrary
interconnect in logic blocks. Sharma [18] proposed a place-
ment algorithm that can explore FPGAs with arbitrary gen-
eral interconnect. That work could be extended to target ar-
bitrary interconnect within a logic block. Sharma’s approach
is to regularly sample the underlying interconnect during
annealing-based placement by employing detailed routing
repeatedly. However, this approach results in extremely long

22

LUT

TN

Figure 1: Example of a netlist with a LUT, a mux,
and some I/O pads.

runtime. Similar to Sharma’s work but in the context of
FPGA packing, Luu [9] proposed a greedy packer, called
AAPack, that employed detailed routing to check the legal-
ity of all intermediate (partial) packing solutions. Although
Luu benefited from a much smaller routing problem, namely
working at the logic block level, Luu’s tool still ran two or-
ders of magnitude slower than T-VPack [12] on the simple
FPGA architectures. AAPack 6.0 is the current packer used
in VIR 1.0.

3. PROBLEM DEFINITION

The inputs to packing are a technology-mapped logical
netlist and a description of the physical logic blocks of a
target architecture [9]. The output of packing is a netlist of
physical logic blocks that implement the input user netlist.
This netlist of logic blocks is then placed and routed in the
subsequent stages of the FPGA CAD flow.

A technology-mapped netlist is a flattened view of a user
circuit. It conmsists of blocks, called atoms, that are con-
nected together by nets. Examples of atoms include LUTs,
flip-flops, memory slices, and 1/Os. Atoms are classified
based on what kind of functionality they represent. We call
this the atom’s logic model. During packing, each atom will
be mapped to a unique physical unit, called a primitive,
within one of the logic blocks. Fig. 1 shows an example of
a netlist. This netlist consists of one atom of logic model
LUT, one atom of logic model muz, six atoms of logic model
input pad, and two atoms of logic model output pad.

The target architecture defines the different types of logic
blocks available. A logic block definition includes the prim-
itives that exist in the block, a hierarchical description of
how those primitives are organized, and the routing struc-
tures within the logic block. Each type of logic block can
appear in the FPGA in different quantities. For example,
there may be one configurable multiplier block for every four
soft logic blocks.

The primitives within a logic block are organized in a hi-
erarchy. At the top of the hierarchy is the logic block itself.
Below the logic block, the architect can specify any arbitrary
tree hierarchy of subclusters and primitives. A subcluster is
a node in the logic block hierarchy that can contain other
subclusters or primitives.

The interconnect within a logic block provides connec-
tivity between subclusters, primitives, and logic block in-
put/output pins. In this expanded definition of the packing
problem, the architect is allowed to specify any arbitrary
interconnect network within a logic block. This extension
enables a far more powerful expression of different architec-



Soft Logic Block
1/0
Mode: Input
Lt N
.
® L ]
LT OR
Mode: Output
~ [ o out
j—-
c
=

f:

Figure 2: Example of an architecture with I/Os and
soft logic blocks.

tures but does create a potentially more difficult packing
problem.

Structures in modern logic blocks can have different modes,
which are mutually exclusive states of the logic; for exam-
ple, a fracturable LUT can either be in its large, unfractured
state, or be two smaller, “fractured” LUTs that share some
inputs. We represent modes in the architecture definition
in much the same way as how hierarchy is expressed. Each
mode is represented as a subcluster where the subcluster
can only be used if none of its siblings (in the logic block
hierarchy) are used.

Fig. 2 shows an example of an architecture with soft logic
blocks and I/O logic blocks. The soft logic block consists
of a subcluster of two 3-input LUT primitives and a single
4-to-1 mux primitive. Unlike the routing muxes within the
FPGA that implement nets, this mux primitive is used to
implement actual logic in the user netlist. The data lines
of the mux are driven by the input pins of the logic block.
The two 3-LUTs drive the select lines of the mux primitive.
The LUT primitives have special properties. They can op-
erate as interconnect wires in addition to logic. The two
3-LUTs are driven by four logic block inputs so they share
two input pins. Unlike LUT and mux primitives, input and
output pads are implemented in their own dedicated logic
blocks. An I/O logic block has two modes of operation. It
can implement one input pad or one output pad.

3.1 Packing Problem

The packing problem is defined as the assignment of netlist
atoms to primitives, while optimizing for multiple objectives,
under the constraint that the final mapping is legal. Ulti-
mately, we want the packer to produce a netlist that gives
good area and delay results after placement and routing. To
acheive this practically, we set the objectives of packing to
minimize the number of logic blocks, minimize the number
of connections that must route across multiple logic blocks,
and group together connected atoms where those connec-
tions are timing critical. A legal solution is a packing solu-
tion that can be physically realized. We determine legality
by checking for various conditions. The main conditions are
as follows: 1) All atoms are assigned to unique primitives
and each of those primitives can implement the atom as-
signed to it, 2) All nets within a logic block can be routed,
and 3) Modes within a logic block are mutually exclusive.

23

1/0 Soft Logic Block
in:il

1/0 1/0
in:i2 LLELL out:ol

1/0
in:i3

1/0
in:i4

!!

