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Abstract—Guarded evaluation is a power reduction technique
that involves identifying sub-circuits (within a larger ci rcuit)
whose inputs can be held constant (guarded) at specific times
during circuit operation, thereby reducing switching activity and
lowering dynamic power. The concept is rooted in the property
that under certain conditions, some signals within digitaldesigns
are not “observable” at design outputs, making the circuitry
that generates such signals a candidate for guarding. Guarded
evaluation has been demonstrated successfully for ASICs; in this
paper, we apply the technique to FPGAs. In ASICs, guarded
evaluation entails adding additional hardware to the design,
increasing silicon area and cost. Here, we apply the technique in a
way that imposes minimal area overhead by leveraging existing
unused circuitry within the FPGA. The primary challenge in
guarded evaluation is in determining the specific conditions
under which a sub-circuit’s inputs can be held constant without
impacting the larger circuit’s functional correctness. Wepropose
a simple solution to this problem based on discovering gating
inputs using “non-inverting” and “partial non-inverting” paths
in a circuit’s AND-inverter graph representation. Experimental
results show that guarded evaluation can reduce switching
activity on average by as much as32% and 25% for 6-LUT and 4-
LUT architectures, respectively. Dynamic power consumption in
the FPGA interconnect is reduced on average by as much as24%
and 22% for 6-LUT and for 4-LUT architectures, respectively.
The impact to critical path delay ranges from 1% to 43%,
depending on the guarding scenario and the desired power/delay
trade-off.

Index Terms—Field-programmable gate arrays, FPGAs,
power, optimization, low-power design, logic synthesis, technology
mapping.

I. I NTRODUCTION

Modern FPGAs are widely used in diverse applications,
ranging from communications infrastructure, automotive,to
industrial electronics. They enable innovation across a broad
spectrum of digital hardware applications, as they reduce
product cost, time-to-market, and mitigate risk. However,
their use in the mainstream marketis often elusivedue to
their high power consumption. Programmability in FPGAs is
achieved through higher transistor counts and larger capac-
itances, leading to considerably more leakage and dynamic
power dissipation compared to ASICs for implementing a
given function [15].
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Recent years have seen intensive research activity on reduc-
ing FPGA power through innovations in CAD, architecture,
and circuits. In this paper, we attack FPGA dynamic power
consumption in the logic synthesis stage of the CAD flow
using an approach known asguarded evaluation, which has
been used successfully in the custom ASIC domain [26].
Recall that dynamic power in a CMOS circuit is defined by:
Pavg = 1

2

∑

i∈nets

Ci · fi · V
2, whereCi is the capacitance

of a net i; fi is the toggle rate of neti, also known as
net i’s switching activity; V is the voltage supply. Guarded
evaluation seeks to reduce net switching activities by mod-
ifying the circuit network. In particular, the approach taken
is to eliminate toggles on certain internal signals of a cir-
cuit when such toggles are guaranteed to not propagate to
overall circuit outputs. This reduces switching activity on
logic signals within the interconnection fabric. Prior work has
shown that interconnect comprises 60% of an FPGA’s dynamic
power [25], due primarily to long metal wire segments and
the parasitic capacitance of used and unused programmable
routing switches.

Guarded evaluation comprises first identifying an internal
signal whose value does not propagate to circuit outputs under
certain conditions. A straightforward example is anAND gate
with two input signals,A andB. Values on signalA do not
propagate to circuit outputs whenB is logic-0 (the condition).
Thus, toggles onA are an unnecessary waste of power when
B is logic-0. Having found a signal and condition, guarded
evaluation then modifies the circuit to eliminate the toggles
on the signal when the condition is true. Returning to the
example, the inputs to the circuitry that produceA can be
held at a constant value (guarded) when the condition is true,
reducing dynamic power. The computationally difficult aspect
of the process is in finding signals (such asA) and computing
the conditions under which they are not observable, as these
steps depend on an analysis of the circuit’s logic functionality.

In this paper, we propose several techniques which make
guarded evaluation appropriate for FPGAs. We modify the
technology mapping stage of the FPGA CAD flow to produce
mappings with opportunities for guarded evaluation. After
mapping, we modify the LUT configurations (logic functions)
and alter network connectivity to incorporate guards, reducing
switching activity and dynamic power. Unlike guarded eval-
uation in ASICs, which involves adding additional circuitry
(increasing area and cost), our approach uses unused circuitry
that is already available in the FPGA fabric, making itless
expensivefrom the area perspective. Specifically, input pins
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on LUTs are frequently not fully utilized in modern designs,
and we use the available free inputs on LUTs for guarded eval-
uation. This implies that we do not add in any additional LUTs
when implementing guarding, but rather only add a minimal
amount of extra connections into the network. In our approach,
identifying the conditions under which a given signal can be
guarded is accomplished by analyzing properties of the logic
synthesis network, which is an And-Inverter Graph (AIG). In
particular, we show that the presence of “non-inverting” and
“partial non-inverting” paths in the AIG can be used to drive
the discovery of guarding opportunities. This structural-based
approach to determining guarding opportunities proves to be
very efficient. Finally, we consider the introduction of different
types of guarding logic (as opposed to transparent latches
which are used for ASICs) to reduce unnecessary transient
switching.

A preliminary version of a portion of this work appeared
in [6]. In this extended journal version, we describe an
additional form of guarding that provides improved results,
namely, guarding opportunities that arise from partial non-
inverting paths in theAIG. We also consider the consequences
of forcing guarded signals into the logic-1 state, rather than
solely forcing to the logic-0 state. Finally, we consider a
variety of different FPGA logic block architectures beyond
that considered in the conference version. In particular, we
examine architectures with 4- and 6-input LUTs, as well as
architectures with different numbers of LUTs per logic block.
Results show that the benefit of guarding on power reduction
depends strongly on the underlying architecture of the target
FPGA’s logic.

The remainder of the paper is organized as follows: Sec-
tion II presents background and related work on technol-
ogy mapping for FPGAs, power optimization, and describes
guarded evaluation in the ASIC context. The proposed ap-
proach is described in Section III. An experimental study
appears in Section IV. Conclusions and suggestions for future
work are offered in Section V.

II. BACKGROUND

A. FPGA Technology Mapping

Here we review the approach used by modern FPGA
technology mappers, which are based on finding cuts in
Boolean networks [24], [11]. The first step is to represent
the combinational portion of a circuit as a directed acyclic
graph,G(V,E). Each node inG represents a logic function,
and edges between nodes represent dependencies among logic
functions. Before mapping commences, the number of inputs
to each node must be less than the number of inputs of the
target look-up-table (K).

Fig. 1(a) illustrates cuts for a nodex in a circuit graph. A cut
for x is a partition,(V, V ), of the nodes in the subgraph rooted
at x, such thatx ∈ V . For x’s cut C1 in Fig. 1(a),V consists
of two nodes,x andm. Forx’s cutC2 in the figure,V consists
of x,m, t, and l. A cut is calledK-feasible if the number of
nodes inV that drive nodes inV is less than or equal toK.
In the case of cutC1, there are 3 nodes that drive nodes in
V and, the cut is 3-feasible. For a cutC = (V, V ), Inputs(C)
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Fig. 1: (a) Cuts in circuit graph; (b) And-Inverter Graph (AIG)
example.
represents the nodes inV that drive a node inV . For the cut
C1 in Fig. 1(a),Inputs(C1) = {l, s, t}. Nodes(C) represents
the set of nodes,V . In Fig. 1(a),Nodes(C1) = {x,m}.

For aK-feasible cut,C, the logic function of the subgraph
of nodes,V , can be implemented by a singleK-LUT. The
reason for this is that the cut isK-feasible and aK-LUT
can implementany function of up toK inputs. Hence, the
problem of finding all of the possibleK-LUTs that generate
a node’s logic function can be cast as the problem of finding
all K-feasible cuts for the node. There are generally many
K-feasible cuts for each node in the network, corresponding
to multiple potential LUT implementations.

