US009003413B1

a2z United States Patent (10) Patent No.: US 9,003,413 B1
Anderson et al. 45) Date of Patent: Apr. 7, 2015
(54) THREAD SYNCHRONIZATION BY 7,383,368 B2* 6/2008 Schoppccccoovniinn. 710/200
TRANSITIONING THREADS TO SPIN LOCK 7,904,673 B2* 372011 Riskaetal. ... o T11/154
AND SLEEP STATE 2010/0257516 Al* 10/2010 Roedigeretal. 717/155
* cited by examiner
(75) Inventors: Jason H. Anderson, Toronto (CA);
Taneem Ahmed, Toronto (CA); Sandor
S. Kalman, Santa Clara, CA (US) Primary Examiner — Meng An
(73) Assignee: Xilinx, Inc., San Jose, CA (US) Assistant Examiner — Wissam Rashid
(74) Attorney, Agent, or Firm — Robert M. Brush; Gerald
(*) Notice: Subject to any disclaimer, the term of this Chan
patent is extended or adjusted under 35
U.S.C. 154(b) by 994 days.
57 ABSTRACT
(21) Appl. No.: 12/568,558
A method, apparatus, and computer readable medium for
(22) Filed: Sep. 28, 2009 synchronizing a main thread and a slave thread executing on
a processor system are disclosed. For example, the method
(51) Int.CL includes the following elements: transitioning the slave
GO6F 9/46 (2006.01) thread from a sleep state to a spin-lock state in response to a
HO4L 12726 (2006.01) wake-up message from the main thread; transitioning the
(52) US.CL slave thread out of the spin-lock state to process a first work
CPC oo HO4L 12/2634 (2013.01) unit from the main thread; determining, at the main thread, an
(58) Field of Classification Search elapsed time period until receipt of a second work unit for the
USPC TSR TR 718/102 slave thread; transitioning the slave thread to the spin-lock
See application file for complete search history. state if the elapsed time period satisfies a threshold time
(56) References Cited period; and transitioning the slave thread to the sleep state if

U.S. PATENT DOCUMENTS

5,193,186 A *
5327419 A *

3/1993 Tamakietal. 718/106
7/1994 Clarketal. ... 370/363

the elapsed time period does not satisfy the threshold time
period.

17 Claims, 6 Drawing Sheets

TRANSITION SLAVE THREAD FROM SLEEP STATE TO
A SPIN-LOCK STATE IN RESPONSE TO WAKE-UP
MESSAGE FROM MAIN THREAD

I~ 302

A

TRANSITION SLAVE THREAD QUT OF SPIN-LOCK
STATE TO PROCESS FIRST WORK UNIT

M- 304

A

DETERMINE AT MAIN THREAD AN ELAPSED TIME
PERIOD UNTIL RECEIPT OF SECOND WORK UNIT
FOR SLAVE THREAD

™\ 306

308

SATISFY
THRESHOLD
?

Y \

312
~

TRANSITION SLAVE
THREAD TO SPIN-LOCK
STATE

I~ 310

TRANSITION SLAVE
THREAD TO SLEEP
STATE

U.S. Patent Apr. 7, 2015 Sheet 1 of 6 US 9,003,413 B1

I/0 INTERFACE N\

108
i
SUPPORT
CIRCUITS 106
1 102
\ /
PROCESSOR SYSTEM
S 1103
|
102A__|+| PROCESSOR PROCESSOR |
|
| MAIN SLAVE N 1028
— THREAD :
116 Vz/ THREAD |
»L , 118
104
/
MEMORY
100
SOFTWARE 110
"2 | 4] os PROCESS H—_
~—114
SYNCHRONIZATION
MODULE T 420

FIG. 1

U.S. Patent

:
()

THREAD
?