\Iw:xnw

Figure 3: Example of a packing solution mapping a
netlist to a set of logic blocks

3.2 Example of Packing

Fig. 3 gives an example packing of the input circuit shown
in Fig. 1 into an FPGA with the logic block types shown
in Fig. 2. The lightly shaded primitives, such as LUT:L1
and MUX:M1, name the atoms that they implement. The
dark LUT shows a LUT that is used to implement a wire.
The thick edges show the physical interconnect edges that
implement nets. The I/O logic blocks are set to either inpad
or outpad mode, depending on what I/O atom got assigned
to them.

4. INTERCONNECT-AWARE PACKING

This section describes the modifications that we made to
an existing packing tool (AAPack) [9] to enable the packer
to adapt to the underlying interconnect of the target logic
blocks. We begin with an overview of the original packing
algorithm. We then describe the various modifications that
we made.

The packing algorithm starts by selecting an empty logic
block in the FPGA to be packed. The algorithm then fills
the logic block by attempting to assign candidate atoms to
unused primitives. Candidate atoms are chosen using an
attraction function, where atoms with a higher score are
considered before atoms with a lower score. Once the logic
block is full, the algorithm “closes” that block and opens up
a new, empty, logic block to be filled. Packing terminates
when all atoms in the netlist have been mapped into logic
blocks.

The attraction function is a weighted sum of two terms
[17]. The first term scores the timing criticality of a candi-
date while the second term scores the connectivity of a candi-
date with the logic block that is currently being filled. The
algorithm first only considers unpacked atoms that share
one or more nets with the packed atoms inside the currently
active logic block. This keeps the algorithm scalable and
prevents unrelated logic from being packed together. If no
such atoms remain, then the algorithm selects atoms from
unrelated logic.

Up to this point, the algorithm description is about the
same as many other greedy FPGA packers [12] [3] [4]. The
part that distinguishes this packer, the part that enables ar-
chitecture adaptiveness, is in the stage where the algorithm
determines which primitive, if any, a candidate netlist atom
should map to within a logic block. We call this stage intra-
logic block placement and routing.



Intra-logic block placement finds a suitable primitive within
the logic block to assign the candidate atom then assigns
modes within the logic block based on that placement. This
stage is also responsible for checking most of the legality
constraints. These checks include whether or not the prim-
itive can implement the atom, if modes assigned are legal,
and if basic routability (in the form of pin counting) passes.
If placement is successful, then the original packing algo-
rithm [9] would invoke intra-logic block routing to attempt
detailed routing, using the PathFinder algorithm [13], to en-
sure routability. If detailed routing fails, then the placement
and routing process repeats itself until a successful primitive
is found or until there are no more unused primitives to try.

Among all the legality checks, detailed routing consumes,
by far, the most time. The main focus of our techniques
is to avoid this computationally intensive check when the
interconnect in the architecture is simple enough for us to
skip it.

4.1 Speculative Packing

Speculative packing is a technique to avoid unnecessary in-
vocations of detailed routing. This technique first attempts
to optimistically pack a logic block by not invoking detailed
routing until the logic block is filled. We call the optimisti-
cally filled logic block the speculated solution. If detailed
routing of the speculated solution succeeds, then the solu-
tion is accepted. Otherwise, the packer rejects the specu-
lated solution and reverts back to the conservative method
of [9] that invokes detailed routing for every partial packing.

The runtime impact from speculative packing depends
heavily on how often the final route of a speculated solution
succeeds. In the best case, the final route always succeeds
resulting in speedup. In the worst case, the final route never
succeeds which results in wasted speculation time. Thus, if
a logic block contains simple interconnect from which the
packer can form routable speculated solutions, then specu-
lative packing enables the packer to expend less computa-
tional effort routing. If a logic block contains more complex
interconnect, then the computational effort expended by the
packer depends on how often the packer assembles a routable
speculated solution.

4.2 Interconnect-Aware Pin Counting

Pin counting is a technique that approximates the routabil-
ity problem with a simpler counting problem. Pin counting
checks if a particular assignment of atoms to a logic block/-
subcluster uses more pins than supplied by the logic block-
/subcluster. If pins are overused, then that assignment is
proven unroutable. If pins are not overused, then in the
pin counting approach, we optimistically assume that the
assignment is routable. Pin counting is one of the many
checks performed in intra-logic block placement. This im-
plies that during speculative packing, when detailed routing
is skipped, pin counting becomes the only check for routabil-
ity. Therefore, more accurate pin counting reduces com-
putational effort by increasing the chance that speculated
solutions will route.

Interconnect-aware pin counting is our more precise ver-
sion of pin counting. In addition to analyzing pins, this
technique also analyzes the underlying physical interconnect
with the intention of capturing clues about how those pins
are related. We begin by describing what information this

24

Figure 4: Examples on how
pin classes

pins are grouped into

technique extracts from the interconnect, and then we de-
scribe how packing uses that information.