Enumerating cuts for each node in the circuit is accom-
plished by traversing circuit nodes in topological order from
inputs to outputs. As each node is visited, its complete set of
K-feasible cuts in generated by merging cuts from its fanin
nodes [11], [24].

Having computed the set ofK-feasible cuts for each node
in the circuit graph, the graph is traversed in topological
order again. During this traversal, a “best cut” is chosen for
each node. The best cut reflects design optimization criteria,
typically, area, power, delay or routability. The best cutsdefine
the LUTs in the technology mapped circuit.

As mentioned, the first step in technology mapping toK-
LUTs is to represent the network (combinational logic) as a
directed acyclic graph such that the number of inputs to each
node is less than or equal toK. A common data structure
for this representation is anAND-Inverter Graph (AIG) in
which the circuit is represented solely as a network of2-input
AND gates and inverters. An example of an AIG is shown in
Fig. 1(b). Inverters are not represented explicitly as nodes in
the graph, but rather as properties on graph edges. The AIG has
been shown useful for many logic synthesis transformations
and as a useful starting point for FPGA technology mapping as
exemplified by the ABC tool [22], [21].We therefore choose
to investigate guarded evaluation within the ABC framework
and to exploit the properties of AIGs to aid in performing
guarded evaluation.

B. Power-Aware Mapping

Power-aware cut-based technology mapping has been stud-
ied recently (e.g., [16], [14]). The core approach taken is to
keep signals with high switching activity out of the FPGA’s
interconnection network (which presents a high capacitive
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load). This is achieved by costing cuts to encourage such high
activity signals to be captured within LUTs, leaving only low
activity inter-LUT connections. A second aspect of power-
aware mapping pertains to logic replication. Logic replication
is needed to achieve mappings with low depth (high speed).
However, replication can increase power[16], as replication
increases signal fanout and capacitance. Replications can
therefore be detected and cost accordingly, trading off their
power “cost” with their depth “benefit”.

C. Guarded Evaluation

Tiwari et al. [26] first described important techniques for
guarded evaluation in ASICs.The key idea is shown in Fig. 2.
In Fig. 2(a), a multiplexer is shown receiving its inputs from
a shifter and a subtraction unit, depending on the value of
select signalSel. Fig. 2(b) shows the circuit after guarded
evaluation.Guard logic, comprised of transparent latches, is
inserted before the functional units. The latches are transparent
only when the output of the corresponding functional unit is
selected by the multiplexer, i.e., depending on signalSel.
When the output of a functional unit is not needed, the
latches hold its input constant, eliminating toggles within
the unit. Here, one can viewSel as the “guarding signal”.
Tiwari applied this concept to gate-level networks, where the
difficulty was in determining which signals could be used as
guarding signals for particular sub-circuits. Tiwari usedbinary
decision diagrams to discover logical implications that permit
certain sub-circuits to be disabled at certain times.

Abdollahi et al. proposed using guarded evaluation in ASICs
to attack both leakage and dynamic power [3]. The guarding
signals were used to drive the gate terminals of NMOS sleep
transistors incorporated into CMOS gate pull-down networks,
putting sub-circuits into low-leakage states when their out-
puts were not needed.Howland and Tessier studied guarded
evaluation at the RTL level for FPGAs [12]. Their approach
produced encouraging power reduction results by exploiting
select signals on steering elements (multiplexers) to serve as
guarding signals and is therefore limited to specific types of
circuits; e.g., datapath circuits in which multiplexers are used
for resource sharing. Our approach is not directly comparable
since we work on a synthesized LUT network, avoid adding
additional logic into the network, and are not limited to using
only the select lines on multiplexers to act as guarding signals.

In contrast to prior works, which discover only a limited
number of candidate guarding opportunities, our approach
exposes many guarding opportunities through easy-to-compute
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Fig. 2: Guarded evaluation (adapted from [26]).

properties of the logic synthesis network. Furthermore, while
prior approaches required additional hardware to be added to
the design (e.g., transparent latches in Fig. 2),our approach
incurs no overhead (in terms of LUT count) by using existing
yet unused FPGA circuitry, although additional wires are
required to perform guarding.

D. Gating Inputs and Non-Inverting AIG Paths

Technology mapping covers the circuit AIG with LUTs –
each LUT in the mapped network implements a portion of the
underlying AIG logic functionality. A recent work suggested a
new FPGA architecture using properties of the AIG to discover
gating inputsto LUTs [7]. A gating input to a LUT has the
property that when the input is in a particular logic state
(either logic-0 or logic-1), then the LUT output is logic-0,
irrespective of the logic states of the other inputs to the LUT.
We borrow the idea of gating inputs for guarded evaluation
and therefore briefly review the concept here.

Fig. 3(a) gives an example of a LUT and the corresponding
portion of a covered AIG. The logic function implemented by
the LUT is:Z = I ·J ·K ·Q ·M . Examine the AIG path from
the inputI to the root gate of the AIG,Z. The path comprises
a sequence ofAND gates with none of the path edges being
complemented. Recall that the output of anAND gate is logic-
0 when either of its inputs is logic-0. For the path fromI to
Z, whenI is logic-0, the output of eachAND gate along the
path will be logic-0, ultimately producing logic-0 on the LUT
output. We therefore conclude thatI is a gating input to the
LUT. The LUT in Fig 3(a), in fact, has three gating inputs,I,
J , andK. Input J is the same form as inputI in that there
exists a path ofAND gates fromJ to root gateZ and none of
the edges along the path are inverted.

Observe, however, that the situation is slightly differentfor
input K. For inputK, the “frontier” edge crossing into the
LUT is inverted, however, aside from this frontier edge, the
remaining edges along the path fromK to the root nodeZ are
“true” edges. This means that whenK is logic-1, the output
of the AND gate it drives will be logic-0, eventually making
the LUT’s output signalZ logic-0. K is indeed a gating input,
though it isK ’s logic-1 state (rather than its logic-0 state) that
causes the LUT output to be logic-0. In contrast with inputs
I, J andK, LUT inputs Q andM are not gating inputs to
the LUT as neither logic state of these inputs causes the LUT
output to be logic-0. The question of which inputs are gating
inputs is also apparent by inspection of the LUT’s Boolean
equation.

In [7], the gating input idea was generalized and it was
observed that the defining feature of such inputs is the presence
of a non-inverting path from the input through the AIG
to the root node of the AIG. Since by definition, an AIG
contains onlyAND gates with inversions on some edges, one
does not need to be concerned with other gates appearing
in the AIG (e.g.EXOR). Non-inverting paths are therefore
chains ofAND gates without edge inversions. Gating inputs
to LUTs can be easily discovered through a traversal of the
underlying AIG. In [7], the notions of gating inputs and
non-inverting paths were applied to map circuits into a new
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Fig. 3: (a) Identifying gating inputs on LUTs using non-
inverting paths; (b) Identifying trimming inputs on LUTs using
partial non-inverting paths.

logic block architecture that delivers improved area-efficiency.
Here, we apply the ideas for power reduction through guarded
evaluation.