Apr. 7,2015 Sheet 2 of 6 US 9,003,413 B1
INITIATE MAIN AND SLAVE THREADS I~ - ,
! 205 204 FIG. 2A7
OBTAIN WORK TO BE <_@
PERFORMED Va FlG 2B
200

201

NEED 208 A/
SLAVE FlG 2 A

O

4,@47

210 212
SEND WAKE-UP
Y MESSAGE TO SLAVE _,@
THREAD
N
e X o~ _ZI 1 _ 22
| __DVIDEWORKUNIT 1 DETERMINE WORK
———— !
v NEEDED TO BE DONE
SEND WORK UNIT TO
SLAVE THREAD
218 916 228
DY v WITHIN
N
PROCESS (MAIN) WORK HRESHOLD
UNIT 7
...... Y
RECEIVE RESULTS |
FROM SLAVE THREAD |
232
y -0 ¥
INSTRUCT SLAVE INSTRUGT SLAVE
THREAD TO THREAD TO
TRANSITION TO TRANSITION TO
SPIN-LOCK STATE SLEEP STATE

U.S. Patent Apr. 7, 2015 Sheet 3 of 6 US 9,003,413 B1
202
\5 TRANSITION TO SLEEP STATE (e——
l N 234
RECEIVE WAKE-UP MESSAGE [™ 236

FROM MAIN THREAD

WORK, SPIN,

RECEIVE (SLAVE) WORK UNIT
FROM MAIN THREAD

l

PROCESS RECEIVED WORK UNIT

|

RETURN RESULTS OF
PROCESSED WORK UNIT TO
MAIN THREAD

FIG. 2B

SLEEP
OR SLEEP
?
WORK 242
~

244

246

FIG. 2A

_UFIG. 287
L

200

U.S. Patent Apr. 7, 2015 Sheet 4 of 6 US 9,003,413 B1

TRANSITION SLAVE THREAD FROM SLEEP STATE TO
A SPIN-LOCK STATE IN RESPONSE TO WAKE-UP
MESSAGE FROM MAIN THREAD . 302

l

TRANSITION SLAVE THREAD OUT OF SPIN-LOCK |~ _ 304
STATE TO PROCESS FIRST WORK UNIT

l

DETERMINE AT MAIN THREAD AN ELAPSED TIME
PERIOD UNTIL RECEIPT OF SECOND WORK UNIT [\ 308
FOR SLAVE THREAD

l

308

SATISFY

THRESHOLD
?

312
r_J
TRANSITION SLAVE | 319 TRANSITION SLAVE
THREAD TO SPIN-LOCK THREAD TO SLEEP
STATE STATE

FIG. 3

U.S. Patent

\d

Apr. 7,2015 Sheet 5 of 6 US 9,003,413 B1
INVOKE MAIN AND SLAVE THREADS TO
ROUTE A SOURCE PINTO ALOAD PIN {~_
402 450
403
Y ~
WAKE UP SLAVE THREAD —>®
y
ADD SOURCE PIN AS NODE TO A
PRIORITY QUEUE T 404
\
REMOVE SELECTED NODE FROM |~ 406
PRIORITY QUEUE
410
/
INSTRUCT SLAVE
THREAD TO SLEEP
DETERMINE NEIGHBOR ELEMENTS IN - 412
INTERCONNECTION NETWORK FOR Wf
NOpE FIG. 4M4
, P
INDICATE WORK TO DO FOR SLAVE 413
THREAD 400 /| FIG. 4B

FIG. 4A

U.S. Patent Apr. 7, 2015 Sheet 6 of 6 US 9,003,413 B1
FIG. 4A

452 7 W
\‘ ~/FIG. 4B
400" s

»| TRANSITION TO SLEEP STATE [N_ 409

RECEIVE WAKE-UP MESSAGE
FROMMAIN THREAD AND [~ 414
TRANSITION TO SPIN-LOCK
STATE

SLEEP

416

WORK, SPIN,
OR SLEEP

?

418

-

COMPUTE COST VALUES FOR
NEIGHBOR ELEMENTS AND
INSERT NEIGHBOR ELEMENTS
INTO PRIORITY QUEUE

o)

FIG. 4B

US 9,003,413 B1

1
THREAD SYNCHRONIZATION BY
TRANSITIONING THREADS TO SPIN LOCK
AND SLEEP STATE

FIELD OF THE INVENTION

One or more aspects of the present invention relate gener-
ally to integrated circuit design and, more particularly, to a
method and apparatus for providing a thread synchronization
model.

BACKGROUND OF THE INVENTION

The broad availability of multi-core microprocessors has
made multi-threaded software applications commonplace. In
such applications, a program spawns multiple execution
“threads” that run in parallel on different central processing
units (CPUs) or different “cores” in the microprocessor in
order to accelerate computation. An operating system (OS)
typically manages different threads executed on the micro-
processor. In particular, an OS can decide how threads are
bound to processor cores and for how long a thread may
execute on a processor core.