Prior to the packing stage, we analyze the architecture of
each logic block, and group the pins of each block and sub-
cluster into separate pin classes based on the interconnect
structures. Intuitively, pin classes are an attempt to approx-
imate arbitrary interconnect with a set of non-overlapping
full crossbars. Input pins of the same class drive the same
crossbar, output pins of the same class are driven by the
same crossbar. Pins are grouped into pin classes using the
following process: First, all pins are set to have their own,
individual, pin class. Then, pin classes are merged together
based on connectivity while subject to constraints. Pin
classes are constrained by subcluster /logic block and by type.
Pins in the same pin class must be on the periphery of
the same subcluster/logic block. Furthermore, pins of the
same pin class must be either all input pins or all output
pins. Subject to these constraints, if two pins of a sub-
cluster/logic block belong to different pin classes but can
connect (through the interconnect) to a common primitive
pin within that subcluster /logic block, then those pin classes
are merged together. When two pin classes merge, all pins
contained in either of the original pin classes are grouped
into one new pin class. In the event that the primitive has
logically equivalent pins (for example, an AND gate has log-
ically equivalent input pins), then those primitive pins are
considered as one pin for the purposes of determining pin
classes. At any point during the construction of pin classes,
if a pin gets assigned to two different pin classes, then all
pins in both pin classes are merged into a single pin class.
The process ends when no more pin classes can be merged
together.

Fig. 4 illustrates different examples of pin classes on a
subcluster with two primitives, four input pins, and three
output pins. The labels on the subcluster pins show which
pin class each pin belongs to. Fig. 4 (a) has a large, well pop-
ulated crossbar at the inputs and outputs. The subcluster
input pins all belong to the same pin class i/ and the sub-
cluster output pins all belong to another pin class o1. Fig. 4
(b) has a sparser crossbar than (a). Our technique optimisti-
cally approximates these cases as the same, thus (b) has the



LUT

3 L

Figure 5: Example netlist to illustrate pin counting.

Soft Logic Block

01
12y

cele

Figure 6: Example intermediate solution to illus-
trate pin counting.

same pin classes as (a). Fig. 4 (¢) has disconnected smaller
crossbars. This is reflected in the two pin classes for the in-
puts and two pin classes for the outputs. Finally, Fig. 4 (d)
has no interconnect flexibility so all subcluster pins belong
to separate pin classes.

During packing, every time a candidate atom is placed
inside a logic block, pin counting updates the utilization of
the pin classes of used subclusters within the logic block
then updates the pin classes of the logic block itself. If,
after the update, there exists a pin class that uses more
pins than is supplied by that pin class, then pin counting
declares the intermediate solution unroutable. Without loss
of generality, we describe the update procedure for just the
logic block. A net adds a count of one to a pin class of
input pins if and only if the net drives a primitive input pin
through that pin class and the driver of that net cannot reach
the primitive input pin solely from within the logic block.
A net adds a count of one to a pin class of output pins if
and only if the primitive output pin of that net drives that
pin class and there exists one primitive input pin driven by
the net that cannot be reached solely from within the logic
block.

To illustrate the nuances of pin counting, we revisit the
logic block described in Fig. 2. We show the effect of pack-
ing the netlist in Fig. 5 to that logic block. This netlist
consists of a LUT L and a logical mux M. Fig. 6 shows an
intermediate packing solution that placed the LUT L in the
top LUT position and the mux M in the mux location. We
start by describing the pin classes in the logic block, then
we describe the utilization of each pin class.

25

The logic block input pin classes are 11, 12, and I3. The
logic block output pin classes are O1 and O2. The dual-LUT
subcluster input pin class is SI1 and the subcluster output
pin class is SO1. There is some subtlety in determining pin
class I1. All four top input pins of the logic block belong to
the same pin class. A LUT has logically equivalent inputs
so the top three input pins are grouped together and the
second, third, and fourth input pins are grouped together.
Moreover, since the second and third input pins are common
to both groups, all four pins are merged into the same pin
class. The capacity of each pin class is determined by the
number of pins it grouped. We label this value in the figure
as the denominator of the fraction displayed beside each pin
class. For pin class I1, the capacity is 4.

The utilization of each pin class is determined by the nets
connected to the primitives within the logic block. This
value is displayed as the numerator in the fraction beside
each pin class in the figure. Observe the following sublety:
Net a requires two logic block input pins because of the lack
of internal flexibility in the logic block. This behaviour is
captured by the separation into pin classes I1 and 12. This
is in contrast to net b which only needs to consume one
pin because of internal fanout within the logic block. This
connectivity is captured in pin class I1. Net M from the
logical mux must traverse outside the logic block to reach
the LUT input. This is represented as consuming one count
of pin class O2 and one count of pin class I1. Net c¢ il-
lustrates how interconnect-aware pin counting is optimistic.
Without the ability to detect that it is necessary to route
through the dual-LUT subcluster to reach the mux select
line, we see that our pin counting technique optimistically
uses 3 of 4 pins in SI1, when in fact all 4 must be used in
a detailed route. These examples illustrate which proper-
ties interconnect-aware pin can capture and which it cannot
capture.

To summarize, we list the properties and limitations of
interconnect-aware pin classes as follows:

e Acts as an optimistic filter. Cases that fail interconnect-
aware pin counting will fail to route while cases that
pass may or may not successfully route.

e Sparse interconnect is approximated as fully flexible.

e Does not account for situations where a net routes
through a subcluster without connecting to any prim-
itive within the subcluster.

e Internal feedback/feedfoward connections within a logic
block/subcluster are discovered before packing and ac-
counted for during pin counting.

e Only returns pass/fail. Does not give hints to guide
future candidate selection.