E. Trimming Inputs and Partial Non-Inverting AIG Paths

As previously described, gating inputs are determined by
searching for non-inverting paths from the input to output of
a LUT in the LUT’s underlying AIG representation. However,
more opportunities for guarding can be found by considering
trimming inputs in addition to gating inputs. Consider the
logic function Z = (A ·B · C ·D) · (D · E · F ) illustrated
in Fig. 3(a). There is no non-inverting path from any LUT
input to the LUT output. However, we can observe that a
logic-0 on inputA will still force the output on someAND
gates to be logic-0 as its value propagates towardsZ. We can
identify the AND gate that drives the first inverted edge on
the path fromA to Z and, subsequently, find the fanout-free
cone rooted at the identifiedAND gate; the set of LUT inputs
to this fanout-free cone (excludingA) can be trimmed byA
when A is a logic-0. In this example, this means inputsB
andC can betrimmedwhen inputA is a logic-0. Note that
input D cannot be trimmed since it is not in the fanout free
fanin cone of the affectedAND gates. InputF can be used to
trim inputE (but not inputD) whenF is a logic-0 following
a similar analysis. We refer to, and discover, trimming inputs
by consideringpartial non-inverting pathswhich are simply

defined as non-inverting paths which are internal to the LUT’s
underlying AIG representationand begin at LUT inputs.

The idea of trimming and gating inputs are related to the
Shannon decomposition of a LUT’s logic function as described
in [8]. Recall that anyn-variable logic functionf can be
cofactored with respect to variablexk as follows:

f = xk · f(x0, · · · , xk−1, 1, xk+1, · · · , xn)
+xk · f(x0, · · · , xk−1, 0, xk+1, · · · , xn).

(1)

Here,f(x0, · · · , xk−1, 1, xk+1, · · · , xn) is the 1-cofactor off
with respect toxk andf(x0, · · · , xk−1, 0, xk+1, · · · , xn) is the
0-cofactor off with respect to variablexk. Each cofactor is
itself a logic function with at mostn− 1 variables. In [8], a
trimming input was defined as an input to an-variable function
in which the Shannon decomposition produced a cofactor
having strictly less thatn − 1 inputs. In the case of a gating
input, the Shannon decomposition produces a decomposition
in which one of the cofactors is logic-0. Hence, with respect
to [8], the use of non-inverting paths and partial non-inverting
paths are structural techniques to identify gating and trimming
inputs, respectively.

III. G UARDED EVALUATION FOR FPGAS

We now describe our approach to guarded evaluation,
beginning with a top-level overview, and then describing
how guarding opportunities can be created during technology
mapping, and finally discussing the post-mapping guarding
transformation.

A. Overview

Fig. 4(a) illustrates how gating and trimming inputs to
LUTs can be applied for guarded evaluation. Without loss of
generality, assume that logic-0 is the state of the gating input,
G, that causes LUTZ ’s output to be logic-0. WhenG is logic-
0, Z is also logic-0, and any toggles on the other inputs ofZ
are guaranteed not to propagate throughZ to circuit outputs.
Similarly, if G is a trimming input of, say, inputL (i.e., a
logic-0 on G blocks toggles on signalL from propagating to
signalZ), thenL can also be guarded bysignalG.

SinceL’s single fanout is toZ, L’s output value will not
affect overall circuit outputs whenG is logic-0. Toggles that
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Fig. 5: Inserting guards based on static probability.

occur in computingL’s output whenG is logic-0 are an
unnecessary waste of dynamic power.

In Fig. 4(a),L is a candidate for guarded evaluation by
signalG. If LUT L has a free input, we modify the mapped
network by attachingG to L, and then modifyingL’s logic
functionality as shown in Fig. 4(b). The question is how to
modify L’s logic functionality. In [6], logic functions were
modified to force the LUT output to a logic-0 when guarded.
Here we also consider different types of guards based on signal
probabilities and guarding values.For a signalL, define its
static probability,P (L), as the probability that the signal is
logic-1. Assume a guarding value of logic-0 for signal G;
the new logic function forL is determined based onL’s
static probability,P (L), of signalL. If the signal spends most
of its time at logic-0 (i.e., P (L) ≤ 0.5), it is set equal to
a logical AND of its previous logic function and signalG.
Hence, we force the signal to logic-0 when it is guarded. If
P (L) > 0.5, the logic function is set equal to the logicalOR of
the previous logic function and the inverted version of signal
G, hence forcing the signal to logic-1 when it is guarded. This
distinction is made to avoid inducing additional toggles onthe
guarded signal. Consider the case where the output of LUTL
in Fig. 4(b) was logic-1 the instant prior to guarding. If it was
guarded using a logicalAND of its previous function and signal
G, then the gate would induce one additional toggle from
logic-1 to logic-0. Hence, the static probability of the guarded
signal is examined prior to inserting the guarding logic to avoid
such additional (and unnecessary toggles). Fig. 5 providesan
illustration of the type of guarding used based on the static
probability and the guarding value1. No additional LUTs are
required to perform guardingsince we are modifying the
function of the guarded LUT, which is logic entirely internal
to the LUT. After guarding, switching activity onL’s output
signal may be reduced, lowering the power consumed by the
signal. Note, however, that guarding must be done judiciously,
as guarding increases the fanout (and likely the capacitance)
of signal G. The benefit of guarding from the perspective
of activity reduction onL’s output signal must be weighed
against such cost.

The guarded evaluation procedure can be applied recursively
by walking the mapped network in reverse topological order.
For example, after considering guarding LUTL with signalG,

1We note that, since we are using AIG representations, we do not insert
explicit OR gates, but ratherAND gates with appropriate inversions on inputs
and outputs.

we examineL’s fanin LUTs and consider them for guarding
by G. Since LUTN in Fig. 4(a) only drives LUTL, N is also
a candidate for guarding by signalG. We traverse the network
to build up a list of guarding options.

There may exist multiple guarding candidates for a given
LUT. For example, if signalH in the Fig. 4(a) were a gating
or trimming input to LUTL, thenH is also a candidate for
guarding LUTN (in addition to the option of usingG to
guardN ). Furthermore, if a LUT has multiple free inputs,
we can guard it multiple times. We discuss the ranking and
selection of guarding options in the next section. The ease with
which we can use AIGs to identify gating and trimming inputs
(via finding non-inverting and partial non-inverting paths)
circumvents one of the key difficulties encounted by Tiwari et
al. [26], specifically, the problem of determining which signals
can be used to guard which gates.

While we can guardL with G in Fig. 4, we cannot
necessarily guard LUTM with G. The reason is thatM
is multi-fanout, and it fans out to LUTs aside fromZ. In
Section III-D, we discuss using circuit “don’t cares” to enable
guarding insomecases such asM . Note, however, that there
do exist multi-fanout LUTs in circuits where guarding is
“obviously” possible, such as LUTQ in Fig. 6(a). LUT Q
fans out to two LUTs, however, both fanout paths fromQ pass
through LUTZ. LUT Q is said to havereconvergentfanout.
If all fanout paths from a LUT pass through the “root” LUT
that receives the gating input, then guarding the multi-fanout
LUT can be done without damaging circuit functionality. A
fast network traversal can be used to determine if all transitive
fanout paths from a LUT pass through a second LUT. Such a
traversal is applied to qualify multi-fanout LUTs as guarding
candidates. In general, for a guarding signalG driving a LUT
Z, we can safely useG to guard any LUT withinZ ’s fanout-
free fanin cone.

It is worthwhile to highlight an important difference be-
tween our approach and the prior ASIC approach, shown in
Fig. 2. In Fig. 2, transparent latches are used to hold inputsto
blocks constant while the blocks are guarded. Our approach,
on the other hand, takes the logicalAND or logical OR of an
existing LUT function with the guarding signal, making the
LUT output logic-0 or logic-1 while guarded. Our method
requiresthe guarded LUT to have additional inputs that are
free to insert the guarding signal, which constrains some
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Fig. 6: (a) Guarding with reconvergent fanout; (b) Illustration
of how guarding can create a combinational loop.
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guarding opportunities. Nonetheless, our results show that a
significant number of guards were inserted effectively reducing
dynamic power.Moreover, our method does not add LUTs to
the circuit. The only overhead is for additional wires to connect
guarding signals to the fanin of the guarded LUTs.