In general, threads may be “sleeping” or “active”, depend-
ing on whether or not they are executing on a processor at a
given moment. Multi-threaded applications typically place
their execution threads into a sleeping state when the threads
are not required to do work. The OS can wake up sleeping
threads when work is available. In modern microprocessors,
it can take between 20 and 60 microseconds, on average, for
the OS to respond to a wake up request and bring a sleeping
thread into the active state. Thus, there must be a sufficient
amount of work for the thread to perform in order to justify
this wake-up time overhead. Otherwise, the overhead contrib-
utes to inefficiency, potentially eliminating any gain achieved
by multi-threading.

In some cases, a thread does not transition to a sleep state
when there is no work to perform, but rather enters a loop to
stay active (referred to as “spinning”). The thread “spins”
until there is work to be performed. In general, spinning
requires the thread to repeatedly check whether there is work
to do. However, such spinning is not desirable from the per-
spective of efficient processor usage, since the processor is
consumed in maintaining the spinning thread. Thus, a pro-
cessor maintaining a spinning thread at best has a reduced
capacity to handle more meaningful tasks, and at worst is
unavailable to perform such tasks while the thread is spin-
ning.

Accordingly, there exists a need in the art for an improved
method and apparatus for providing a thread synchronization
model that overcomes the aforementioned disadvantages.

SUMMARY OF THE INVENTION

Some embodiments of the invention relate to a method and
computer readable medium for synchronizing a main thread
and a slave thread each executing on a processor system. The
method, and computer readable medium having instructions
that when executed by a processor perform the method, can
include: transitioning the slave thread from a sleep state to a
spin-lock state in response to a wake-up message from the
main thread; transitioning the slave thread out of the spin-lock
state to process a first work unit from the main thread; deter-
mining, at the main thread, an elapsed time period until
receipt of a second work unit for the slave thread; transition-
ing the slave thread to the spin-lock state if the elapsed time
period satisfies a threshold time period; and transitioning the

10

15

20

25

30

35

40

45

50

55

60

65

2

slave thread to the sleep state if the elapsed time period does
not satisfy the threshold time period.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: obtaining an
initial work unit at the main thread; dividing the initial work
unit into the first work unit and another work unit; sending the
first work unit from the main thread to the slave thread; and
processing the other work unit at the main thread.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: receiving, at the
main thread, the first work unit as processed by the slave
thread; and combining, at the main thread, the other work unit
as processed by the main thread with the first work unit as
processed by the slave thread.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: sending the
second work unit from the main thread to the slave thread; and
transitioning the slave thread out of the spin-lock state to
process the second work unit, wherein the elapsed time period
satisfies the threshold time period.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: dividing, at the
main thread, an initial work unit into the second work unit and
a third work unit; and processing the third work unit at the
main thread.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: receiving, at the
main thread, the second work unit as processed by the slave
thread; and combining, at the main thread, the third work unit
as processed by the main thread with the second work unit as
processed by the slave thread.

In some embodiments, the method, and computer readable
medium having instructions that when executed by a proces-
sor perform the method, can further include: transitioning the
slave thread from the sleep state to the spin-lock state in
response to another wake-up message from the main thread;
and transitioning the slave thread out of the spin-lock state to
process a third work unit from the main thread, wherein the
elapsed time period does not satisfy the threshold time period.

Another embodiment of the invention relates to an appa-
ratus that can include: a processor system having a first pro-
cessor configured to execute a main thread and a second
processor configured to execute a slave thread; and a memory
storing program instructions that when executed by the pro-
cessor system are configured to: transition the slave thread
from a sleep state to a spin-lock state in response to a wake-up
message from the main thread; transition the slave thread out
of'the spin-lock state to process a first work unit from the main
thread; determine, at the main thread, an elapsed time period
until receipt of a second work unit for the slave thread; and
transition the slave thread to the spin-lock state if the elapsed
time period satisfies a threshold time period, or to the sleep
state if the elapsed time period does not satisfy the threshold
time period.