4.3 Pre-Packing

Logic blocks sometimes contain inflexible routing struc-
tures. These structures can cause complications in a greedy
packer because different stages of the packer become nec-
essarily coupled. We illustrate this coupling using carry
chains as an example. A carry chain is an important struc-
ture that enables the fast computation of wide logical adders
by chaining together smaller physical adders using fast, in-
flexible carry links. In the packing stage of the VTR CAD
flow, a logical adder is represented by multiple smaller adder



Arithmetic Logic Block

Figure 7: A bus-based arithmetic logic block

atoms that link together to form the logical adder. The
packer must map the adder atoms to physical adder prim-
itives in such a way that the physical chain can implement
those logical links. An incorrect grouping or placement of
the atoms during packing can result in failed (internal-to-
the-block) routing because carry connections may become
impossible to route. This example shows how inflexibility in
interconnect can cause strong coupling among the candidate
selection and placement stages in packing. This coupling is
not unique to carry chains. We observe this coupling effect
in multiple other logic block constructs including primitives
with registered inputs/outputs, datapath arithmetic blocks
with compound operations such as multply-add, and others.

We employ a pre-packing technique to capture coupling
from restrictive interconnect in a generic and simple way.
The architect is asked to identify (in the architecture file)
groups of primitives joined together using inflexible intercon-
nect. These groups and their links are called pack patterns.
Before packing, groups of netlist atoms that match a pack
pattern are grouped together into what is called a molecule.
We call this stage the pre-packing stage. During packing,
molecules are treated as though they are an atom and can
only map to primitives that form the same pack pattern as
the molecule.

Fig. 7 shows an example of the concept of pack patterns
and molecules. This arithmetic logic block can perform both
basic multiplication and addition, as well as combined op-
erations such as multiply-add and registered arithmetic. If
the architect intends for combined operations to be kept to-
gether during packing, then the architect should indicate
that intent by specifying four pack patterns as follows: 1)
Multiply-add, 2) Registered multiply, 3) Registered add, and
4) Registered multiply-add.

4.4 Other Modifications

Unlike the previous modifications which enable the packer
to adapt to the detailed interconnect of a logic block, the
enhancements described in this section are general improve-
ments to the packer. We discuss three important improve-
ments: First, more accurate timing analysis during packing
that uses delay values from the architecture description file.
Second, best-fit intra-logic block placement. Third, special
case handling for high fanout nets.

Accurate Timing Analysis

The original AAPack tool computes timing criticality based
on a delay graph that is a function of only the netlist. We
modified the delay graph to also include architectural infor-
mation. The delay model of an atom is taken from the delay
model of the smallest physical primitive in the architecture
that can implement that atom. In addition, we model inter-
connect delay between atoms with a single constant based
on inter-logic block wire delays.

26

Best-Fit Placement

We modified the intra-logic block placement function to
employ best-fit placement instead of first-fit placement. The
intra-logic block placer in [9] employs a first-fit algorithm to
determine where to place a candidate atom within a logic
block. This can lead to quality of results being heavily de-
pendant on how a logic block is described in the architecture
file because the placer will not examine any other primitives
after it encounters one unused primitive that can implement
the candidate atom.

Our best-fit placement iterates through all valid primi-
tives and returns the primitive with the least cost that can
implement the candidate atom. The base cost of a primitive
is equal to the number of pins of that primitive. This en-
courages the placer to select smaller primitives before bigger
primitives. When a primitive is used, the cost of each un-
used primitive is reduced by 0.1* where a is the depth of the
used primitive to the closest ancestor of that unused prim-
itive and the value 0.1 is an empirically derived parameter.
This encourages the placer to consider primitives in used
sections of the logic block hierarchy before unused sections.

High Fanout Nets Handling

The original AAPack tool, along with many prior aca-
demic packers, have scalability problems with circuits that
contain high fanout nets. In the original AAPack, all atoms
connected to a high fanout net are considered during pack-
ing. Since a high fanout net reaches many atoms, that pool
of weakly connected atoms is considered several times over
the course of packing. This ultimately results in a runtime
cost that is quadratic with the number of terminals for a
high fanout net.

We modified the attraction function to initially ignore
high fanout nets when packing to a logic block. When these
candidate atoms are exhausted, then the algorithm prior-
itizes selecting candidate atoms connected by high fanout
nets that are connected to the currently active cluster before
considering completely unrelated logic. A net is considered
to be high fanout when it exceeds 64 terminals.

5. RESULTS

In this section, we measure the impact of the new algo-
rithms introduced in the previous section on the quality of
results and runtime of the packer. We also illustrate how the
new, complete packer adapts to architectures with increasing
levels of interconnect complexity. We label the prior version
of AAPack, released in the VTR 1.0 suite, as AAPack 6.0,
and this new version released in VTR 7.0 as AAPack 7.0.

5.1 Experimental Setup

We use the VTR 7.0 CAD flow [11] in these experiments
as shown in Fig. 8. This flow takes as input a benchmark
Verilog circuit and an FPGA architecture description file.
The flow maps the circuit to the architecture described in
that file then outputs statistics about that final mapping.
We use Odin II for elaboration, ABC for logic synthesis, one
of AAPack 6.0 or AAPack 7.0 for packing, and VPR 7.0 for
placement and routing. VPR is left at default values [10]
except the placement option inner_num is set to 10.0%.