It is also worth mentioning that LUTs in today’s commercial
FPGAs have 6 inputs [5], [27], which provide better speed
performance than the 4-LUTs used traditionally. Many logic
functions in circuits require less than 6 variables and con-
sequently, LUTs in mapped circuits commonly have unused
inputs. A recent work from Xilinx demonstrated that in com-
mercial 6-LUT circuits, only 39% of the LUTs in the mappings
use all 6 inputs [13].A similar observation was made earlier
in [17] when describing the Altera Stratix II architecture where
it was observed that only 36% of the LUTs in a mapped set
of designs required full 6-LUTs.The considerable number of
LUTs with unused inputs bodes well for our guarding scheme.

B. Creating Guarding Opportunities During Mapping

Having introduced how guarded evaluation can be applied
to a mapped network, we now consider the influence of the
mapping step itself on guarding.We aim to encourage the cre-
ation of LUT mapping solutions containing “good” guarding
opportunities, while maintaining the quality of other circuit
criteria, such as area and depth.We propose a cost function
for cuts to reflect cut value from the guarding perspective.

For a set of inputs to a cutC, Inputs(C), define
Gating[Inputs(C)] to be the subset of inputs that are gating
inputs, as defined in Section II-D. We define aGuardCostfor
a cut, such that minimization ofGuardCostwill encourage
the creation of mapping solutions containing high-quality
guarding opportunities, while at the same time minimizing the
dynamicpower of the mapped network:

GuardCost(C) =
1 +

∑
i ∈ Inputs(C) α(i)

1 + |Gating[Inputs(C)]|
(2)

whereα(i) represents the switching activity on LUT inputi.
The numerator of (2) tallies the switching activities on cut
inputs, minimizing activity on inter-LUT connections in the
mapped network. Higher input activities yield higher values of
GuardCost. A similar approach to activity minimization has
been used in other works on power-aware FPGA technology
mapping [16], [14]. The denominator of (2) reflects the desire
to have LUTs with gating inputs (i.e., inputs that drive non-
inverting paths in the AIG). The signals on such inputs
can naturally be used to guard other LUTs, as described in
Section III-A. Cuts with higher numbers of such non-inverting
path inputs will have lower values of (2).

C. Post-Mapping Guarded Evaluation

Following mapping, the circuit is represented as a network
of LUTs. Consider a guarding option,O, comprisingL as the
candidate LUT to guard, andG being the candidate guarding
signal (produced by some other LUT in the design). We score
guarding optionO as follows:

Score(O) =
|Outputs(L)| · α(L) · P (L,G)

1 + α(G)
(3)

where |Outputs(L)| represents the fanout of LUTL; α(L)
andα(G) are the switching activities onL andG’s outputs,
respectively;andP (L,G) is the fraction of time thatG spends
at the value that gatesL. The numerator of (3) represents
the benefit of guarding, which increases in proportion toL’s
fanout, its activity and the fraction of timeG serves to gate
L. The more time thatG spendsat its gating value,the higher
the likely activity reduction onL. The denominator of (3)
represents the cost of guarding, which is an increase ofG’s
fanout (and likely capacitance). The cost is proportional to the
activity of signalG, as it is less desirable to increase the fanout
of high activity signals. Higher values of (3) are associated
with what we expect will be better guarding candidates. For
a mapped network, we capture all possible guarding options
in an array and sort the array in descending order of each
option’s score, as computed through (3). The guarding then
proceeds as follows: We iteratively walk through the list of
guarding options and for each one, we consider introducing
the guard into the mapping. To guard some LUTL with some
signalG, the following rules must be obeyed:

1) LUT L must have a free input (to attachG).
2) AttachingG to an input ofL must not form a combi-

national loop in the circuit.
3) SignalG must not already be attached to an input of

LUT L.
4) The guard should not increase the depth of the mapped

network beyond a user-specified limit.
5) The guard must not affect the circuit’s functional cor-

rectness (discussed in Section III-D below).

A few of the conditions warrant further discussion. Rule #2
is illustrated in the LUT network of Fig. 6(b). The candidate
guarding option is illustrated by the dashed line. If we wereto
introduce the guard, a combinational loop would be created,as
the LUT producing the guarding signalG lies in the transitive
fanout of the LUT being guarded,L. We detect and disqualify
such guarding options.

In the case of rule #3, whereG is already connected to an
input ofL, we can alterL’s logic function to makeG a gating
input of L, if it is not already so. We can attain the benefit of
guarding without routingG to an additional load LUT (i.e.,
without increasingG’s fanout).

Regarding rule #4, guarding can have a deleterious impact
on network depth, as illustrated by the example in Fig 7.
In this case, a root LUTZ at level t receives inputs from
two LUTs at levelt − 1: L andM . The candidate guarding
option is again shown using a dashed line. If the signalG
produced byM is used to guard LUTL, the network depth is
increased tot+1. Generally, if the level of the LUT producing
the guarding signalG is less than the level of the guarded
LUT L, the maximum network depth is guaranteed not to
increase. Conversely, if the level of the LUT producingG is
greater than or equal to the level ofL, the network depthmay
increase, depending on whether the LUTL has any slack in
the mapping (i.e., depending on whetherL lies on the critical
path of the mapped network). Naturally, if more flexibility
is permitted with respect to increasing network depth, more
guarding options can be applied. The allowable increase to
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G. . . .

. . . . . . . .

LUT L
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Level t-1 Level t-1

LUT Z

LUT M

Fig. 7: Example showing how guarding can increase network
depth.
network depth is a user-supplied parameter to our guarding
procedure.

Introducing a guard on a LUT may reduce the switching
activity on the LUT’s output and may also reduce activities
throughout the LUT’s transitive fanout cone. Consequently,
activity and probability values become “stale” after guards
are introduced. To deal with this, we periodically update
activity and probability values during guarding. This is akin to
invoking regular timing analysis passes during routing (e.g., as
done in [20]). In particular, after introducingT guards into
the mapped circuit, we recompute the switching activities and
probabilities for all circuit signals. We score the remaining
guarding options with the revised activities and probabilities
using (3), and then re-sort the list of guarding options. We
resume iterating through the newly sorted list and introducing
guards.T is a parameter that permits a user to trade-off run-
time with guarding quality. LowerT values will result in better
activity reduction, at the expense of additional computation.

The overall post-mapping guarding process terminates when
either there are no profitable guards remaining, or there areno
remaining guarding candidates with a free LUT input.

D. Leveraging Non-Obvious “Don’t Cares”

“Don’t cares” are an inherent property of logic circuits that
can be exploited in circuit optimization. Combinational don’t
cares are tied to the idea of observability. Under certain input
conditions, the output of a particular LUT does not affect over-
all circuit outputs; that is, the LUT output is not observable
under certain conditions. Sequential and combinational don’t
care-based circuit optimization has been an active research
area recently. Don’t cares were applied for power optimization
in [14], wherein high activity connections in a mapped network
were removed from the network, or interchanged with other
low activity connections in the network. Don’t cares can also
be used to achieve a considerable reduction in the area of LUT
mapped networks [21].

As noted in Section III-B, guarding inputs on LUTs can be
identified though non-inverting and partial non-invertingpaths
in AIGs and the signals attached to such inputs can be applied
to guard certain single and multi-fanout LUTs in the mapped
network. This takes advantage of don’t cares that are easily
discoverable through non-inverting paths. We refer to these
asobviousdon’t cares. For cases like that of Fig 4(b), where
LUT L is guarded with signalG, we can be confident that
the transformation does not impact the circuit’s overall logic
functionality. The reason is thatG is a gating input toZ in
the figure, andL is in the fanout-free fanin cone ofZ.