In this embodiment, the processor system can comprise a
microprocessor, the first processor can comprise a first core of
the microprocessor, and the second processor can comprise a
second core of the microprocessor. In this embodiment, the
first processor can comprise a first microprocessor and the
second processor can comprise a second microprocessor. In
this embodiment, the program instructions can be further
configured to: obtain an initial work unit at the main thread;

US 9,003,413 B1

3

divide the initial work unit into the first work unit and another
work unit; send the first work unit from the main thread to the
slave thread; and process the other work unit at the main
thread. In this embodiment, the program instructions can be
further configured to: receive, at the main thread, the first
work unit as processed by the slave thread; and combine, at
the main thread, the other work unit as processed by the main
thread with the first work unit as processed by the slave
thread. In this embodiment, the program instructions can be
further configured to: send the second work unit from the
main thread to the slave thread; and transition the slave thread
out of the spin-lock state to process the second work unit. In
this embodiment, the program instructions can be further
configured to: transition the slave thread from the sleep state
to the spin-lock state in response to another wake-up message
from the main thread; and transition the slave thread out of the
spin-lock state to process a third work unit from the main
thread.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawing(s) show exemplary
embodiment(s) in accordance with one or more aspects of the
invention; however, the accompanying drawing(s) should not
be taken to limit the invention to the embodiment(s) shown,
but are for explanation and understanding only.

FIG. 1 is a block diagram depicting a computing system
according to an embodiment of the invention;

FIGS. 2A and 2B show a flow diagram of a method of
thread synchronization according to an embodiment of the
invention;

FIG. 3 is a flow diagram depicting a method of synchro-
nizing a main thread with a slave thread each executing on a
processor system according to an embodiment of the inven-
tion; and

FIGS. 4A and 4B show a flow diagram of a method 400 of
parallel routing for an IC design according to an embodiment
of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting a computing system
100 according to an embodiment of the invention. The system
100 includes a processor system 102, a memory 104, various
support circuits 106, and an I/O interface 108. In general, the
processor system 102 may include one or more processors. A
processor includes a circuit configured to execute program
instructions. A processor may also be referred to as a central
processing unit (CPU). For purposes of clarity by example,
the processor system 102 is shown with two processors 102A
and 102B. Processor(s) in the processor system 102 can be
implemented using one or microprocessors, each of which
can include one or more independent cores. A microprocessor
generally includes one or more processors on a single inte-
grated circuit (IC). A microprocessor that includes more than
one processor is referred to as a multi-core microprocessor,
where each independent processor is referred to as a core. For
purposes of clarity by example, the processors 102A and
1028 are shown as two cores in a microprocessor 103. It is to
be understood that the processors 102A and 1028 can also be
implemented using two separate microprocessors in the pro-
cessor system 102.

The support circuits 106 for the processor system 102
include conventional cache, power supplies, clock circuits,
data registers, I/O interfaces, and the like. The I/O interface
108 may be directly coupled to the memory 104 or coupled
through the processor system 102. The memory 104 may

30

35

40

45

50

55

4

include one or more of the following random access memory,
read only memory, magneto-resistive read/write memory,
optical read/write memory, cache memory, magnetic read/
write memory, and the like.

The memory 104 stores software 110 that includes pro-
gram instructions configured for execution by the processor
system 102. The software 110 can include an operating sys-
tem (OS) 112 and a process 114. The OS 112 provides an
interface between the process 114 and the processor system
102. The OS 112 may be implemented using various operat-
ing systems known in the art. The process 114 can be executed
by the processor system 102 under control of the OS 112 to
perform work. For purposes of clarity by example, a single
process 114 is shown, but it is to be understood that the
software 110 can include multiple processes for execution by
the processor system 102 under control of the OS 112.

The process 114 can include a plurality of threads for
performing different units of work (“work units”). The pro-
cess 114 and the OS 112 can cooperate to distribute execution
of the threads among different processors in the processing
system. For example, in the present embodiment, the process
114 can include two threads referred to as a main thread 116
and a slave thread 118. The main thread 116 can be executed
onthe processor 102 A and the slave thread can be executed on
the processor 102B. In general, the main thread 116 obtains
and processes work units. The main thread 116 can use the
slave thread 118 to process particular work units or portions
thereof on its behalf. The software 110 includes a synchroni-
zation module 120 configured to synchronize execution of
threads, including the main thread 116 and the slave thread
118. The synchronization module 120 includes program
instructions executable by the processor system 102 and can
be implemented in the OS 112, the process 114, or using a
combination of the OS 112 and the process 114. Operation of
the synchronization module 120 is described below.

FIGS. 2A and 2B show a flow diagram of a method 200 of
thread synchronization according to some embodiments of
the invention. The method 200 may be performed by the
synchronization module 120 described above. For purposes
of clarity by example, the method 200 is described with
respect to synchronizing the main thread 116 and the slave
thread 118 shown in FIG. 1. The method 200 includes a
method 201 performed by the main thread 116, and a method
202 performed by the slave thread 118.