IThis placement algorithm option aligns VPR 7 placement
with prior versions of VPR.



Benchmark
Circuit

] AAPack-E
o I <y g
Architecture or
Description AAPack 6.0

VPR 7.0
Placement and
Routing 7

Results

Figure 8: The experimental CAD flow

Soft Logic Block

Fracturable [} ,
e LEO 2

Crossbar
60x60

Fracturable || , In Fracturable

™

40 external
2 LE1 Lt
Genera/ @] inputs | 2 120 General
inputs 140 Outputs
20 !
feedback ]
H
H

lines Fracturable || ,
6 LE2 5

60 BLE
inputs

NI NI NI

Fracturable
6 LE9 b

Figure 9: The baseline soft logic block architecture.

We use the VTR 7.0 benchmarks for our experiments. The
VTR 7.0 benchmarks are a standard set of Verilog circuits
that come from a variety of different applications including
computer vision, medical, math, soft processors, etc. These
circuits contain heterogeneous elements, such as memories
and multipliers, which differentiate them from older FPGA
benchmarks. These benchmarks range from a few hundred
6-LUTs in size to just over a hundred thousand 6-LUTs.
Most contain memories and/or multipliers of varying quan-
tities and sizes. For example, the circuit stereovision2
contains 564 logical multipliers and the circuit meml con-
tains 30 logical multipliers and 10 memory blocks totalling
5 Mb. These benchmarks are very similar to the VIR 1.0
benchmarks [17], but have some minor Verilog changes.

The baseline FPGA architecture used in these experi-
ments is a 40nm CMOS heterogeneous architecture released
in VTR 7.0 called k6_frac_N10_mem32K_40nm.xml. Fig. 9
shows the soft logic blocks of this architecture which is loosely
modelled from an Altera Stratix IV FPGA [1]. A soft logic
block has 40 inputs, 20 outputs, and 10 fracturable 6-LUTs.
A fully populated internal crossbar connects all logic block
inputs to fracturable LUT inputs and provides feedback con-
nections within the logic block. Each fracturable 6-LUTs
can optionally operate as two five LUTs with some shared
inputs. The 5-LUTSs are set to share all 5 inputs. This shar-

27

Table 1: Results of VTR CAD flow using AAPack
7.0 across 19 benchmarks.

Circuit Min Crit Pack Num Ex Num
A% Delay Time Nets CLBs
(ns) (s)
bgm 114 25.71 198.2 21.1K 2930
blob_merge 72 10.47 17.45 3069 543
boundtop 58 6.51 6.56 2200 233
ch_intrinsics 48 3.89 0.77 430 37
diffeql 50 21.50 0.72 717 36
diffeq2 52 17.04 0.52 468 27
LUSPEEng 108 111.81 84.89 16.3K 2104
LU32PEEng 168 115.39 429.25 54.2K 7128
mcml 94 81.73  681.78 52.4K 6615
mkDelayWorker32B 80 7.40 19.99 5224 447
mkPktMerge 48 4.57 0.64 972 15
mkSMAdapter4B 54 5.85 5.26 1597 165
or1200 72 13.29 8.3 2499 257
raygentop 70 5.04 7.54 1964 173
sha 50 13.77 10.58 1304 209
stereovision( 58 4.23 33.54 7936 905
stereovisionl 102 5.65 38.63 11.1K 889
stereovision2 154 19.68 82.37 34.5K 2395
stereovision3 34 2.72 0.17 122 13

ing more closely resembles a Virtex 6 fracturable LUT [21]
than a Stratix IV fracturable LUT. It was chosen because
this reduces the size of the internal crossbar to more closely
match the number of switch points in a Stratix IV depopu-
lated internal crossbar. All LUTs have optionally registered
outputs. This architecture contains fracturable multipliers,
where each multiplier can operate as one large 36x36 mul-
tiplier or two fracturable 18x18 multipliers. A fracturable
18x18 multiplier can operate as one 18x18 multipier or two
9x9 multipliers. Finally, this architecture contains config-
urable memories. Each memory has 32Kb and can operate
in aspect ratios ranging from 32Kx1 to 512x64. The area
and delay values of this architecture are mostly chosen to
match a Stratix IV FPGA [1].

The machine used in this experiment has two Intel Xeon
5160 processors running at 3 GHz. Each processor has two
cores with 4 MB of L2 cache. Each machine has a total of
8 GB of shared memory. Although this machine is capa-
ble of parallelism, we chose to run our experiments single-
threaded.

5.2 AAPack 7.0 vs AAPack 6.0

In this experiment, we compare AAPack 7.0 with the orig-
inal AAPack 6.0 in the context of the full CAD flow. The
architecture used is the baseline architecture previously de-
scribed.