Surprisingly, however, we have observed that due to don’t
cares, it is possible to perform guarding in additional non-
obvious cases, such as guarding LUTs likeM with signal
G in Fig. 4(a). Here,M is not in the fanout-free fanin cone
of Z, so it is not obvious that guardingM with G should
be possible. If we can indeed guardM with G, we refer to
this as leveragingnon-obviousdon’t cares. We experimented
with allowing non-obvious guarding cases to be executed.
In Section III-A above, we described the process by which
we identify guarding opportunities, namely, by identifying a
gating or trimming input,G, to a LUT,Z, and then walking the
mapped networkupstreamfrom Z ’s other inputs. We employ
the same procedure to discover non-obvious guarding options,
except that the uphill traversal is more extensive. Specifically,
we consider usingG to guard LUTs that lie outside ofZ ’s
fanout-free fanin cone.

For guarded evaluation with don’t cares, we use the same
flow as described above, namely, sorting all possible guarding
candidates and iteratively implementing/evaluating eachone in
the sorted order.We use simulation and combinational logic
verification (cec commandin ABC) to check that guarding
(in the case of non-obvious don’t cares) does not damage
functional correctness (we “undo” the guarding if needed).
In particular, we use a fast random vector simulation to
ascertain if correct functionality was disrupted. SAT-based
formal verification is used if the simulation check was suc-
cessful. Certainly, performing a full circuit-wise verification
after guarding is compute-intensive. However, our aim in this
work is to demonstrate thepotential of guarded evaluation
for activity and power reduction. Moreover, recent work on
scalable window-based verification strategies, such as [21],
can be incorporated to mitigate run-times for large industrial
circuits. Power optimization is frequently done as a post-pass
conducted after other design objectives are met, specifically,
performance and area. Power optimization algorithms are
likely not executed during the initial iterative design process,
making longer run-times acceptable for such algorithms. The
next section presents results both with and without leveraging
non-obvious don’t cares in guarded evaluation.

IV. EXPERIMENTAL RESULTS

A. Methodology

We implemented guarded evaluation within ABC [1] and
targeted both6- and 4-LUT architectures. We compare the
results of guarded networks with several different baseline
mappings: 1) LUT mapping based on priority cuts [22] (the
if command in ABC), 2) WireMap [13], and 3) activity-
driven WireMap. Briefly stated, WireMap is a technique that
reduces the number of inter-LUT connections which tends
to be beneficial for power. Activity-driven WireMap has its
cut selection cost function altered to break ties using the
sum of switching activity on cut inputs. In all cases, prior
to mapping, we execute the ABCchoice command [10]
which provides added mapping flexibility and has been shown
to provide superior results. Guarded evaluation was applied
to a modified WireMap mapper, where ties in cut selection
were broken with the values returned by Eq. (2) to improve
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guarding opportunities. In all cases, guarded networks were
verified using the ABCcec command. To determine the
benefits of guarded evaluation, we evaluate our ideas using
two different power metrics: 1) total switching activity after
technology mapping, and 2) power dissipated in the FPGA
interconnect after placement and routing2.

For total switching activity, we sum the activity across all
nets of a circuit. To generate switching activity information,
we used the simulator built-in to ABC. Each combinational
input (primary input or register output) is assigned a random
toggle probability between 0.1 and 0.5. Random input vectors
were then generated in a manner consistent with the input
toggle probabilities. ABC’s logic simulator was used to pro-
duce activity values for internal signals, considering thelogic
functionality. The same set of input vectors were used for each
circuit across all runs. All generated simulation and activity
information is used when performing packing, placement and
routing to determine actual power dissipation for consistent
results throughout the experiments.

For dissipated power, we use the VPR framework described
in [16], which is based on VPR4.3, and integrates the FPGA
power model of [23]3. Since guarding may adversely impact
circuit speed, and since circuits that run slower will naturally
consume less dynamic power, it is desirable to evaluate
the power impact of guarding separately from the impact
of guarding on speed performance. With this in mind, in
computing the power numbers, we assume a constant clock
frequency (25 MHz) for all circuits/implementations. Hence,
the power numbers for a benchmark represent the average
power consumed by the benchmark to perform its computa-
tions in a given (fixed) amount of time. Differences in observed
power for a benchmark across its various implementations
(e.g. guarding off/on) are consequently due to differences
in switching activities on the benchmark’s logic signals and
not due to the implementations being clocked at different
frequencies. Hence, the power improvements reported in this
paper are essentially energy improvements, and energy is the
key metric in determining operational cost and battery life.

Since FPGA architectures are quite varied, we target three
different sizes of clustered FPGA architectures when perform-
ing both6- and4-LUT mapping. Specifically, we target FPGA
architectures in which each LUT is possibly paired (packed)
with a flip-flop (FF). Then, LUT/FF pairs are clustered into
logic blocks (LBs) with 1, 4 or 10 LUT/FF pair(s). In all cases,
the routing architecture is composed of length-4 segments.
In all architectures the number of inputs,I, on the logic
block clusters is set toI = K/2 · (N + 1) whereK is the
number of LUT inputs andN is the number of LUT/flip-flop
pairs per cluster which is a typical value [4]. Finally, to be
consistent, for each mapping strategy and each architecture,
we force the number of routing tracks to be same; we compute
the minimum channel widthW needed for the priority cuts
mapping and then increase this value by30%. Therefore,
the routing fabric is invariant for each circuit/architecture

2Prior work has shown that interconnect comprises∼2/3 of dynamic power
in FPGAs [25].

3Newer versions of VPR are available [18], [19], but these newer versions
do not include a power model which is required for our investigations.

(a)

(b)

Fig. 8: Average reduction in switching activity (normalized)
across a benchmark suite of20 designs for area-oriented
mapping: (a)6-LUT architectures; (b)4-LUT architectures.

irregardless of the mapping algorithm used. This allows fora
fair comparison in terms of dissipated power. In this paper,an
N×K architecture refers to one withN K-LUT/FF pairs per
logic block. Since the FPGA mapper in ABC can operate in
depth or area mode, we consider the consequences of guarding
on both area-oriented and depth-oriented mappings. For the
case of depth-oriented mapping, we also consider the trade-
offs between power and depth.

Finally, for benchmarks, we use the larger designs from the
MCNC suite [28] which are distributed with the VPR package.
When mapped to4- and 6-LUT architectures, these designs
range in size from a few hundred to a few thousand LUTs.

B. Switching Activity Results

The reduction in total switching activity for area-oriented
mapping (using all different mapping techniques) is shown in
Fig. 8(a) and Fig. 8(b) for6-LUT and 4-LUT architectures,
respectively. Reported numbers represent the total switching
activity averaged across a benchmark suite of20 circuits
normalized to the results obtained using the priority cut-based
mapper.

In both Fig. 8(a) and (b), the left-most bar shows total
switching activity for priority cut-based mapping [22] and
represents the baseline result. The second bar shows activity
values for WireMap [13]. On average, WireMap reduces total
switching activity by10% and3% on average for6-LUT and
4-LUT architectures, respectively. The third bar shows results
for activity-driven WireMap; total switching activity is further
reduced by4% and 3% for 6-LUT and 4-LUT architectures,
respectively.
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The fourth bar in Fig. 8 shows results for guarding with
only gating inputs (c.f. Section II-D) without any consideration
of trimming inputs (c.f. Section II-E) or non-obvious don’t
cares (c.f. Section III-D). Further, the fourth bar does not
consider the guard insertion based on static probabilities, but
only insertsAND gates (c.f. Section III-A) to force signals
to logic-0 when guarded. Guarding with only gating inputs
and AND gates reduces the total switching activity by an
additional4% for both6-LUT and 4-LUT architectures when
compared to activity-driven WireMap. The use of trimming
inputs significantly improves results as shown in the fifth bar
in Fig. 8(a) and (b); the total switching activity is further
reduced by an additional4% and 5% for 6-LUT and 4-LUT
architectures, respectively, when compared to guarding with
only gating inputs. Significantly more guarding opportunities
were revealed when trimming inputs (i.e., partial non-inverting
paths) are considered.