The method 200 begins at step 204, where the process 114
initiates the main thread 116 and the slave thread 118. The
method 200 then proceeds to both the method 201 and the
method 202. The method 201 begins at step 206, where the
main thread 116 obtains work to be performed. At step 208,
the main thread 116 determines whether the slave thread 118
is needed to complete the work. If not, the method 200 pro-
ceeds to step 218. If so, the method 200 proceeds to step 210.
Atstep 210, the main thread 116 determines whether the slave
thread 118 is sleeping. If so, the method 200 proceeds to step
212, where the main thread 116 sends a wake-up message to
the slave thread 118. If the slave thread 118 is not sleeping at
step 210, the method 200 proceeds to step 214.

At optional step 214, the main thread 116 divides the work
into two separate work units, one for the main thread 116
(“main work unit”) and another for the slave thread 118
(“slave work unit”). In some embodiments, the main thread
116 and the slave thread 118 may be designed to divide the
work by their functions (e.g., each thread performs a different
type of work). In such cases, the main thread does not actually
divide the work unit, rather the main thread performs its part
of'the work and the slave thread performs its part of the work
by design. Thus, step 214 is optional.

US 9,003,413 B1

5

At step 216, the main thread 116 sends a work unit to the
slave thread 118. At step 218, the main thread 116 processes
the work unit (main work unit if divided). At optional step
220, the main thread 116 receives results of the processed
slave work unit from the slave thread 118. At optional step
222, the main thread 116 combines the results of the pro-
cessed main work unit with the results of the processed slave
work unit. Steps 220 and 222 are optional. For example, steps
220 and 222 are omitted if the slave thread 118 is not needed
to perform the work. In another example, the main thread 116
may not be required to combine the results from the slave
thread 118 with its results.

At step 224, the main thread 116 determines whether there
is more work to do (i.e., whether all of the work received at
step 206 has been performed). If so, the method 201 returns to
step 206 and repeats. If there is more work to do, the method
201 proceeds to step 226.

At step 226, the main thread 116 determines work needed
to be done, but has not yet been received. At step 228, the main
thread 116 determines whether additional work will be
received within a threshold time period. That is, the main
thread 116 determines an elapsed time period until receipt of
additional work and compares the elapsed time period with a
threshold time period. If additional work will be received
within the threshold time period, the method 201 proceeds to
step 230, where the main thread 116 instructs the slave thread
118 to transition to a spin-lock state. By “transition to”, it is
meant that the slave thread will move to destination state
when idle (after work is performed) or remain in the destina-
tion state if already in such state. If additional work will not be
received within the threshold time period, the method 201
proceeds to step 232, where the main thread 116 instructs the
slave thread 118 to transition to (or remain in) a sleep state.
The method 201 can be repeated for each set of work received
by the main thread 116.

The method 202 performed by the slave thread 118 begins
at step 234. At step 234, the slave thread transitions to a sleep
state. When a thread is in the sleep state, the OS 112 does not
allocate a processor to execute the thread (i.e., the thread does
not perform work). At step 236, the slave thread 118 receives
the wake-up message from the main thread 116. The slave
thread 118 then transitions to a spin-lock state. For example,
the spin-lock state may be implemented by a step 240, where
the slave thread 118 determines whether to work, spin, or
sleep. In case of spin, the step 240 is repeated. In case of sleep,
the method 202 returns to step 234. In case of work, the
method 202 proceeds to step 242.

At step 242, the slave thread 118 receives the work unit (or
slave work unit if divided) from the main thread 116. At step
244, the slave thread 118 processes the received work unit. At
step 246, the slave thread 118 returns results of the processed
work unit to the main thread 116. The method 202 returns to
step 240.

The method 200 performed by the synchronization module
120 can efficiently and advantageously process work that
includes small and “bursty” work units required to be pro-
cessed by the slave thread 118. That is, there may be relatively
lengthy periods of time when no work is required to be done
by the slave thread, followed by periods to time where there
are many smaller pieces of work that need to be done in rapid
succession. During a work burst, the units of work are small
such that the “wake-up” overhead associated with repeatedly
waking up a sleeping thread is too long or otherwise elimi-
nates any potential run-time benefit that multi-threading pro-
vides. Hence, the synchronization module 120 combines the
notions thread sleeping (also referred to as “thread barriers™)
and thread spin-locking to realize an efficient hybrid solution.