Table 1 shows the absolute values of running the VTR
flow using AAPack 7.0. The leftmost column lists the cir-
cuit used. After that, from left to right, the columns are as
follows: 1) The minimum channel width (min W) needed to
route the circuit; 2) The critical path delay in nanoseconds
when the circuit is routed at 1.3 times minimum W for the
current flow (this follows historical precedant to route the
circuit under reasonable stress); 3) The time needed to pack
the circuit in seconds; 4) The number of external nets (nets
that are routed between logic blocks); and 5) The number of
soft logic blocks used in each benchmark. This table serves
as the baseline values from which the later relative compar-
isons are made.



Table 2: Relative comparison of AAPack 7.0 over

A APack 6.0.
Circuit Min Crit Pack Num Ex Num
W  Delay Time Nets CLBs
bgm 0.71 0.83 0.45 0.89 1.00
blob_merge 0.78 1.00 0.16 0.82 1.00
boundtop 0.78 0.85 0.03 0.86 0.95
ch_intrinsics 0.89 1.01 0.04 0.92 0.93
diffeql 1.00 0.96 0.10 0.94 0.92
diffeq2 1.08 0.93 0.07 0.91 1.00
LUSPEEng 0.77  0.95 0.18 0.98 1.02
LU32PEEng 0.72 097 0.18 0.98 1.02
mcml 0.48  0.97 0.08 0.89 0.97
mkDelayWorker32B  0.80  0.92 0.07 0.91 1.01
mkPktMerge 1.00 1.06 0.14 0.99 1.00
mkSMAdapter4dB 0.77  0.89 0.02 0.91 0.97
or1200 0.86  0.98 0.06 0.87 0.97
raygentop 0.92 1.00 0.11 0.90 1.01
sha 0.74 1.00 0.04 0.71 0.99
stereovisionQ 0.66 0.78 0.06 0.92 1.09
stereovisionl 0.82 0.92 0.06 0.92 1.09
stereovision2 0.71 0.92 0.08 0.94 1.06
stereovision3 1.00 0.90 0.05 0.89 1.00
geomean 0.80 0.94 0.08 0.90 1.00
stdev 0.17  0.07 0.12 0.05 0.04

Table 2 measures how well AAPack 7.0 performs relative
to AAPack 6.0. Each value is presented as a ratio of AAPack
7.0 over AAPack 6.0. The columns are the same as columns
1-5 of Table 1. For packer runtime, AAPack 7.0 is 12-fold
faster than AAPack 6.0. This illustrates the effectiveness
of our techniques. The interconnect of this architecture is
simple enough that the combination of interconnect-aware
pin counting and LUT/FF molecules is sufficient for spec-
ulated solutions to always route. This enables AAPack 7.0
to successfully skip many of the intermediate detailed rout-
ing checks that AAPack 6.0 invokes resulting in a speed up.
Profiling the packer revealed that detailed routing checks
dropped from over 90% of pack time in AAPack 6.0 to
approximately 10% in AAPack 7.0 which further confirms
this causative link. In terms of quality of results, AAPack
7.0 absorbs nets better resulting in a 10% reduction in the
number of external nets which leads to the 20% reduction
in minimum channel width. Critical path delay is reduced
by 6%. These quality of results improvements show that
pre-packing, best-cost placement, and more accurate timing
analysis are effective techniques towards reducing inter-logic
block routing stress and enabling better delay optimizations.
We conclude that AAPack 7.0 produces packed circuits that
are better than AAPack 6.0 and can do so at much lower
runtime.

Table 3 measures the effect of packing quality on place-
ment and routing runtime. The leftmost column lists the cir-
cuit used. The middle column lists the relative time needed
to place the circuit. The rightmost column lists the rela-
tive time needed to route the circuit at a fixed route of 1.3
times minimum W. Each value is presented as a ratio of
AAPack 7.0 over AAPack 6.0. The results show that place-
ment time is reduced by 8% and fixed route time by 18% on
average. The speedup from using AAPack 7.0 in placement
and fixed channel width routing is a result of the reduction
in the number of external nets. Fewer external nets reduces
the time needed for the placer to update costs and reduces
the load on the router. We conclude that the higher quality

28

Table 3: Relative place-and-route runtime compar-
ison of circuits packed by AAPack 7.0 over circuits
packed by AAPack 6.0.

Circuit Place Time Fixed Route Time
bgm 0.90 0.68
blob_merge 0.89 0.74
boundtop 0.88 0.65
ch_intrinsics 0.87 0.83
diffeql 0.93 0.91
diffeq2 0.92 0.92
LUSPEEng 0.89 0.78
LU32PEEng 0.96 0.93
mcml 0.96 0.59
mkDelayWorker32B 0.89 0.87
mkPktMerge 1.01 0.95
mkSMAdapter4B 0.90 0.72
or1200 0.90 0.78
raygentop 0.94 0.85
sha 0.77 0.80
stereovision(Q 0.92 0.82
stereovisionl 0.95 1.04
stereovision2 1.01 0.76
stereovision3 1.09 1.25
geomean 0.92 0.82
stdev 0.04 0.13
Carry in
[
Inputs =
»
i Sum out
Unused E
5-LUT g
Input E
Carry out
Figure 10: Interaction between 5-LUT and carry

chain adder

packing from AAPack 7.0 reduces the runtime of placement
and routing.