The sixth bar shows guarding with gating and trimming
inputs while considering the guarding value and the static
probability of the guarded LUT when determining whether to
guard with anAND gate or anOR gate (c.f. Section III-A). Re-
call that, intuitively, by considering different types of guarding
logic, it should be true that unnecessary toggling is reduced
and, consequently, a further reduction in switching activity
can be obtained. However, as demonstrated by the sixth bar in
Fig. 8(a) and (b), we see that results are worsened by2−3% for
both 6-LUT and 4-LUT architectures. This result is analyzed
and considered further in Section IV-D.

Finally, the last three bars (bars7 through9) in Fig. 8(a)
and (b) shows results for guarding with consideration for
non-obvious “don’t cares” under the same conditions as the
previous three bars (bars4 through 6). We see a similar
pattern to bars4 through6 with the exception that the use
of non-obvious don’t cares serve to further improve results.
If we consider all different mapping strategies, we can see
that it is possible to obtain significant reductions in total
switching activity compared to the priority cut-based mapper;
with minor modifications to WireMap and by proper selection
of guarding techniques, average reductions of32% and25% in
total switching activity can be obtained for6-LUT and4-LUT
architectures, respectively.

Fig. 9(a) and (b) show the reductions in total switching
activity for 6-LUT and4-LUT architectures, respectively, once
depth optimization is taken into account. During the insertion
of guards, an additional constraint is enforced such that the
depth of the network cannot increase due to the addition of
a guard. Intuitively, this constraint will restrict (reduce) the
number of possible guards that can be successfully inserted
and, consequently, many guarding options are discarded.

Columns1 through9 in Fig. 9(a) and (b) show the depth-
oriented results for the different mappers in the same order
as presented previously in Fig. 8(a) and (b) for area-oriented
mapping. Without further detail, we can see the same trend
when comparing the different mapping strategies; the obtained
reductions in switching activity, however, are less for depth-
oriented mapping due to the enforcement of the additional
constraint on logic depth when inserting guards. The best
reduction in total switching activity obtained was, on average,

(a)

(b)

Fig. 9: Average reduction in switching activity (normalized)
across a benchmark suite of20 designs for depth-oriented and
depth-relaxed mapping: (a)6-LUT architectures; (b)4-LUT
architectures.

20% and 14% for 6-LUT and 4-LUT architectures, respec-
tively. This result was obtained when guarding was performed
with both gating and trimming inputs, and consideration of
non-obvious don’t cares.

One final experiment was performed with respect to depth-
oriented mapping to analyze the impact of the depth constraint
enforced during the insertion of guards. Network depth was
relaxed and allowed to increase by up to20% of its optimal
depth4. Depth relaxation was allowed for the two best mapping
strategies; namely (1) guarding with gating and trimming
inputs and (2) guarding with gating and trimming inputs and
with consideration to non-obvious don’t cares. The tenth and
eleventh bars in Fig. 9(a) and (b) show the results for6-LUT
and 4-LUT architectures, respectively. We can see that by
allowing only a small amount of depth relaxation, a further
reduction in the total switching activity is possible.

In summary, the best results in terms of total switching
activity for all mappings (area and depth) for both6-LUT
and 4-LUT architectures was produced when guarded with
gating and trimming inputs while always usingAND gates for
guarding. The use of non-obvious don’t cares served to further
improve results. Results for6-LUT architectures are generally
better than thosefor 4-LUT architectures due to the availability
of more free inputs on LUTs which allow for the insertion of
more guards.

For additional insight into the obtained reductions in to-
tal switching activity, Table I presents the circuit-by-circuit
results for the6-LUT architectures depth-oriented mapping,
respectively5. The last two rows in Table I shows the ratio

4That is, if the optimal mapped circuit depth was originallyL levels, the
depth was permitted to grow to⌈L · 1.2⌉ levels.

5Circuit-by-circuit results are omitted for4-LUT architectures and area-
oriented mapping for sake of brevity.
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(a)

(b)

Fig. 10: Network statistics to judge the impact of guarding for
depth-oriented mapping: (a)6-LUT architectures; (b)4-LUT
architectures. Results show (i) LUT counts (normalized), (ii)
average LUT fanin (normalized), and (iii) percentage of fully
utilized LUTs.

(of geometric means) of the total switching activity for each
mapping technique with respect to the baseline mappers (pri-
ority cuts and activity-driven WireMap).Generally, on a per-
design basis, the application of guarding aids in reducing the
total switching activity. In some cases (e.g.,bigkey), guarding
provided little benefit due to the lack of free inputs on LUTs.

Fig. 10 shows some additional network statistics to help
evaluate the impact of guarding for depth-oriented mapping
(area-oriented results are omitted for brevity). The bars in
the figure represent LUT count and average LUT fanin,
normalized to the activity-driven WireMap scenario. The line
in the figure represents the percentage of fully-utilized LUTs
(i.e. all inputs used). The bars should be interpreted usingthe
left vertical axis; the line goes with the right vertical axis.
Observe that guarding does not increase the LUT count with
respect to activity-driven WireMap (see blue bars). Observe
also that the average LUT fanin is increased (as expected) due
to guarding (see red bars) and that naturally, guarding tends
to increase the number of fully utilized LUTs (line).

Fig. 11 shows how guarding affects characteristics of the
post-packing netlist, i.e. the netlistafter LUTs have been
packed into LBs. Part (a) gives results for depth-oriented 6-
LUT mappings; part (b) gives results for depth-oriented 4-LUT
mappings. The bars in the figure illustrate geometric mean
LB count for the various flows, normalized to activity-driven
WireMap. The line shows average LB fanin (# of used LB
inputs) for the architecture having 4 LUTs/LB (LB fanin for
other LB sizes is omitted for brevity). Observe that for both
6-LUTs and 4-LUTs, guarding does not have an appreciable

(a)

(b)

Fig. 11: Post-packing statistics on LB count and fanin for
depth-oriented mapping: (a)6-LUT architectures; (b)4-LUT
architectures. Results show (i) LB counts (normalized), (ii)
average LB fanin for the case of 4 LUTs/LB.

impact on LB count – the swings lie within the range of 1-
2%, at most. The line in both parts of the figure shows a slight
increase towards the more permissive guarding scenarios on
the right, where greater numbers of guarding connections are
introduced. However, as with LB count, the impact of guarding
on LB fanin is evidently quite small. The statistics in the figure
are encouraging, as guarding adds connections to the mapped
netlist, yet the additional connections appear to have a modest
impact post-packing.

We consider runtimes for guarding as follows. Without
exploiting don’t cares, the worst runtime encountered was 46
seconds6. The breakdown of runtime was33.5% for com-
binational loop checks,62.2% for simulation, and2.1% for
guard identification. The small amount of remaining runtime
was overhead. Both the simulation runtimes and combinational
loop checking can be improved. For example, combinational
loops could be checked via node levels rather than via
depth-first search in many cases. Similarly, less simulation
or incremental simulation could be used. Hence, guarding
without don’t cares is expected to scale to larger designs.
When don’t cares are used, however, the runtime situation
changes. The worst runtime encountered was∼8000 seconds.
Here, only ∼3% of the runtime was taken for simulation,
combinational loop checking and guard identification. Almost
all the runtime was used to perform combinational equivalence

6The platform was a 3.2 GHz Intel i7 PC running Ubuntu Linux v11.10.
The particular design wasclma which, when mapped to6-LUTs, required
∼3000 LUTs.
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checking (CEC) via SAT solving. However, it is important to
recognize that, as our goal was to evaluate the power benefits
of guarding, we made no effort to reduce runtime. The runtime
situation is straightforward to improve in a number of ways:In
the present implementation, the CEC is always performed on
the entire network, but it in fact only needs to be performed
on certain points in the fanout of the guarded LUTs. More
judicious application of don’t cares can be considered. Finally,
it is likely that the guarding with don’t cares could be better
integrated with scalable don’t care analysis.