20

35

40

45

50

55

6

In some embodiments, the synchronization module 120
provides a thread synchronization model, where the slave
thread 118 is initially sleeping. At some point, the main thread
116 wakes up the slave thread 118. Upon waking, the slave
thread 118 enters a spin-lock and waits for work to be
assigned by the main thread 116. Upon receiving work, the
slave thread 118 performs the work and returns the results to
the main thread 116. After completing work, the slave thread
118 has two options: the slave thread 118 can continue with
the spin-lock or the slave thread can go to sleep. The main
thread 116 is responsible for deciding whether the slave
thread 118 sleeps or remains in a spin-lock. In general, if work
units are small and coming in rapid succession, the main
thread 116 can direct the slave thread to spin and wait for
more work to be assigned. On the other hand, if the main
thread 116 determines that there will be an absence of new
work for some threshold time period, the main thread 116 can
direct the slave thread 118 to sleep, thereby freeing up pro-
cessor resources for other tasks. Thus, the synchronization
module 120 combines the more advantageous aspects of
thread barriers and thread spin-locks in order to maximize
efficient CPU usage in a multi-core processing system, while
also minimizing application run-time.

FIG. 3 is a flow diagram depicting a method 300 of syn-
chronizing a main thread with a slave thread each executing
on a processor system according to an embodiment of the
invention. The method 300 begins at step 302, where the slave
thread transitions from a sleep state to a spin-lock state in
response to a wake-up message from the main thread. At step
304, the slave thread transitions out of the spin-lock state to
process a first work unit from the main thread. At step 306, the
main thread determines an elapsed time period until receipt of
a second work unit for the slave thread. At step 308, the main
thread determines whether the elapsed time period satisfies a
threshold time period. If the elapsed time period satisfies the
threshold time period, the method 300 proceeds to step 310,
where the slave thread transitions to the spin-lock state. If the
elapsed time period does not satisfy the threshold time period,
the method 300 proceeds to step 312, where the slave thread
transitions to a sleep state. The method 300 may be repeated
to perform additional work.

In some non-limiting embodiments, the thread synchroni-
zation model described herein may be used in a placement
and routing algorithm for placing and routing a circuit design
in an integrated circuit (IC) (“IC design”). The IC may
include circuit elements capable of being connected through
a programmable interconnection network. Examples of such
an IC include field programmable gate arrays (FPGAs), com-
plex programmable logic devices (CPLDs), and the like. Dur-
ing design, nets of the IC design (e.g., connections) are each
routed from a source pin to one or more load pins through the
interconnection network, where a “pin” is a port or connec-
tion of a particular circuit element. The routing algorithm
must perform many of such routing operations between a
source pin and a load pin. The thread synchronization model
described herein can be used to parallelize the routing algo-
rithm, as described in the exemplary embodiment below.

FIGS. 4A and 4B show a flow diagram of a method 400 of
parallel routing for an IC design according to an embodiment
of'the invention. The method 400 provides exemplary use of
the thread synchronization model described above. For
example, the method 400 may be generally implemented by
the process 114 having the main thread 116 and the slave
thread 118 and using the thread synchronization module 120.
The method 400 includes a method 450 performed by a main
thread, and a method 452 performed by a slave thread. The
method 400 begins at step 402, a main thread and slave thread

US 9,003,413 B1

7

are invoked to route a source pin to aload pin. The method 400
proceeds from step 402 to methods 450 and 452.

The method 450 begins at step 403, where the main thread
wakes up a slave thread. At step 404, the main thread adds the
source pin as a node to a priority queue. At step 406, the main
thread removes a selected node from the priority queue. At
step 408, the main thread determines whether the selected
node is the load pin. If so, the method 450 proceeds to step
410. At step 410, the main thread instructs the slave thread to
sleep.

If at step 408 the selected node is not the load pin, the
method 450 proceeds to step 412. At step 412, the main thread
determines neighbor elements in an interconnection network
of the IC for the pin or routing conductor represented by the
node. The neighbor elements of the selected node are those
routing conductors or pins that may be connected to the
selected node by turning on a programmable routing switch.
At step 413, the main thread indicates that there is work to do
for the slave thread. The indication may be explicit signaling
of'the slave thread (e.g., sending the slave thread a message),
or implicit signaling of the slave thread (e.g., by storing a
particular value in memory). The method 450 returns to step
406 from step 413.