5.3 Architecture Adaptiveness

In this experiment, we measure how well AAPack 7.0
adapts to architectures with varying levels of interconnect
complexity. We make two main comparisons. The first
compares how AAPack 7.0 performs on different architec-
tures with respect to a baseline architecture. The second
compares how AAPack 7.0 performs on these same architec-
tures against AAPack 6.0.

We run the VTR benchmarks using the same VTR flow
as earlier on five different architectures with varying types
of interconnect. All these architectures are variations of the
k6_frac_N10_mem32K_40nm.xml baseline. The first architec-
ture has simpler soft logic blocks by replacing the fracturable
6-LUTs with non-fracturable 6-LUTs. The second architec-
ture adds carry chains to the baseline. Fig. 10 shows how
the adder is integrated with the fracturable LUT. When
the fracturable 6-LUT is operating in dual 5-LUT mode,
each 5-LUT further fractures into two 4-LUTSs that drive
one hardened adder bit. Dedicated carry links join all 20
hard adders together and also establishes connections to the



Table 4: Comparison of how AAPack 7.0 performs
on different architectures vs the baseline architec-

ture.
Architecture Pack Time Num Ext Nets Num CLBs
Non-fracturable 0.41 1.02 1.33
Carry Chain 1.50 1.20 1.14
Xbar 0.5 1.73 1.02 1.01
Xbar 0.25 1.46 1.09 1.01
Xbar 0.1 14.21 1.09 1.07

soft logic block carry input and carry output pins. The next
three architectures replace the complete internal crossbar of
the baseline with a depopulated crossbar. A depopulated
crossbar is a crossbar where some of the switch points are
removed thus reducing area at the cost of less connectivity.
A crossbar that uses 25% of all possible switch points is 25%
populated. The third, fourth, and fifth architectures have
crossbars populated at 50%, 25%, and 10% respectively.

Table 4 shows the results of AAPack 7.0 on different ar-
chitectures normalized to the results from the baseline ar-
chitecture. The leftmost column lists the architecture be-
ing investigated. Moving rightwards, the next columns are
pack time, number of external nets, and number of soft logic
blocks. The values shown are the geometric mean across all
19 benchmarks normalized to the baseline. These results
show the general trend that AAPack 7.0 runtime is faster
for architectures with simpler interconnect and slower for
architectures with more complex interconnect. AAPack 7.0
runs more than twice as fast for a simple, non-fracturable
LUT architecture. AAPack 7.0 runs slower for architec-
tures with a carry chain or a depopulated internal cross-
bar. At the extreme, a very sparse 10% populated crossbar
runs 14-fold slower than the same architecture with a full
crossbar because interconnect-aware pin counting no longer
accurately captures the complexities of sparsity. This ex-
periment also demonstrates other findings. First, it shows
a proof-of-concept that pre-packing enables the packer to
target carry chain architectures. Second, this experiment
shows that quality of results for architectures with depopu-
lated internal crossbars can remain fairly high. For example,
at 50% population, the packer produces 1% more soft logic
blocks and 2% more external nets on average.

The next experiment examines how AAPack 7.0 performs
compared to AAPack 6.0 for the same set of architectures.
We exclude the carry chain architecture in this comparison
because AAPack 6.0 is not capable of packing to architec-
tures with carry chains. Table 5 shows the results of this
experiment. The columns are the same as for Table 4. The
values shown are the geometric mean across all 19 bench-
marks of the AAPack 7.0 runs normalized to the AAPack
6.0 runs. For classic, non-fracturable LUT, architectures,
pack time is 6.7-fold faster with 3% fewer external nets.
AAPack 7.0 is 6-fold faster for soft logic blocks that con-
tain crossbars at 50% and 25% population. We notice a
large 10% to 12% reduction in external nets which indicates
that AAPack 7.0 packs to soft logic blocks with depopu-
lated crossbars better than AAPack 6.0. Lastly, we notice
that for the very low 10%-populated crossbar, AAPack 6.0
no longer packs efficiently requiring 27% more CLBs than
AAPack 7.0. However, AAPack 7.0 only runs 2.4-fold faster
than AAPack 6.0 for this architecture because the sparsity
of the crossbar causes AAPack 7.0 to invoke detailed rout-

29

Table 5: Comparison of AAPack 7.0 vs AAPack 6.0
across different architectures.

Architecture Pack Time Num Ext Nets Num CLBs
Non-fracturable 0.15 0.97 1.00
Xbar 0.5 0.15 0.90 1.00
Xbar 0.25 0.13 0.88 1.00
Xbar 0.1 0.41 0.87 0.79

ing for many of the partially packed solutions. These results
show that AAPack 7.0 performs better than AAPack 6.0
across all architectures and AAPack 7.0 better adapts to
architectures with complex interconnect than AAPack 6.0.

6. CONCLUSIONS AND FUTURE WORK

We have presented key enhancements in AAPack 7.0 that
enables the tool to adapt to the underlying interconnect of
an FPGA architecture. These enhancements speed up a
state-of-the-art flexible packer by 12-fold, while simultane-
ously lowering minimum channel width by 20% and lower-
ing critical path delay by 6% on a modern style FPGA. We
demonstrate that these enhancements provide more robust
packing across a diverse range of architectures, including ar-
chitectures with carry chains and architectures with depop-
ulated crossbars. This work is a key step towards a flexible
packing tool that can adapt its computational effort based
on the difficulty of the underlying interconnect architecture.