C. Power Results

While the results above demonstrate a benefit to switching
activity, dynamic power scales with the product of activity
and capacitance. Guarded evaluation increases the fanout of
signals in the network, likely increasing their capacitance and
power. Consequently, it is not adequate to focus solely on
activity reduction to evaluate the benefit of the technique—
actual power measurements after placement and routing are
useful.

Furthermore, modern FPGA architectures cluster LUT/FF
pairs into LBs. Since guarded evaluation reduces the switching
activity on wires with the cost of increased fanout of some
signals, it is relevant to analyze the impact of this approach
on architectures with different cluster sizes. The expectation is
that more heavily clustered architectures would benefit from
guarding the most since LUTs with identical guards (in effect,
shared input signals) would tend to be placed into the same
LB. The consequence is that the additional wires added by
guarding will not impact inter-clustering routing significantly;
i.e., the fanout when measured in terms of the number of logic
blocks will not increase as much when guarding is targeted
towards heavily clustered architectures.

Fig. 12(a) and (b) gives the average power consumed in
the FPGA interconnect for area-oriented mapping for6-LUT
and4-LUT architectures of different cluster sizes, respectively.
The results consider post-routing interconnect capacitance
on architectures with cluster sizes of 1 (flat), 4 and 10.
The pattern is similar to that shown when considering total
switching activity. The best results are obtained when both
gating and trimming inputs were used, with consideration
to non-obvious don’t-cares, and guarding was done using
only AND gates. For6-LUT architectures, Fig. 12(a) shows
an average improvement of20%, 24% and 22% for cluster
sizes of 1, 4 and 10, respectively,relative to priority cuts-
based mapping. For 4-LUT architectures, Fig. 12(b) shows an
average improvement of14%, 22% and20% for cluster sizes
of 1, 4 and 10, respectively. From these experimental results,
it appears that more heavily clustered architectures benefit the
most from guarding. This observation is considered furtherin
Section IV-D.

Fig. 13(a) and (b) show the results for depth-oriented
and depth-relaxed mapping. Once again, the best results are
produced when guarding with gating and trimming inputs
while considering non-obvious don’t cares, which is consistent
with the observations made during the investigation of total
switching activity. Similar to area-oriented mapping, themost

benefit is seen for the more heavily clustered architectures.
Specifically, For6-LUT architectures, Fig. 13(a) shows reduc-
tions of 16%, 17% and 14% for clusters sizes of 1, 4 and
10, respectively,relative to priority cuts-based mapping.With
depth-relaxation, these results improved to18%, 21% and
19% for cluster sizes of 1, 4 and 10, respectively For4-LUT
architectures, interconnect power was reduced by11%, 15%
and13% for cluster sizes of 1, 4 and 10, respectively. Similar
to the6-LUT result, further improvements were obtained using
depth relaxation; reductions of12%, 18%, and 17% were
obtained for clusters sizes of 1, 4 and 10, respectively.
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Fig. 12: Average reduction in interconnect power (normalized)
across a benchmark suite of20 designs for area-oriented
mapping: (a)6-LUT architectures; (b)4-LUT architectures.

For reference, Table II provides the raw interconnect power
results for area-oriented and depth-oriented mappings across
the different architectures. Each entry is produced by taking
the geometric mean of interconnect power across the 20
benchmark circuits.

Lastly, we report the impact of guarded evaluation on post-
routed critical path delay (as reported by VPR [9]).Fig. 14
shows the geometric mean (across all circuits) of critical path
delay for the several of the key mapping techniques. Results
are presented only for6-LUT architectures and different
cluster sizes;4-LUT results are similar and are omitted for
brevity. Fig. 14(a) shows results for area-oriented mappings.
With respect to activity-driven WireMap, the critical path
delay is increased, on average, by∼18% to20% when using
gating inputs, depending on the cluster size. This increases to
∼23% to30% when using gating and trimming inputs. When
non-obvious don’t cares can be exploited, critical path delay
is further increased with respect activity-driven WireMap–
anywhere from∼31% to43% depending on the cluster size.
Hence, although guarded evaluation is very effective when
applied to area-oriented mapping without any concern for
circuit depth, a large performance penalty is incurred.

Fig. 14(b) gives results for several key depth-oriented
mappings. When a depth constraint is enforced during guard
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TABLE I: Switching activity reduction results for 6-LUT depth-oriented mappings.

Activity Trimming Trimming
Priority Driven Trimming Gating Trimming with OR Trimming (DC)

Circuit Cuts WireMap WireMap Gating Trimming with OR (DC) (DC) (DC) (+20%) (+20%)

alu4 144.35 147.12 124.59 121.93 119.37 122.28 115.07 111.09 113.57 107.32 96.27
apex2 56.26 54.53 47.46 45.39 44.84 47.55 37.46 35.32 40.95 36.31 30.32
apex4 98.73 58.62 54.37 53.28 52.95 58.40 52.59 52.46 55.16 51.48 46.94
bigkey 219.98 223.58 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82
clma 685.31 688.05 695.13 601.22 432.92 538.79 347.17 333.66 416.01 379.43 292.68
des 272.98 262.79 256.77 255.28 255.22 256.22 255.85 253.35 254.37 252.65 251.91

diffeq 249.60 249.35 259.82 259.82 254.98 254.70 247.78 245.25 253.04 242.94 241.33
dsip 260.17 261.92 261.92 261.92 253.13 253.13 261.92 261.92 261.92 261.89 261.89

elliptic 692.56 697.87 708.61 707.54 705.60 705.49 706.44 705.85 706.50 706.28 706.01
ex1010 127.09 91.32 96.42 94.69 91.49 94.09 90.74 90.65 94.87 90.33 76.49
ex5p 102.07 98.67 85.08 82.76 71.70 73.54 78.38 78.38 81.54 81.46 72.10
frisc 562.33 512.07 489.53 486.60 482.34 468.51 477.42 477.21 456.48 485.61 476.69

misex3 92.17 91.00 83.21 80.99 80.31 82.63 75.20 73.19 76.93 68.96 67.53
pdc 138.38 129.19 111.29 105.19 96.71 112.42 93.69 85.81 99.18 78.83 77.02
s298 80.72 82.78 76.67 75.22 74.85 74.55 73.98 67.21 69.54 67.06 65.37

s38417 759.56 806.74 819.83 817.04 816.31 811.65 813.64 813.01 808.31 813.43 808.91
s38584.1 751.54 681.06 687.20 683.54 685.97 680.99 683.11 678.26 667.94 678.87 676.17

seq 84.08 86.28 85.07 82.40 82.22 87.72 69.42 64.59 72.64 58.67 52.01
spla 174.35 179.97 144.87 136.12 130.72 142.85 115.45 107.47 135.55 109.27 91.38
tseng 249.21 247.25 253.87 252.97 237.17 237.18 251.09 250.73 252.24 251.56 250.77

Geomean 208.12 197.57 188.22 183.57 176.26 182.93 170.05 165.67 174.87 165.02 154.33
Ratio 1.00 0.95 0.90 0.88 0.85 0.88 0.82 0.80 0.84 0.79 0.74
Ratio 1.00 0.98 0.94 0.97 0.90 0.88 0.93 0.88 0.82

TABLE II: Power reduction results for different architectures (power given in Watts reported by [16], [23]).