The method 452 of the slave thread begins at step 420,
where the slave thread transitions to a sleep state. The method
452 moves from step 420 to step 414. At step 414, the slave
thread transitions from the sleep state to a spin-lock state in
response to a wake up message from the main thread. At step
416, the slave thread determines whether there is work to do,
whether to spin, or whether to sleep. In the present example,
the slave thread has work to do if the main thread has indi-
cated such (i.e., the main thread has selected a node and
iterated through its neighbors). If there is no work to do and no
sleep instruction has been received, the method 452 continues
with the spin-lock. If there is work to do, the method 452
proceeds to step 418. At step 418, the slave thread computes
cost values for the neighbor elements and inserts the neighbor
elements into the priority queue for a selected node. That is,
neighbor elements are inserted into the priority queue at a
particular cost, where the cost can represent delay, capaci-
tance, congestion, or like type metrics. The method 452
returns to step 416 from step 418. If at step 416 the slave
thread receives a message from the main thread to sleep, the
method 452 proceeds to step 420, where the slave thread
transitions to the sleep state.

Accordingly, it can be seen that in the method 400, the main
thread extracts a node from the priority queue and iterates
through its neighbors, while the slave thread does costing and
queue insertion for the previously extracted node. When not
doing costing and queue insertion, the slave thread is kept
spinning until the main thread indicates there is work to do for
costing and queue insertion. At the end of routing a source pin
to a load pin, the main thread instructs the slave thread to
sleep. The slave thread can be re-awakened when routing for
a new load pin is initiated (i.e., the method 400 can be
repeated for a different source/load pin pair. Note that in the
method 400 the main thread and the slave thread are doing
different types of work.

Aspects of the methods described above may be imple-
mented as a program product for use with a computer system.
Program(s) of the program product defines functions of
embodiments and can be contained on a variety of computer
readable media, which include, but are not limited to: (i)
information permanently stored on non-writable storage
media (e.g., read-only memory devices within a computer
such as CD-ROM or DVD-ROM disks readable by a CD-
ROM drive or a DVD drive); and (ii) alterable information

10

30

40

45

60

65

8

stored on writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive or read/writable CD or read/
writable DVD). Such computer readable media, when carry-
ing computer-readable instructions that direct functions of
the invention, represent embodiments of the invention.

While the foregoing describes exemplary embodiment(s)
in accordance with one or more aspects of the present inven-
tion, other and further embodiment(s) in accordance with the
one or more aspects of the present invention may be devised
without departing from the scope thereof, which is deter-
mined by the claim(s) that follow and equivalents thereof.
Claim(s) listing steps do not imply any order of the steps.
Trademarks are the property of their respective owners.

The invention claimed is:

1. A method of synchronizing a main thread and a slave
thread, comprising:

obtaining an initial work unit at the main thread;

dividing the initial work unit into a first work unit and

another work unit;

sending, via a wake-up message, the first work unit from

the main thread to the slave thread; and

processing the other work unit at the main thread;

transitioning the slave thread from a sleep state to a spin-

lock state in response to the wake-up message from the
main thread;
transitioning the slave thread out of the spin-lock state to
process the first work unit from the main thread;

determining, at the main thread that executes on a proces-
sor, an elapsed time period until receipt of a second work
unit for the slave thread, wherein the act of determining
the elapsed time period is performed before the receipt
of the second work unit;
transitioning the slave thread to the spin-lock state if the
elapsed time period satisfies a threshold time period; and

transitioning the slave thread to the sleep state if the
elapsed time period does not satisfy the threshold time
period.

2. The method of claim 1, further comprising:

receiving, at the main thread, the first work unit as pro-

cessed by the slave thread; and

combining, at the main thread, the other work unit as pro-

cessed by the main thread with the first work unit as
processed by the slave thread.

3. The method of claim 1, wherein the elapsed time period
satisfies the threshold time period, and the method further
comprises:

sending the second work unit from the main thread to the

slave thread; and transitioning the slave thread out of the
spin-lock state to process the second work unit.

4. The method of claim 3, further comprising:

dividing, at the main thread, an initial work unit into the

second work unit and a third work unit; and
processing the third work unit at the main thread.

5. The method of claim 4, further comprising:

receiving, at the main thread, the second work unit as

processed by the slave thread; and

combining, at the main thread, the third work unit as pro-

cessed by the main thread with the second work unit as
processed by the slave thread.