In the future, we intend to use AAPack 7.0 to investigate
new logic block architectures. We identify the interplay be-
tween fracturable LUTSs, carry chain architecture, and de-
populated crossbars as an interesting direction to explore.

7. REFERENCES

[1] Altera Corporation. Stratix IV Device Family Overview.

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf,

November 2009.

[2] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
Norwell, Massachusetts, 1999.

[3] E. Bozorgzadeh, S. Memik, and M. Sarrafzadeh. RPack:
Routability-driven Packing for Cluster-Based FPGAs. In
ASP-DAC ’01: Proceedings of the 2001 Asia and South
Pacific Design Automation Conf., pages 629-634, New York,
NY, USA, 2001. ACM.

[4] D. Chen, K. Vorwerk, and A. Kennings. Improving
Timing-Driven FPGA Packing with Physical Information. Int’l
Conf. on Field Programmable Logic and Applications, pages
117-123, 2007.

[5] J. Cong, J. Peck, and Y. Ding. RASP: A general logic synthesis
system for SRAM-based FPGAs. In Proceedings of the 1996
ACM fourth international symposium on Field-programmable
gate arrays, pages 137-143. ACM, 1996.

[6] G. Lemieux and D. Lewis. Design of Interconnection Networks
for Programmable Logic. Kluwer Academic Publishers,
Norwell, Massachusetts, 2004.

[7] J. Lin, D. Chen, and J. Cong. Optimal Simultaneous Mapping
and Clustering for FPGA Delay Optimization. In ACM/IEEE
Design Automation Conf., pages 472-477, 2006.

[8] A. Ling, J. Zhu, and S. Brown. Scalable Synthesis and
Clustering Techniques Using Decision Diagrams. IEEE Trans.
on CAD, 27(3):423, 2008.

[9] J. Luu, J. Anderson, and J. Rose. Architecture Description and

Packing for Logic Blocks with Hierarchy, Modes and Complex

Interconnect. In Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays,

FPGA ’'11, pages 227-236, New York, NY, USA, 2011. ACM.

J. Luu, J. Goeders, T. Liu, A. Marquardt, I. Kuon,

J. Anderson, J. Rose, and V. Betz. VPR User’s Manual

(Version 7.0).

(10]

http://code.google.com/p/vtr-verilog-to-routing/downloads/list,

2013.


http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://code.google.com/p/vtr-verilog-to-routing/downloads/list

(11]

(12]

(13]

(14]

(15]

(16]

J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu,

K. Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B.
Kent, J. Anderson, J. Rose, and V. Betz. Verilog-to-Routing
7.0. https://code.google.com/p/vtr-verilog-to-routing/, 2013.
A. Marquardt, V. Betz, and J. Rose. Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA Speed
and Density. ACM Int’l Symp. on FPGAs, pages 37-46, 1999.
L. McMurchie and C. Ebeling. PathFinder: A
Negotiation-Based Performance-Driven Router for FPGAs. In
ACM Int’l Symp. on FPGAs, pages 111-117, 1995.

K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Titan:
Eabling Large and Complex Benchmarks in Academic CAD.
2013.

G. Ni, J. Tong, and J. Lai. A New FPGA Packing Algorithm
Based on the Modeling Method for Logic Block. In IEEE Int’l
Conf. on ASICs, volume 2, pages 877880, Oct. 2005.

D. Paladino. Academic Clustering and Placement Tools for
Modern Field-Programmable Gate Array Architectures.
Master’s thesis, University of Toronto, Toronto, Ontario,
Canada, 2008.

30

(17]

(18]

(19]

[20]

[21]

J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders,

A. Somerville, K. B. Kent, P. Jamieson, and J. Anderson. The
VTR Project: Architecture and CAD for FPGAs from Verilog
to Routing. In ACM Int’l Symp. on FPGAs, pages 77-86,
2012.

A. Sharma, S. Hauck, and C. Ebeling. Architecture-adaptive
routability-driven placement for FPGAs. In Field
Programmable Logic and Applications, 2005. International
Conference on, pages 427-432. IEEE, 2005.

A. Singh, G. Parthasarathy, and M. Marek-Sadowksa. Efficient
Circult Clustering for Area and Power Reduction in FPGAs.
ACM Trans. on Design Automation of Electronic Systems,
7(4):643-663, Nov 2002.

K. Wang, M. Yang, L. Wang, X. Zhou, and J. Tong. A Novel
Packing Algorithm for Sparse Crossbar FPGA Architectures. In
Int’l Conf. on Solid-State and Integrated-Circuit Technology,
pages 2345-2348, 2008.

Xilinx Inc. Xilinx Virtex-6 Family Overview.

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf,

2009.


https://code.google.com/p/vtr-verilog-to-routing/
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

	Introduction
	Prior Work
	Problem Definition
	Packing Problem
	Example of Packing

	Interconnect-Aware Packing
	Speculative Packing
	Interconnect-Aware Pin Counting
	Pre-Packing
	Other Modifications

	Results
	Experimental Setup
	AAPack 7.0 vs AAPack 6.0
	Architecture Adaptiveness

	Conclusions and Future Work
	References