Mapping Flow Architecture and Mapping Objective
1x4 4x4 10x4 1x6 4x6 10x6

Area Depth Area Depth Area Depth Area Depth Area Depth Area Depth

Priority Cuts 0.356 0.373 0.110 0.115 0.072 0.075 0.321 0.335 0.103 0.108 0.069 0.076
WireMap 0.335 0.352 0.099 0.108 0.067 0.073 0.279 0.301 0.092 0.099 0.063 0.071

Activity Driven
WireMap 0.335 0.349 0.099 0.107 0.067 0.071 0.276 0.298 0.089 0.096 0.062 0.072

Gating 0.332 0.349 0.099 0.107 0.066 0.071 0.277 0.293 0.089 0.096 0.061 0.070
Trimming 0.330 0.349 0.097 0.106 0.066 0.071 0.273 0.292 0.087 0.096 0.060 0.070
Trimming
with OR 0.330 0.349 0.098 0.106 0.066 0.071 0.276 0.292 0.087 0.096 0.061 0.069

Gating (DC) 0.308 0.336 0.087 0.099 0.058 0.066 0.257 0.282 0.079 0.090 0.055 0.066
Trimming (DC) 0.309 0.334 0.086 0.098 0.058 0.065 0.257 0.282 0.078 0.090 0.055 0.065

Trimming
with OR (DC) 0.312 0.337 0.088 0.100 0.059 0.064 0.261 0.287 0.081 0.091 0.056 0.066

Trimming ( +20%) - 0.339 - 0.100 - 0.066 - 0.282 - 0.090 - 0.065
Trimming

(DC +20%) - 0.327 - 0.094 - 0.062 - 0.274 - 0.086 - 0.062

insertion, the critical path increases only slightly by∼1% to
3%, on average, with compared to activity-driven WireMap.
Some small perturbation is to be expected due to the extra
connections added into the network due to the guarding. With
depth relaxation (of up to20%), the critical path increased, on
average, anywhere from∼11% to17%.

It is important to recognize that many FPGA designs do
not need to run at the maximum possible device performance.
Despite the reduction in maximum achievable circuit speed,
guarded evaluation does indeed produce implementations hav-
ing lower power. We believe that guarded evaluation is an
important power reduction strategy that will be useful in many
applications where power consumption is a top tier concern.

In summary, in the 10×6 architecture which aligns closely
with the logic block granularity of the the Xilinx Virtex-6
FPGA and Altera Stratix IV FPGA, the “Trimming (DC)” flow
with delay-driven mapping provides about 14% reduction in
interconnect power, with just 1% increase in critical path delay,
on average. Alternatively, the “Trimming (DC + 20%)” flow
can be used to achieve 19% power reduction, with a higher,

15% increase in critical path delay. The different flavors of
guarded evaluation thus provide the user with a range of
implementation options within the power/speed design space.

D. Discussion

There were several interesting results seen during experi-
mentation of the guarded evaluation approach and these results
are further investigated in this section.

1) Use of OR Gates as Guard Logic:An apparently
counter-intuitive result was observed when attempting to ac-
count for the static probability of a signal when inserting
guards; recall the intention was to insert either anAND gate
or an OR where appropriate to avoid unnecessary toggles.
Counterinituitively, it did not prove effective to useOR gates,
as demonstrated by the numerical results previously presented.
Analysis demonstrated that the insertion of anOR gate (when
appropriate) based on static probability was having a positive
effect, butonly on a local level. In other words, the selection
of either anAND gate or anOR or based on static probabiltiy
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Fig. 13: Average reduction in interconnect power (normalized)
across a benchmark suite of20 designs for depth-oriented
mapping: (a)6-LUT architectures; (b)4-LUT architectures.

Mapping Flow Normalized
Critical Path Delay
1x6 4x6 10x6

Activity-Driven
WireMap 1.00 1.00 1.00
Gating 1.18 1.20 1.20

Trimming 1.23 1.27 1.30
Gating (DC) 1.31 1.37 1.42

Trimming (DC) 1.31 1.39 1.43

(a)

Mapping Flow Normalized
Critical Path Delay
1x6 4x6 10x6

Activity-Driven
WireMap 1.00 1.00 1.00
Gating 1.01 1.00 1.01

Trimming 1.01 1.00 1.01
Gating (DC) 1.02 1.01 1.02

Trimming (DC) 1.03 1.02 1.02

Gating (DC +20%) 1.14 1.16 1.17
Trimming (DC +20%) 1.11 1.13 1.15

(b)

Fig. 14: Critical path delays for several key mapping tech-
niques to understand the impact of guarding on performance:
(a) area-oriented mapping; (b) delay-oriented mapping.

resulted in reduced switching activity for thecurrent signal
being guarded.

However, further investigation showed that the use ofOR
gates resulted in fewer total inserted guards. Table III shows
the number of guards inserted when signal probabilities are
taken into account; these results are presented for6-LUT
architectures and depth-oriented mappings. In almost all cases,
accounting for signal probabilities and choosing an appropriate
gate type (AND or OR) resulted in fewer inserted guards when
compared to simply inserting anAND gate and forcing a signal
to logic-0. In the course of the algorithm, we observed that
the insertion ofOR gates was creating a different ranking
of guarding options resulting in a different order in which
guards were inserted and free LUT inputs were “used up”. It

TABLE III: Comparison of the number of inserted guards
using gating+trimming inputs when using onlyAND gates
versus usingAND gates +OR gates to guard.

Design Trimming Trimming Trimming Trimming
with OR (DC) with OR (DC)

alu4 95 75 187 153
apex2 36 23 115 117
apex4 10 9 47 40
bigkey 0 0 0 0
clma 843 505 790 491
des 9 5 37 28

diffeq 3 3 81 46
dsip 1 1 1 1

elliptic 49 49 83 50
ex1010 15 95 95 148
ex5p 15 11 64 62
frisc 18 196 125 252

misex3 54 43 173 158
pdc 72 93 213 210
s298 36 69 96 155

s38417 84 88 128 142
s38584.1 68 69 105 131

seq 34 23 105 111
spla 86 87 209 170
tseng 9 2 64 24

Average 76.9 72.3 136 124.5

is a possibility that a different benchmark suite or a different
scoring function for guarding candidates would have resulted
in a different outcome.

2) Architectural Analysis:Clustered architectures tended to
benefit more from guarded evaluation (c.f. Figs. 12 and 13);
this tendency is more pronounced for4-LUT architectures
in our particular experiments. For flat architectures (i.e., 1
LUT/LB), the added guarding connections require inter-cluster
routing; the additional power consumed by the routing of these
connections could out-weigh the benefits of reduced switching
activity due to guarding. Conversely, in clustered architectures,
it was often the case that many guarding connections were
internal to the LBs and, consequently, did not require inter-
cluster routing; these intra-cluster signals do not consume as
much power and are less likely to out-weigh the benefit of
the inserted guards. This observation motivates future work
in which guarding is applied after clustering to have a better
estimation of the impact on inter-cluster routing.

V. CONCLUSIONS

Guarded evaluation reduces dynamic power by identifying
sub-circuits whose inputs can be held constant at certain times
during circuit operation, eliminating toggles within the sub-
circuits. We have proposed the adaption of guarded evaluation
to make it suitable for FPGAs. Specifically, we have shown
that guarding can be applied after technology mapping without
any increase to the overall area (measured in terms of the num-
ber of LUTs) of the network; it is only necessary to add extra
connections into the network in order to perform the guarding.
Increases in area are avoided by exploiting the availability of
unused inputs on LUTs and the existing circuitry inside the
LUTs to perform guarding. Numerical results demonstrate the
efficacy of our proposed techniques and show that guarded
evaluation is effective for FPGA designs.

Additionally, we have proposed astructural technique to
identify guarding candidates based on the ideas ofnon-
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inverting and partial non-inverting paths; the use of partial
non-inverting paths was demonstrated to significantly improve
the availability of guarding options and, in turn, improve the
reduction in both total reduction in total switching activity
and reduction in total dynamic power dissipation. Finally,
we considered the impact on different FPGA architectures.
We discovered that, more often than not, guarded evalua-
tion was most effective for clustered architectures. Analysis
demonstrated that this was due to the guarding signals being
“absorbed” into the logic block clusters.
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