6. The method of claim 1, wherein the elapsed time period
does not satisfy the threshold time period, and the method
further comprises:

transitioning the slave thread from the sleep state to the

spin-lock state in response to another wake-up message
from the main thread; and

transitioning the slave thread out of the spin-lock state to

process a third work unit from the main thread.

US 9,003,413 B1

9

7. An apparatus, comprising:

a processor system having a first processor configured to
execute a main thread and a second processor configured
to execute a slave thread;

amemory storing program instructions that when executed
by the processor system are configured to:

obtain an initial work unit at the main thread;

divide the initial work unit into a first work unit and another
work unit;

send, via a wake-up message, the first work unit from the
main thread to the slave thread; and

process the other work unit at the main thread;

transition the slave thread from a sleep state to a spin-lock
state in response to the wake-up message from the main
thread;

transition the slave thread out of the spin-lock state to
process the first work unit from the main thread;

determine, at the main thread, an elapsed time period until
receipt of a second work unit for the slave thread before
the receipt of the second work unit; and

transition the slave thread to the spin-lock state if the
elapsed time period satisfies a threshold time period, or
to the sleep state if the elapsed time period does not
satisty the threshold time period.

8. The apparatus of claim 7, wherein the processor system
comprises a microprocessor, the first processor comprises a
first core of the microprocessor, and the second processor
comprises a second core of the microprocessor.

9. The apparatus of claim 7, wherein the first processor
comprises a first microprocessor and the second processor
comprises a second microprocessor.

10. The apparatus of claim 7, wherein the program instruc-
tions are further configured to:

receive, at the main thread, the first work unit as processed
by the slave thread; and

combine, at the main thread, the other work unit as pro-
cessed by the main thread with the first work unit as
processed by the slave thread.

11. The apparatus of claim 7, wherein the elapsed time
period satisfies the threshold time period, and the program
instructions are further configured to:

send the second work unit from the main thread to the slave
thread; and

transition the slave thread out of the spin-lock state to
process the second work unit.

12. The apparatus of claim 7, wherein the elapsed time
period does not satisty the threshold time period, the program
instructions are further configured to:

transition the slave thread from the sleep state to the spin-

5

10

15

20

25

30

35

40

45

lock state in response to another wake-up message from 50

the main thread; and
transition the slave thread out of the spin-lock state to
process a third work unit from the main thread.

10

13. A non-transitory computer readable medium having

instructions stored thereon that when executed by a processor

system cause the processor system to perform a method of
synchronizing a main thread and a slave thread, comprising:
obtaining an initial work unit at the main thread;
dividing the initial work unit into a first work unit and
another work unit;
sending, via a wake-up message, the first work unit from
the main thread to the slave thread; and
processing the other work unit at the main thread;
transitioning the slave thread from a sleep state to a spin-
lock state in response to the wake-up message from the
main thread;
transitioning the slave thread out of the spin-lock state to
process the first work unit from the main thread;
determining, at the main thread, an elapsed time period
until receipt of a second work unit for the slave thread,
wherein the act of determining the elapsed time period is
performed before the receipt of the second work unit;
and
transitioning the slave thread to the spin-lock state if the
elapsed time period satisfies a threshold time period, or
to the sleep state if the elapsed time period does not
satisty the threshold time period.
14. The non-transitory computer readable medium of claim
13, further comprising:
receiving, at the main thread, the first work unit as pro-
cessed by the slave thread; and
combining, at the main thread, the other work unit as pro-
cessed by the main thread with the first work unit as
processed by the slave thread.
15. The non-transitory computer readable medium of claim
13, wherein the elapsed time period satisfies the threshold

time period, and the method further comprises:

sending the second work unit from the main thread to the
slave thread; and
transitioning the slave thread out of the spin-lock state to
process the second work unit.
16. The non-transitory computer readable medium of claim
15, further comprising:
dividing, at the main thread, an initial work unit into the
second work unit and a third work unit; and
processing the third work unit at the main thread.
17. The non-transitory computer readable medium of claim
13, wherein the elapsed time period does not satisfy the

threshold time period, and the method further comprises:

transitioning the slave thread from the sleep state to the
spin-lock state in response to another wake-up message
from the main thread; and

transitioning the slave thread out of the spin-lock state to
process a third work unit from the main thread.

#* #* #* #* #*

